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A new symplectic chaos synchronization of chaotic systems with uncertain chaotic parameters is studied. The traditional chaos
synchronizations are special cases of the symplectic chaos synchronization. A sufficient condition is given for the asymptotical
stability of the null solution of error dynamics and a parameter difference. The symplectic chaos synchronization with uncertain
chaotic parameters may be applied to the design of secure communication systems. Finally, numerical results are studied for

symplectic chaos synchronized from two identical Lorenz-Stenflo systems in three different cases.

1. Introduction

Chaos has been detected in a large number of nonlinear
dynamic systems of physical characteristics. In addition to
the control and stabilization of chaos, chaos synchroniza-
tion systems are a fascinating concept which has received
considerable interest among nonlinear scientists in recent
times. However, chaos is desirable in some systems, such as
convective heat transfer, liquid mixing, encryption, power
converters, secure communications, biological systems and
chemical reactions. There are a chaotic master system (or
driver) and either an identical or a different slave system (or
responser). Our goal is the synchronization of the chaotic
master system and the chaotic slave system by coupling or by
other methods. In practice, some or all of the parameters of
chaotic system parameters are uncertain. A lot of works have
been preceded to solve this problem using adaptive control
concept.

Among many kinds of chaos synchronization, general-
ized chaos synchronization is investigated [1-6]. There exists
a functional relationship between the states of the master
system and those of the slave system. The symplectic chaos
synchronization concept [7]:

y=H(t,x,y)+F(1), )

is studied, where x, y are the state vectors of the master
system and of the slave system, respectively, F(t) is a given
function of time in different form. The F(¢) may be a regular
function or a chaotic function. When H(t,x, y) + F(t) =
x and H(t,x,y) = x of (1) reduces to the traditional
generalized chaos synchronization and the traditional chaos
synchronization given in [8-10], respectively.

As numerical examples, in 1996, Stenflo originally used a
four-dimensional autonomous chaotic system to describe the
low-frequency short-wavelength gravity wave disturbance in
the atmosphere [11]. This system is similar to the celebrated
Lorenz equation but more complex than it due to the intro-
duction of a new feedback control and a new state variable
and thus is called a Lorenz-Stenflo system after the names of
Lorenz and Stenflo [12]. The nonlinear dynamical behaviors
of the Lorenz-Stenflo system have been investigated in [13-
16].

This paper is organized as follows. In Section 2, by
the Lyapunov asymptotic stability theorem, the symplectic
chaos synchronization with uncertain chaotic parameters
by adaptive control scheme is given. In Section 3, various
adaptive controllers and update laws are designed for the
symplectic chaos synchronization of the identical Lorenz-
Stenflo systems. Numerical simulations are also given in
Section 3. Finally, some concluding remarks are given in
Section 4.



2. Symplectic Chaos Synchronization
with Chaotic Parameters by Adaptive
Control Scheme

There are two identical nonlinear dynamical systems, and the
partner A controls the partner B. The partner A is given by

x=ftxA®), 2)

where x = [xl,xz,...,xn]T € R"is a state vector, A(t) =
[Al(t),Az(t),...,Am(t)]T € R™ is a vector of uncertain
coefficients in f, and f is a vector function.

The partner B is given by

y=f(tyA®), (3a)

where y = [y, ¥5...,y,]" € R"is a state vector, A(t) =

[A\l(t), :4\2(1‘), e Zm(t)]T € R™ is an estimated vector of
uncertain coefficients in f.

So a controller u(t) is added on partner B, and the partner
B becomes

y=f(tyAW0)+u®), (3b)

where u(t) = [u(t), uz(t),...,un(t)]T € R" is the control
vector function.

Our goal is to design the controller u(t) so that the
state vector y of the partner B asymptotically approaches
H(t,x,y) + F(t), a given function H(t,x, y) plus a given
vector function F(t) = [F,(t), F,(t),... ,Fn(t)]T which is the
regular function or the chaotic function.

To define error vector e(t) = [e;, €5, ..., en]T:
e=H(t,x,y)-y+FE(1), (4)
e =0 )

is demanded.
From (4), it is obtained that

é:%—i]+VHTT—y+F(t), (6)
- T .o
where ¥ =[x y].
By (2), (3a), and (3b), (6) can be rewritten as

OH O0oH

_ OoH -~
==+ af(t,x,A(t)) + af(t’y’A(t)) )

~f(tyA®)-u@)+F ).

A positive definite Lyapunov function V (e, A(t)) is cho-
sen:

V(e A(t)) = %eTe+ %}Yr(t)x(t), (8)

where A(t) = A(t) - A(t).
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Its derivative along any solution of (7) is

0H oH

L oH —
V(e A(t) = eT{E+ axf(t,x,A(t))+$f(t,y,A(t))

FlEn A®)+E@-u® }

+ AT A().
9

In (9), the u(t) and A(t) are designed so that V= eTCme +
AT(t)D,,,, A(t) where C,,, and D,,,, are two diagonal
negative definite matrices. The V is a negative definite
function of e and A(t). By Lyapunov theorem of asymptotical
stability

lime =0,
t— 00

tlirréo A(t)=0. (10)

The symplectic chaos synchronization with uncertain
chaotic parameters is obtained [3-7, 11, 17-23].

3. Numerical Results for the Symplectic
Chaos Synchronization of Lorenz-Stenflo
System with Uncertain Chaotic
Parameters via Adaptive Control

The master Lorenz-Stenflo system can be described as [11]
xp=a(xy —x;) +7rxy,

X, = dx; — x, — X1X5,

(11)
X5 = —bx; + x, x5,
X4 ==Xy —CXy.
And the slave Lorenz-Stenflo system can be described as
yr=a(y =)+
j’z = ‘j)ﬁ ~ V2= )3
(12)

V3 = _E)’s + V12
)"4 ==Ys =Yy

where a, b, ¢, d, and r are called the first Prandtl number, geo-
metric parameter, second Prandtl number, Rayleigh number,
and rotation number, respectively. The parameters of Lorenz-
Stenflo system are chosenasa =11, b=2.9, c¢=5,d =23,
andr = 1.9.

The controllers, u;, u,, u;, and u,, are added to the four
equations of (12), respectively:

» =a(y,—y) + Ty, +u,

Y, = J)’l — )2 Y1)s T U
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Y3 = _E)’z. T V1)2 T U3

V4= Y= Cy Uy
(13)

The initial values of the states of the master system and
of the slave system are taken as x,(0) = 10, x,(0) = -13,
x3(0) = 12) x4(0) = _5) }’1(0) = _3’ yz(o) = _4) ,V3(0) = 3)
and y,(0) = -5.

Case 1. A time delay symplectic synchronization.

We take F,(t) = x,(t - T), E,(t) = x,(t = T), F5(t) =
x3(t = T), and F,(t) = x,(t — T). They are chaotic functions
of time, where time delay T = 0.5 sec. The H;(x, y,t) = (x +
y;)(sinwt + 3) (i = 1,2, 3,4) are given. By (5) we have

lime; = tlgréo ((xl2 + yi) (sinwt + 3)—y;+x; (t — T))=0

i=1,2,3,4.
From (14) we have
¢ = (2x;x; + y,) (sinwt + 3) + w cos wt (xlz + yi)
(15)

~JiA i (-T), i=1234,

where w = 19.

Equation (15) can be expressed as

ey = [2x) (a (o = x)) + 1xy) + (@ (32 = 1) + )]
X (sin wt + 3) + w cos wt (xf +y1) -a(y,-»n)

Ty —up+a(l,(t-T)—x, (t-T)) +rx, (t - T),

= [2x2 (dx) = x; = x,%3) + (Jyl —V2- )’1)’3)]

-
)
|

X (sin wt + 3) + w cos wt (x§ + yz)

- ‘j)’l Tttt

+dx, (t-T)—x,t-T)-x, t-T)x5(t -T),
;= [Zx3 (=bx; + x,%x,) — by; + ylyz] (sin wt + 3)

+ wcoswt(xg +y3) +Ey3 — Y1), —Us

—bxy (t=T) +x,(t—=T)x, (t = T),

3
ey = [2x4 (x4 —cx;) — y4 — Cy;] (sinwt + 3)
+ w cos wt (xi + y4) + Y+ Cy Uy
-x,(t=T)—cx; (t=T),
(16)
where
2 .
e = (x1 +y1)(smwt+3) -y +x (t-=-T),
2 .
e, = (x2 +y2) (sinwt +3) =y, +x,(t =T),
17)
ey = (x§ +y3) (sinwt +3) —y; +x5(t =1T),
2 .
e, = (x4 +y4) (sinwt +3) =y, +x,(t=T).
Choose a positive definite Lyapunov function:
v (el, e,,e3,ey, a,b,¢,d, F)
(18)

1 2 T2 .
:—(ef+e§+e§+ei+a2+b2+c2+c?2+r2),
2

whered = a-a, b=b-b,c=c-¢d=d-d,7=r-7 and
a, b, ¢, d, and 7 are estimates of uncertain parameters a, b, ¢,
d, and r, respectively.

Its time derivative along any solution of (16) is

V= e {[2x(a(xy = %)) +7x0) + (@ (32 = 31) + 7))
X (sin wt + 3) + w cos wt (xf + )’1) —a(y,—»)
Tty —uta(x,t-T)—x, (t-T)) +rx, (t - T)}
+e, {[2x2 (dx; — x5 — x,%3) + (Jyl -y - y1y3)]
X (sin wt + 3) +wcoswt(x§ +y2) —dy, +y,
+yys—uy+dx, t-T)-x,(t-T)
—x; (t=T)x; (t - T)}
+ey {[2x3 (=bx; + x,%x,) — by, + )’1}’2]
x (sinwt + 3) + w cos wt (x§ + y3) +Ey3
- Ny, —us—bxy; (t-T)

+x, (- T)x, (t = T)}



+ey {[2x, (x4 — cx;) — y4 — Cy; | (sin 0t + 3)

+wcoswt(xi +y4)+y4+5y1 — Uy
X, (t~T) = cx, (t— T)} + i + Bb

LG+ dd+ 7
19)

The adaptive controllers are chosen as

[2x) (a (2, = x1) +72¢g) + (@ (¥, = 31) +194)]

Uy
X (sin wt + 3) +wcosa)t(xf +y1) —a(y,-»)
—rygta((t-T)—x,t-T))+rx, (t-T) +e,

uy = (20, (dx) = x3 = x1263) + (dyy = 2 = 11y3)]
X (sin wt + 3) + w cos wt (xg + yz)

—dy+ Y+ iy +dx (t=T)
—x,(t-T)-x,t-T)x;(t-T) +e,,

Uy = [2x5 (=bx; + x,x,) — by; + y, 5] (sinwt + 3)
+ w cos wt (x§ + y3) +by; — 1y,

—bxy; (t-T)+x,t-T)x,(t-T) +e3,

(254 (=x4 = cxy) =y — cyy] (sinwt +3)

Uy
2
+ w cos wt (x4 + y4) + Yyt oy
—x,(t-T)—cx;, (t-T) + ey
(20)

and the update laws are chosen as

G=-d= 2x; (y, = y,) (sinwt +3)e; + (v, — y1) e, — @

Z = —Z = —2x3y5e; (sinwt + 3) — y3e; — b,

a1

== -2x,y,e, (sinwt + 3) — ye, — G,

QU

=—d= 2x, 9,6, (sinwt + 3) + y e, — d,

F=-f= 2x, y4e, (sinwt + 3) + ye, — 7.

(21)

The initial values of estimate for uncertain parameters are

a(0) = b(0) = c(0) = d(0) =7(0) = 0.

Equation (19) becomes
V= —(ef+e§+e§+ei+§2+52+62+572+72) <0,

(22)

which is negative definite. The Lyapunov asymptotical stabil-

ity theorem is satisfied. The time delay symplectic synchro-
nization of the identical Lorenz-Stenflo systems is achieved.
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The numerical results of the phase portrait of master system,
chaotic system (3), the time series of states, state errors, and
parameter differences are shown in Figures 1, 2, and 3, respec-
tively. The symplectic chaos synchronization is accomplished
using adaptive control method.

Case 2. A time delay symplectic synchronization with uncer-
tain chaotic parameters.

The Lorenz-Stenflo master system with uncertain chaotic
parameters is

X = A(t) (x, — x;) + R(t) x4,

X, = D(t) x; — x, — X, X3,

(23)
X3 = —B(t) x5 + x; %5,
X, =—x4—C(t) xy,

where A(t), B(t), C(t), D(t), and R(t) are uncertain chaotic
parameters. In simulation, we take

Aty=a(l+kz), B(t)=b(1+kyzs),

Ct)=c(1+kyzy), D) =d(1+kz,), (24)

R(t)=r(1+ksz),
where ky, k,, k3, k,, and ks are positive constants. Chosen are

k, = 0.07, k, = 0.08, k5 = 0.06, k, = 0.07, and ks = 0.08. The
system (23) is chaotic dynamic motion, shown in Figure 4.

The F(t) is chaotic system, and the chaotic signal of goal
system can be described as

zy=a(zy—z,) +rzy
z, =dz, — 2, — 2,25,
zy = —bzy + 2,2,,
Z4= -2, —CZy,
where initial conditions of the chaotic signal of system are
z;(0) = 2, z,(0) = 5, z;(0) = —4, and z,(0) = —6. The

H;(x, y,t) = (xi2 + y)(sinwt + 3) (i = 1,2,3,4) are given.
By (5) we have

lime; = tll)ngo ((x,z + J’i) (sinwt +3) = y; +x; (t - T)) =0,

t— 0o

i=1,23,4.
(26)

From (26) we have

& = (2x;x; + y;) (sinwt + 3) + w cos wt (xl2 + yi)
(27)

—yi+x(=T), i=1,234
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FIGURE 1: Projections of phase portrait for master system (11).

Equation (27) can be expressed as

e = [2x (A1) (xy —x) + R(t) x) + (@ (v — y1) +7y4)]

X (sinwt+3)+wcoswt(xf +y1) —-a(y,-»)

Ty =+ AQ) (i (t=T) = x, (t = T))

+R)x,(t-T),

é2=[2x2(D(t)x1— —x1x3)+(cfy1— _J’l)/3)]
X (sin wt + 3) + w cos wt (xi +y2)
—Jyl+y2+y1y3+u2+D(t)x1(t—T)
—x,(t-T)=x,t-T)x;(t-T),

e = [Zx3 (=B (t) x5 + x,,) — by, + ylyz] (sin wt + 3)
+wcoswt(x§+y3)+l;y3—y1y2—
-B)x;(t-T)+x,¢t-T)x, (t - T),

Ct)xy) = ys—

+wcoswt(xi+y4)+y4+5y1—

-x,t-T)-C(t)x, (t =T),

ey = [2x4 (x4 — ¢y | (sinwt + 3)

(28)

5
-40 _20 1
(b)
where
(x + yl) (sinwt+3) -y, +x,(t=T),
(x + )’z) (sinwt +3) =y, +x, (t = T),
(x +y3) sinwt +3)—y; +x3(t-1),
(x + y4) (sinwt+3) -y, +x,(t=T).
(29)
Choose a positive definite Lyapunov function:
v (61,62,63,84,5 b, G, d, 7)
(30)

1 2 T2 ~
:—(ef+e§+e§+ei+a2+b2+c2+c§2+r2),
2

where @ = A(t)-a, b=B(t)-b, ¢ =C(t)-¢, d = D(t) - d,
7 = R(t) - 7,and a, b, ¢, d, and 7 are estimates of uncertain
parameters A(t), B(t), C(t), D(t), and R(t), respectively.
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FIGURE 2: Projections of the phase portrait for chaotic system (3) of Case 1.

Its time derivative along any solution of (28) is The adaptive controllers are chosen as

[2x; (A(8) (35 = x1) + R(8) x4) + (a (y, = 1) +7y4)]

V= ey {[2x; (A () (x, = 2x))+R (1) x4)+(@ (y, = y1)+7y4)] “

x (sinwt +3) + wcoswt (x7 + ) —a(y, - y) X (sin wt +3) +wcoswt(xf +)’1) —a(y,-n)
— Ty -+ A (x,(t-T)—x, (t-T)) 1yt AW (x, t=T) - x, (t - T))
+R (1) x, (t = T)} +R() x4 (t=T) +ey,

+e, {[2x2 (D) x; —x, — x1%3) + (Jyl -y - y1y3)] uy = [22, (D () %y = %, = x,53) + (dyy = ¥, = 01y3)]

-~ 1 2 p—
X (sin wt + 3) + w cos wt (xi + yz) —dy, X (sin @t +3) + w cos wt (x2 + )/2) dy,

+ )ty —uy + D) x, (E-T) Ayt DOx E-T) =% (E-T)

—x, (E=T) =%, (t=T) x, (¢t~ T) } 0 (E-Dx(E-T)+e,

- = [2x; (-B(t) x5 + x1x,) — by, + sinwt + 3
+e3 {[2x5 (=B (£) x5 + x,%,) = by + 3,31, us = [2x5 (=B () x5 + x,x,) = bys + 1135 ( )

2
- +wcoswt (x5 + y3) +by; =y p
><(sinwt+3)+wcoswl‘(x§+y3)+by3—y1y2 ( } 3) 2o

- B T CTyx, (E=T) +e,,
= B, (= T) 43, (= T) %, (¢~ T)] OxE-D+xE-DxE-Dre

+ey {[2x4 (x4 = C(t) x;) = y4 — Sy ] (sin wt + 3) uy = [2x, (=x, = C(O)x1) = ys —cp] (sinwt +3)
+wcoswt(xi +y4) + Yty —uy—x, (t=T) +wcoswt(xi +y4) +ystey —xgt-T)
~C(t)x, (t = T)} + @a + bb + cc + dd + 77. —Ct)x, (t-T) +e,

(1) (32)
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FIGURE 3: Time histories of states, state errors, parameter differences, F,, F,, F;, F,, H,, H,, H;, and H, for Case 1.



Abstract and Applied Analysis

FIGURE 4: Projections of the phase portrait for chaotic system (23).

and the update laws are chosen as
a=2x(y,- y1) inwt +3)e; + (v, - y1) ey — @,
I;a = —2x3y;e; (sinwt + 3) — yze; — b,
c= —2x4y,e, (sinwt + 3) - y,e, — ¢,

=2x,y,6, (sinwt + 3) + y,e, — d,

QU

7= 2%, Y46, (sinwt + 3) + y,e; — 7.
(33)

The initial values of estimate for uncertain parameters are
a(0) = b(0) = ¢(0) = d(0) = 7(0) = 0.
Equation (31) becomes

V=—(ef+e§+e§+ei+ﬁz+b2+52+c72+72)<0,
(34)

which is negative definite. The Lyapunov asymptotical stabil-
ity theorem is satisfied. The time delay symplectic synchro-
nization with uncertain chaotic parameters of the identical
Lorenz-Stenflo systems is achieved. The numerical results of
the phase portrait of chaotic system (3), the time series of

states, state errors, parameters, and parameter differences are
shown in Figures 5, 6, and 7, respectively. The symplectic
chaos synchronization is accomplished using adaptive con-
trol method.

Case 3. A multitime delay symplectic synchronization with
uncertain chaotic parameters.

We take F,(t) = x,(t — T)), E,(t) = x,(t - T,), F;(t) =
x5(t — T3), and F,(t) = x4(t — T). They are chaotic functions
of time, where multi time delay T}, T,, T}, and T, are positive
constants, T} = 0.5sec, T, = 0.7sec, T; = 0.8sec, and T, =
0.9 sec. The H;(x, y,t) = (xi2 + y)(sinwt + 3) (i = 1,2,3,4)
are given. By (5) we have

[Jim e; = lim ((F + i) Ginwt +3) =y, +x, (- T;)) =0,
i=1,2,3,4.
(35)

From (35) we have

e = (2x;x; + y;) (sinwt + 3) + w cos wt (x,2 + yi) 66

-y +x(t-T), i=123,4
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FIGURE 5: Projections of the phase portrait for chaotic system (3) of Case 2.

Equation (36) can be expressed as ey = [2x4 (x4 — C () x,) — y4 — <y, ] (sin wt + 3)
e = [2x; (A1) (3, — x1) + R(£) x,) + (@(y, = y1) +Ty4)] +wcoswt (xi + y4) + Yyt Oy~ Uy
X (sin wt + 3) + w cos wt (xf + yl) —a(y,- ) -x,(t-T,)-C(t)x, (t-Ty),
_ (37)
—Ty -+ AW (% (t=T,) —x, (£ TY))
+R(t)x, (t-Ty), where
€ = [2x2 (D (t) x; = x; = x1%3) + (j)/l V- )’1)’3)] € = (xf + yl) (sinwt +3) =y +2x, (£ = T1),
X (sin wt + 3) + w cos wt (x§ + yz) ~dy, e, = (x; + yz) (sinwt +3) =y, +x, (t = T,),
(38)
+ Yyt iyt + D) x, (t-T)) es = (x3+y;) (sinwt +3) = y; + x, (t - Ty),
—%(t-T) = x, (t-T1) x; (£ = T), e, = (xi +y4)(sina)t+3)—y4 +x,(t—Ty).
€ = [2x3 (=B (t) x5 + x1x,) _T’)’a * J’l)’z] . ) .
Choose a positive definite Lyapunov function:
x (sin wt + 3) + w cos wt (xg + y3)
R V(el,ez, 63) 64,[1’,’6,5,&:7)
+by; = y1y, —us —Bt) x3 (t - Ty) (39)

Lo 2 2 2 2 72 2 5 =2
+x, (=T x, (t-T,), :E(e1+e2+e3+e4+a +b"+¢ +d +r),
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FIGURE 6: Time histories of states, state errors, F,, F,, F;, F,, H|,H,, H;, and H, for Case 2.
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FIGURE 7: Time histories of A(t), B(t), C(¢), D(t), and R(¢) and parameter differences for Case 2.

where @ = A(t)-a, b=B(t) - b, ¢=C(t)-¢, d = D(t) - d,
7=R(t)-7,and a, b, ¢, d, and 7 are estimates of uncertain
parameters A(t), B(t), C(t), D(t), and R(t), respectively.

Its time derivative along any solution of (37) is

V= e {[2x, (A®) (% = %) +R () x3)+(@ (3, = 1) +7y)]
X (sinwt + 3) + w cos wt (xf + }’1) —a(y,-»)
— Ty —u + AW®) (% (t-T,) —x, (- T)))
+R(t) x, (t - T,)}
L) {[sz (D () x) = x5 = x,%3) + (dA)’l )2 J’lJ’3)]
X (sinwt + 3) + wcoswt(x§ +y2) —dy, +y,
+ s~ t DO x (t=T)) —x, (t-T)
—x; (t=Ty) x5 (t_T3)}
+es {[2x3 (=B (t) x5 + x,%,) — by, + ylyz] (sin wt + 3)
+ wcoswt(xi +y3) +Ey3 — V1Y, — U3
—B(£)x; (1= T5) +x, (= T)) %, (t = T1) }
+ey{[2x, (x4, = C(t) x;) — y4 — Ty ] (sinwt + 3)
+ wcoswt(xi +y4) + gy —uy—x, (t=T,)

-C(t) x, (t—Tl)}+a&+EZ+EE+Jg+F?.
(40)

The adaptive controllers are chosen as

Uy

Uz =

Uy =

[2x, (A () (33 = x1) + R(1) x4) + (a (v, = y1) +704)]
X (sin wt + 3) + w cos wt (xf +y1) —a(y, - )
—ry+ A (x, (E-T,) —x, (t - T)))
+R(t)x, (t-T,) +e,,

(226, (D (1) %1 = %, = x1x3) + (dyy = ¥, = y173)]
X (sin wt + 3) + w cos wt (x§ + yz) —-dy, + 9,
+yys+ D) x, (t-T)) —x,(t - T))

—x, (t=T)) x5 (t = T3) + ey,

[2x5 (B (t) x5 + x,x,) — bys + 1 y,] (sin wt + 3)
+ w cos wt (x§ + y3) +bys — 10,
—BM)x;(t—T;) +x, (t=T)) x, (t = T,) +e3,
[2x, (—x4 —C () x;) — ¥4 — ¢y, ] (sinwt + 3)

+ w cos wt (xi + y4) + y, oy

—x, (t-T,)-C(t)x, (t - T,) + ey,
(41)
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FIGURE 8: Projections of the phase portrait for chaotic system (3) of Case 3.

and the update laws are chosen as

a= 2%, (y2 = 1) sinwt +3) e, + (y, - y1) e, —

Z = —2x3y;e;5 (sinwt + 3) — yze; — b,
T=—2x,y,e, (sinwt +3) — y,e, - G, (42)
j: 2x,y,, (sinwt + 3) + ye, — d,
7= 2x,y4€, (sinwt + 3) + y,e; — 7.
The initial values of estimate for uncertain parameters are

a(0) = b(0) = ¢(0) = d(0) = 7(0) = 0.
Equation (40) becomes

y 2 2 2 2 ~2 72 =2 72, =2
V:—(el+ez+e3+e4+a +b"+C +d +r)<0,
(43)

which is negative definite. The Lyapunov asymptotical sta-
bility theorem is satisfied. The multi time delay symplectic
synchronization with uncertain chaotic parameters of the
identical Lorenz-Stenflo systems is achieved. The numerical
results of the phase portrait of chaotic system (3), the time
series of states, state errors, and parameter differences are
shown in Figures 8 and 9, respectively. The symplectic
chaos synchronization is accomplished using adaptive con-
trol method.

4. Conclusions

A novel symplectic synchronization of a Lorenz-Stenflo
system with uncertain chaotic parameters is obtained by
the Lyapunov asymptotical stability theorem. The simulation
results of three cases are shown in corresponding figures
which imply that the adaptive controllers and update laws we
designed are feasible and effective. The symplectic synchro-
nization of chaotic systems with uncertain chaotic parameters
via adaptive control concept can be used to increase the
security of secret communication system.
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