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We consider the properties of Green’s function for the nonlinear fractional differential equation boundary value problem: Dy, u(t) +
flt,u®)+e(t) = 0,0 < t < 1,u(0) = u'(0) = -+ = u™2(0) = 0,u(1) = Bu(y), wheren-1<a<nmn=30<B<1,0<n<1,DZ,
is the standard Riemann-Liouville derivative. Here our nonlinearity f may be singular at u = 0. As applications of Green’s function,
we give some multiple positive solutions for singular boundary value problems by means of Schauder fixed-point theorem.

1. Introduction

Fractional differential equations have been of great interest
recently. This is due to the intensive development of the
theory of fractional calculus itself as well as its applica-
tions. Apart from diverse areas of mathematics, fractional
differential equations arise in rheology, dynamical processes
in selfsimilar and porous structures, fluid flows, electrical
networks, viscoelasticity, chemical physics, and many other
branches of science. For details, see [1-10].

It should be noted that most of the papers and books
on fractional calculus are devoted to the solvability of linear
initial fractional differential equations on terms of special
functions. Recently, there are some papers dealing with
the existence and multiplicity of solution to the nonlinear
fractional differential equations boundary value problems,
see [11-17].

Bai [14] investigated the existence and uniqueness of
positive solutions for a nonlocal boundary value problem of
fractional differential equation

Dyu(t)+ f(tu)=0, 0<t<]l,

u(1) =Bu(n),

ey
u(0) =0,

by contraction map principle and fixed-point index theory,
where 1 < a < 2,0 < B*' < 1,0 < 5 < 1, D, is
the standard Riemann-Liouville derivative. The function f is
continuous on [0, 1] x [0, 00).

Lietal. [17] investigated the the existence and multiplicity
results of positive solutions for the nonlinear differential
equation of fractional order

Dyu(t)+ f(tu)=0, 0<t<l,
(2)
u©0)=0,  DEu(l)=aDlu(),

by using some fixed-point theorems, where 1 < « < 2,0 <
B<lL0<a<1,&ec(0,1),alP2<1-B0<a-p-1,
Dy, is the standard Riemann-Liouville derivative.

Xu and Fei [18] considered the properties of Green’s
function for the nonlinear fractional differential equation
boundary value problem

Dyu(t)+ f(t,u(®)+e(t)=0, 0<t<]l,

5 5 3)
u(0) =0, Dg, u(1) = aDg,u(¥),

wherel < a <2,0< <1,0<a<1,0<E&<],
a-B-1 >0, Dg+ is the standard Riemann-Liouville

derivative. Here the nonlinearity f may be singular at u = 0.



As applications of Green’s function, they give some existence
of positive solutions for singular boundary value problems by
means of Schauder fixed-point theorem. Here they consider
the case: y, =0,y, =0,y <0.

In this paper, we consider the singular boundary value
problem

0<t<l,

u(1) =Bu(n),
(4)

Dy,u(t)+ f (t,u(t)) +e(t) =0,

u@© =u (0)=--=u"? ) =0,

wheren -1 <a <nn>3,0<f,1 < 1isareal constant,
Dy, is the standard Riemann-Liouville fractional derivative.
We will deduce a property of Green’s function. The result we
establish in Section 2 can be stated as follow.

Theorem 1. The Function G(t, s) defined by (12) is continuous
and satisfies

Mt“s(1 —s)*!
T () (1= pr)

tot—l(l _ S)a—l
T()(1-Br) (5)
for t,s €[0,1],

<G(ts) <

where 0 < M = min{l — Br*", B* (1 - ), fr* '} < 1.

In this paper, we give some existence of positive solutions
for singular boundary value problems by means of Schauder
fixed-point theorem for the case: y, = 0,y, = 0,y" < 0,
P, <0<y~

The paper is organized as follows. In Section 2, we state
some known results and give a property of Green’s function.
In Section 3, using Schauder fixed-point theorem, the exis-
tence of positive solutions to singular problems are obtained.

2. Background Materials

For the convenience of the reader, we present here the
necessary definitions from fractional calculus theory.

Definition 2 (see [7]). The Riemann-Liouville fractional inte-
gral of order « > 0 of a function y : (0,00) — R is given

by

t
15y () = ﬁ jo (t— 9%y () ds, ©)

provided the right side is pointwise defined on (0, 00).
Definition 3 (see [7]). The Riemann-Liouville fractional de-

rivative of order a > 0 of a continuous function y : (0,00) —
R s given by

o B 1 da "
Do,y (8) = F(n—oc)(dt)

where n = [«a] + 1, [«] denotes the integer part of number «,
provided that the right side is pointwise defined on (0, 00).

J %da %

0
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From the definition of Riemann-Liouville’s derivative, we
can obtain the statement.

Lemma4 (see [7]). Leta > 0, if one assumes thatu € C(0,1)N
L(0, 1), then the fractional differential equation

DY u(t) =0 (8)

has u(t) = Cit* ' + Cot*? + - + Cyt“N, C; € R i =
1,2,..., N, as unique solutions, where N is the smallest integer
greater than or equal to c.

Lemma 5 (see [7]). Assume that u € C(0,1) N L(0, 1) with a
fractional derivative of order a« > 0 that belongs to C(0,1) N
L(0, 1). Then,

[0, DG, ut) = u(®) + Cit*" 4+ Cpt*? 4o+ Ct* ™, (9)

for some C; € R, i = 1,2,...,N, N is the smallest integer
greater than or equal to «.

Lemma 6. Given h € C(0, 1) the problem

Dyu(t)+h(t)=0, 0<t<l,n-l<a<n n>3,

u@© =u0)=--=u"?0) =0,

u()=pu(y), 0<B n<l

(10)

is equivalent to

u(t) = Jl G(t,s)h(s)ds, (11)

0

where

(t =91 =Bt (n-9)""
—(t _ s)(x—l (1 _ ﬁna—l_)l)
(1= )T (@)

0<s<t<l1, s<y,
(@ -91" -t~ 9! (1-pr")
x((l - ﬂq“"l) I‘(oc))_ ,

0O<p<s<t<l, (12)
(e =91 = g =5)"")
x((l - ﬁq“"l) F(oc))_ ,

0<t<s<y<l,
(@ =s)1") 1
x((1- )T @)

0<t<s<lI, n<s

G(t,s) = 4

Proof. We can apply Lemma 5 to reduce (10) to an equivalent
integral equation

u(t) = IS h(E) + Ct*  + Gyt 4+ Ct*", (13)

n
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for some C,,C,,..., C
solution of (10) is

€ R. Consequently, the general

u()——LJ (t—s)* h(s)ds

I'(a) (14)
+C T Ot Ot
By u(0) = t/(0) = --- = u"™?(0) = 0, thisis C, = C; = --- =
C, =0.
On the other hand, u(1) = Su(x) combining with
u(l) = ! J (1-9)"h(s)ds +C,,
T(w
(15)
u( ):_L J"( ~ ) h(s)ds + Cyy™!
n T (o) n 1
yields
B 1 1 (1 _ s)a—l
Ci= =g L o hds
. (16)
n —
P J (=9)"" ) o as.
1-Bn~t ) To(w)

Therefor, the unique solution of problem (10) is

B HEDN
u(t)——J’0 ) h(s)ds

1 Jl (t(1-s)*!

h(s)ds  (17)

T T T
B "(tn-s)""
1= L (@) h(s)ds.

For t < 7, we have

t a—1
u(t) = I(t's) h(s)ds

I'(a)
(t(l—S))"‘1
[ ;7 @ h(s)ds]
(f(’7 S))“1
- pre 1[ I'(@) (S)ds]

= [(a-or - pletr- 1
—(t-)*" (1-p*7))
X((l _[;q“‘l)r(oc))_l)h(s) ds

1E(L - 9] = Ble (- 5)]*
' J (1- )T (@)

R
' L (1= B )T (@)

h(s)ds
h(s)ds

= Jl G(t,s)h(s)ds.
0
(18)

For t > 1, we have

o[ ) 5]

B J” (t (=)

1=t T

g (] e e
- [[(@@a-or - ple -
)

h(s)ds

~(t-5)"" (1
x((1-Br* )T @) ) h(s)ds

. J [t -9 = (1= B ) (£ - 9™
1 (1= ")T ()

Lot -1
+J (1= B )T (@)

h(s)ds

h(s)ds

= Jl G(t,s)h(s)ds.
0
(19)

The proof is complete. O

Proof of Theorem 1. 1t is easy to prove that G(t,s) is contin-
uous on [0, 1] x [0, 1], here we omit it. In the following, we
consider (1 — Bn"‘_l)l"(oc)G(t, s).When0 <s<t<l1ls<py,
let

GO =1t1=-91"" =B (n-9)""
(20)
—(t-s)"" (1 - ﬁna_l) .
We have
O =1tA=9"" =B (n-s)"

_ (t _S)tx—l (1 _ﬁrloc—l)

a—-1
=[t(1 - oc—l_ oc—ltoc—1<1_£>
[t(1-s9)] Br ”

—t‘H(l a ;)‘H (1 B ﬂfla_l)



a—1
> [t(l _ S)]oc—l _ ﬁr]tx—lttx—1<1 _ %)

_ ttx—l(l _ S)tx—l (1 _ ﬁﬂa_l)

_ t‘x—lﬁqa—l [(1 _ s)""l a <1 ~ i)ﬁ—l
_ o1 gy [(1 el <1 . i)a—z

>t B (1 - 5) [1 -s- (1 -
1-
— t(x—lﬁnoc—l(l _ S)zx—ZS_”
n

> ﬁqocfltocfl(l _ S)“ilsﬂ
n
> Mt“ (1 -9)" s,
(21)
When0 <y <s<t<l,let
W =[tA-9""=@t-9" (1-B*").  (22)
We have
G )= [tA-9"" = (-9 (1-py*")

a—1
=== (1-3) (- pr)
> (1= - -9 (1= B

_ ﬁﬂocfl (t _ ts)ocfl

$)* s,

(23)

> Mt“ (1 -

When 0 < <5< 7 < 1, let g5(¢) = [1(1 = 91" — ft* (-
$)*"', we have

g5 (6) = [t = )" = B (- 5)* "

a-1
=[t(1 - a-1 (x—ltvc—1<1_£>
(t(1-9)] Br 7

> [t(1-8)]"" = B e (1 -5 (24)

— (1 _ /);’/loc—l) t(x—l(l _ s)oc—l
> Mt“ (1 -9)" s,
When 0 <t <s<1,5<s,wehave

(1= B ) L@ G () = [t (1 - 1% = MES (1= 9% s,
(25)

Itis easy to see that G(t, s) < t*~"(1-5)*"" /T () (1-By* ).
Thus, the proof is complete. O
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Let us fix some notations to be used in the following. “For
a.e” means “for almost every”. Givena € L'(0, 1), we writea >
Oifa > 0fora.e.t € [0, 1], and it is positive in a set of positive
measure, we write f € Car((0,1) x (0,+00), (0, +00)) if f :
(0,1) x (0,+00) — (0,+00) is a Ll—caratheodory function,
that is, the map x — f (¢, x) is continuous for a.e. t € (0, 1),
and the map ¢ — f(t, x) is measurable for all x € (0, +00).

Let us define

1
* t,
y = sup J G(fls)e(s)ds,
tefo,1] o £*
(26)
. LG(t,s)
Y, = tEl{(l))fl] L pre e(s)ds.
Then,
1
t* 1y, < J G(t,s)e(s)ds <t* 'y, (27)
0

3. Main Results

In this section, we establish the existence of positive solutions
for equation

Dy, u(t)+ f(tu®) +e(t) =0, 0<t<]1,
u@© =u' 0 =-=u"20) =0, u()=puln),

(28)

wheren -1 < a <nmn>30<pf<1,0<7 <,
f € Car((0,1) x (0,+00), (0, +00)), e(t) € L'[0,1], DS, is
the standard Riemann-Liouville derivative. The following is
the first main result in this section.

Theorem 7. Suppose that the following conditions are satisfied.

(H,) Foreach L > 0, there exists a function ¢; > 0 such that
f(t,t%'x) > ¢,(t) for a.e. t € (0,1), all x € (0, L].

(H,) There exist g(x), h(x), and k(t) > 0, such that

0< f(t,x)<k(t){g(x)+h(x)}
for aet € (0,1),all x € (0,00),

(29)

here

g : (0, +00)
— [0, +00) is continuous and nonincreasing,

h: [0, +00)

h
— [0, +00) is continuous, and — is nondecreasing.

g
(30)
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(Hj) There exist two positive constants R > r > 0 such that
R>®p +y,27r>0,

Jl k(s)g (rs“’l) ds < +00,
0

h (R) 1 (1 B S)a_l a—1 *
RZ(l + g(R)> Jo T(e) (1~ [grla_l)k(s)g(rs )ds+y ,
(31)
and here
_ ! MS(l — S)“_l
Oy = JO W¢R (s)ds. (32)

Then, (28) has at least one positive solution.

Proof. Let E = (C[0,1],] - |I), and Q is a closed convex set
defined as

Q={xeC[0,1]:t*'r<x(t) <t* 'RVt e [0,1]}, (33)

here E = CJ0, 1] is the Banach space of continuous functions
defined on [0, 1] with the norm

= |,
Il += max Jx (1) (34)

and R > r > 0 are positive constants to be given below.
Now, we define an operator T : O — E by

1
(Tx) (¢) := J-o G@ts)[f(s,x(s)+e(s))ds. (35

Then, (28) is equivalent to the fixed-point problem
x =Tx. (36)
Let R be the positive constant satisfying (H;) and
Dpy +7y, =1 (37)

Then, we have R > r > 0. Now, we prove T(€2) c Q.
In fact, for each x € Q and for all ¢ € (0, 1), by (H;) and
(H;)

Ms(1 —s)*!

T (g O*

(Tx) (t) > Ll T

+ J.l G(t,s)e(s)ds (38)
0

> 197 [Op, +y,] 2777

On the other hand, by conditions (H,) and (H;), we have
(Tx) ()

w1 (1=9)* P!
SLt T(@ (1=t f)

Jo( 22 (250 s

1
+J G(t,s)e(s)ds

0

a—-1 ! (1 - S)a_l a-1X (5)
<t “O —r(a)(l_ﬁﬂa_l)k(s)g<s s«—1>

ST T

T (x (9 /)

k(s)

<!

RR)\ (F (=9 a1 ]
x[<1+g(R)>Jo F(a)(l_/gna_l)k(s)g(rs )ds+y

<t“R.

(39)

In conclusion, T(Q) c Q.

Finally, itis standard that T : QO — Qisa continuous and
completely continuous operator. By a direct application of
Schauder’s fixed-point theorem, (28) has at least one positive
solution x(¢) € CJ[0, 1], the proof is finished. O

Case I (y, = 0). Asan application of Theorem 7, we consider
the case y, = 0. The following corollary is a direct result of
Theorem 7 with r = Q.

Corollary 8. Suppose that f(t,x) satisfies conditions (H,)-
(H,). Furthermore, assume the following.

(H3) There exists a positive constant R > 0 such that

R > ®p >0,

Jl k(s)g [(CDRI)S'X_I] ds < +00,
0

h®
ez (1s g (R)>
1 (1 _ S)(x—l . *
X L Wk (s)g [(CDRl)S ]ds+y ,
(40)
and here
_ ! MS(l - 5)“_1
M L W‘/’R (s)ds. (41)

Then, (28) has at least one positive solution.



From now on, let us define

1 agd=Ma=1)/q _ oya-1
8, :J Ms U9 k(s
o () (1-pn ")
A (42)
1 ~Ma-1) a-1
‘(1-5)
= —k( ) ds.
P J T(a)(1-prt)
Example 9. Suppose that the nonlinearity in (28) is
k(t
fen=2, 3)
where k > 0,0 < A < 1and
1
w(A) = J k(s)s M Vds < +o0. (44)
0
If y, = 0, then (28) has at least one positive solution.
Proof. We will apply Corollary 8. To this end, we take
k(t 1
b= g@=on h@=0 )

(=)

then (H;) and (H,) are satisfied since w(1) < +00, and the
existence condition (H}) becomes

2
(I;)/;z+)/ <R, R>'81,w(/\)<+oo, (46)
1

for some R > 0. Since 0 < A < 1, we can choose R > 0 large
enough such that (46) is satisfied, and the proof is finished.
O

Example 10. Suppose that the nonlinearity in (28) is

ftx)=k(s) (a7 +ux?), (47)

where 0 < A < 1,v > 0and p > 0 is a nonnegative parameter.
For each e(t) with y, = 0,w(A) < +00,

(i) if A + v < 1 — A%, then (28) has at least one positive
solution for each y > 0.

(i) If A + v > 1 — A%, then (28) has at least one positive
solution for each 0 < p < p,, where p; is some
positive constant.

Proof. We will apply Corollary 8. To this end, we take
k@)
A b
(e71L)

Then, (H,)-(H,) are satisfied since w(A) < +0o. Now, the
existence condition (H}) becomes w(A) < +00, and

¢y (1) = g =x"  h(x)=px". (48)

Rl_)t ﬁ% B V*ﬁ?R_A B /32 (49)

/_;2 RAY ’

U<
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for some R > 0 with R™** > f8,. So, (28) has at least one posi-
tive solution for

Rl—AZ/}/\ _ y*ﬁAR—/\Z -B
O<u<p = su 1 1 = 50
U<t R>ﬁ£” ﬂZR/Hv ( )
Note that 4, = c0if A +v < 1 —A*andif A + v > 1 — A%, set
-2 pd s pdp-A?
BZR/HV >

then, we have

l’ (R) = m [(l — AZ - V) le,\Zﬁ?

+(/\2 +A +v) y*ﬁfR_Az +(A+v) ﬁz] )

(52)
Let the function I(R) possess a maximum at R, then
(AP +A+v-1)R\V B}
2 (53)
= (M +2+vA)y" BIRY + (A +v) By,
so we have
(A+v=1422)BIRy > A+ V) BRE,  (54)

itis easy to find that R, > ([32//31\ VO Gince A+ v > 1- A2,
and 0 < A < 1. Finally, it would remain to prove R, > ﬁl/ e,

This is easily verified through elementary computations since
Bi < B, We have the desired results (i) and (ii). ]

Case 2 (y, > 0). The next result explores the case when y, >
0. In this case r = y,.

Corollary11. Supposethat f(t, x) satisfies (H,). Furthermore,
assume the following.

(Hy) YI/leere exists R > 0, _[01 k(s)g(y*s“*)ds < +00, such
that

h(R) 1 (1 _S)oc—l )
(1 + g(R)> Jo T () (1 _ﬁna,l)k(s)g(y*s

71) ds+y* <R.
(55)

Ify, > 0, then (28) has at least one positive solution.

Example 12. Suppose that the nonlinearity in (28) be (43)
withk > 0,4 > 0.Ify, > 0, w(Ad) < +00, then (28) has at
least one positive solution.

Proof. We will apply Corollary 11. Take k(t), g(x), and h(x)
as the same in the proof of Example 9. Then, (H,) is satisfied,
and the existence condition (H,) is satisfied if we take R > 0

with R > ,/y} + y*, and w(1) < +co. O

Example 13. Let the nonlinearity in (28) be (47) with A > 0
and v > 0. For each e(t) with y, > 0, w(A) < +0o0,
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(i) if A+v < 1, then (28) has at least one positive solution
for each p > 0.

(ii) If A+v > 1, then (28) has at least one positive solution
for each 0 < u < p,, where y, is some positive
constant.

Proof. We will apply Corollary 11. To this end, we take g(x),
h(x), and k(t) as the same in the proof of Example 10, then
(H,) is satisfied, and the existence condition (H,) becomes
w(A) < +00,

A kA
Dt 00 il % (56)
ﬁzR)Hv

for some R > 0. So, (28) has at least one positive solution for

Ry —y'y. - B,
O<u<p =sup———=T7° (57)
H<th R>Ig BRI+
Note that y, = coif A +v < land u, = y*/B,if A +v = 1,
andif A +v > 1 set

I(R) := ﬁYR—fjvﬁz (58)
The function I(R) possesses a maximum at
A (i +B) (59)
T QA+v-Dyr

then u, = I(R,). We have the desired results (i) and (ii). [
Case 3 (y* < 0). The next result considers the case p* < 0.

Corollary 14. Suppose that f(t,x) satisfies (H;)-(H,). Fur-
thermore, assume the following.

(Hs) There exist two positive constants R > r > 0 such that

R>®p +y,>2r>0,

1
a—1
Jo k(s)g(rs )ds < +00,

h(R)\ (1 1-9*" a-1
R2<1+g(R)>L I‘(oc)(l—ﬁr]“’l)k(s)g(rs )ds,
(60)

here

Y Ms(1 -9t
q)Rl = JO W(pR (S) dS. (61)

Then, (28) has at least one positive solution.

Example 15. Suppose that the nonlinearity in (28) be (43)
withk > 0,1 > 0.If p* <0, w(A) < +00,

B 62
V*Z[ﬁg] (1-5%): 2

then (28) has at least one positive solution.

Proof. We will apply Corollary 14. Take k(t), g(x) as the same
in the proof of Example 9. Then, (H,) is satisfied, and the
existence condition (Hs) is satisfied if we take R > r > 0
with

R> P (63)
r

and w(1) < +00. If we fix R = f3,/r*, then the first inequality
holds if 7 satisfies

B
S Y2 (64)
B
or equivalently
Vo= 1(r):=r— ﬁrA . (65)
B
The function I(r) possesses a minimum at
1/(1-A%)
ry e [ &) AZ] . (66)
B

Taking r = r,, then the first inequality in (63) holds if y, >
I(r,), which is just condition (62). The second inequality holds
directly from the choice of R, so it remains to prove that
R = B,/r* > r,. This is easily verified through elementary
computations. U

Example 16. Let the nonlinearity in (28) be (47) with k >
0,A>0andv = 0.Ify* <0,w()) < +0o0,

YA( 1-2 1-A-v-A2\ /A
VY, = my [ )/ (mo +umy ) -Bil,  (67)
here m; is the unique solution of the equation

1/A-1
;/A(ml—)tz + #ml—l—v—ﬂ)
(68)
x [ml_’\ +u(l-A—vym A ] = AB,.

Then (28) has at least one positive solution.

Proof. We will apply Corollary 14. To this end, we take
g(x), h(x), and k(t) as the same in the proof of Example 10,
then (H,) is satisfied, and the existence condition (Hj) is
satisfied if we take R > r > 0 with

L 2r=PB R (L+uRM)Brt <R (69)

and w(A) < +0o. If we fixR =
inequality holds if R satisfies

(1+uRM")B,r™, then the first

/1

A+v
v > (1 + [41; )/32:| _ ﬁlR_A. (70)

Let m = 1/R, then

2 a2\ /A
y*Zm)‘[;/’\<ml’\+p¢m”L A) —ﬁl]::F(m).



Then, we have

F' (m)

= A [(ﬁz (ml—A2 n ‘uml—A—v—Az)>

/1

"

v H(ﬁz (mHz + #ml’)”*)‘z))l/H
x ((1-22) g™

e (1-A=v=27) gym ) ]

Lo | g 1ea?
=qm {2 (m +pum

1—/\—\/—/\2)1/ Al

(1= A=v= ) m' ] - Azﬁl}

Lo a1 1-A—v-)?
=qm S m +um

1/A-1

X [ml_lz +u(l-1-v) ml_’l_v_’lz] - /\2[31} .

Let F'(m) = 0, then we have

L oo | iy 1ox 1-A—v-2A2
T S m +um

1/2-1

(72)

x [ml*’\2 +u(l-A-v) mlfkf"’ﬁ] - AZIBI} =0.

Now, let us define ®(m) by

52 YY) 1/A-1
@ (m) =: ;/A(ml)t +‘um1/\vk)

[

1-

A2+y(1—/\—v)m

1-A-v-A2 ]

(73)

(74)
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It is easy to see that ®(m) is a nondecreasing function for
m € [0, +00) and ®(m) — +0o,asm — +00. Thus, D(m) =
A?B, has a unique solution 1, such that

YA 1-2 1-A—v—a2\1/A-1
h \My UMy,

(75)
X [m(l)_A +u(1=A=v)ymy vt ] = 1’8,

and F(m,) = inf, ,F(m).

So, it remains to prove that R > r = [(1 + ‘uR’\”)ﬂz/R]lM,
that is,

2 2\ 1/A
mé” ;M(m(l)f’\ +ym(1)47v7’1) < 1. (76)

In fact, by (75), we have

B, > (ﬁzmg‘”)w_l (Bomy ™) = (ﬁzm(‘)—”)” o)

that is,

2, \ MR
mog<”1> . (78)

1/A
2

Also we have

2

2\ 1/A-1
Bz B (g 4 )
X [(1 -1-v) m(l)_A2 +u(l-1-v) m(l)_’\_v_’lz]

2 2\ 1/A
=(1-A-v) ﬁ;/)‘(mé_)L + pmy ) ,

(79)
that is,
YA 1-2? 1 Av-a2\ /A 2B,
2/ (ﬂ’lo + pmy, v ) < m (80)
Thus, we have
A+l pl/A[ . 1-A 1-A—v—22\ /2
my™ By (mo +pmy )
/\/(17/\2) A+l
(28 2B,
/A 1-A-wv
2
A/(1-A) (8D
1_
:<Mm> VB,
/A ) _
) 1-A-v
)
(B R
B, I1-A-v
since0< A, v<l,andl-A—v—-2A%>0.
We have the desired results. O
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Case4 (y, <0< y").

Example17. Suppose that the nonlinearity in (28) be (43) with
k>0,1>0.1fy, <0<y, w()) < +o0,

A pl/A (1-A%)/A * =M
Ve 21y [ﬁz/ mé / = Bi(1+y"my) ]’ (82)
and here m, is the unique solution of the equation
2
/J’imrn(l_A M1+ y*m)/Hl =B, (83)

then (28) has at least one positive solution.

Proof. We will apply Theorem 7. Take k(t), g(x) as the same
in the proof of Example 9. Then, (H,) is satisfied, and the
existence condition (H;) is satisfied if we take R > r > 0
with

v, 21— BRA, Br *+y" <R, (84)

and w(A) < +00. If we fix R = ,82/7’)L + 9", then the first
inequality holds if R satisfies

B \" A
> - B,R". 85
y*><R_y*> 8, (85)
Taking m = 1/(R - "), then for m € (0, +00), we have
A
n m
. = (B - B

-2 * -A
=m" [[a’;mm(l Mg (1+y"m) ] =: F(m).
Then, we have
F' (m)

— ! [ﬁé/lm(lf,\l)//\ _ ﬁl(l + y*m)_l]
52
i [% ;/Am(l—AZ)/A—l ARy (1+ y*m))”]

1-A% By
+Am[ - ;//\m(l A2)/A-1

+ABy (1 + V*m)“”

I A (1-22)/A s \-A-1
=m 1[ A A28 (1 +y"m) ]

=/—iml_l(1+y*m)7/\71 [B;Mm(l_lzw(l+y*m))”1—)»2/31] )
(87)

Let F'(m) = 0, then we have
%ml_l(lw*m)_/\_l [ﬁ;“m(l_ﬂw(l + Y*m)Ml_Azﬁl] =0.
(88)

Now, let us define ®(m) by
0) (m) = ﬂ;//\m(l—Az)/A(l + y*m))u+1. (89)
It is easy to see that ®(m) is a nondecreasing function

for m € [0,+00), and ®(m) — +o00,asm — +0o. Thus,
®(m) = A*B, has a unique solution m, such that

B mOFIN 1yt m) = 2B, (90)

and F(m,) = inf, F(m).

So, it remains to prove that R > r = [3,/(R— y*)]l/’\, that
is,
g™ <14y my, (91)
In fact, by (90), we have
2
;/’lm(()l_)t A < 1By, (92)
that is,
A/(1-2%)
AZ
o < ( b ) . 93)
2

Thus, we have

(I+A)/A

22\
1/A  1+1/A 1/A 1 1+1/A
2 My <P, <( 1/,\) > my

2

-A

_ y2/a-0) B\ L<1lav*

= =1 <1< 1+y"my.
2

(94)

The proof is complete. O

Example 18. Let the nonlinearity in (28) be (47) with k >
0,A>0andv>0.1fy, <0< y",w(d) < +o0,

1/
Vi 2 m(’} [ ;M(mé_lz +u(l+ y*mo)AJrvmé_A_"_)‘Z)
(95)
* -A
_ﬂl(l + y mO) ] 5
here my, is the unique solution of the equation
1/A-1
;/A(ml—){z " ”(1 + y*m)l+vm1_)\_v_)ﬁ>
x [ml_lz(l + y*m))Prl +u(l-A-v+y"'m) m ¥
X(l " y*m)2A+v:| _ /\2[)’1.

(96)

Then (28) has at least one positive solution.

Proof. We will apply Theorem 7. To this end, we take g(x),
h(x), and k(t) as the same in the proof of Example 10, then
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(H,) is satisfied, and the existence condition (H;) is satisfied
if we take R > r > 0 with

>r-BR™Y (1+pR™)rt+y" <R (97)

and w(1) < +00. If we fix R = (1+uR*")B,r™ +y*, then the
first inequality holds if

1/A

] - BR (98)

[(1 +uRM) B,
Vo2 |

R—y*
Letm = 1/(R-y"), then

/A
7. > m/\[ ;//\(mlf +[/l(1 +y m))bﬂ/ 1- A—v—/\z)

(99)
By = F o,
Then, we have
F' (m)
2 i A2 1/A
_ /\mA—l [ ;/A(ml—)l #(1 +y m)A 1-A—v-A )
w N=A
(1 ym)”|
1/A-1

n m/\ [% ;/)L (ml— + [4(1 +y m))HV 1- )»—v—)f)

x ((1 - )Lz)m_)‘2 +u(1+y m)"
x(1-A-v- Az)mf)ﬁ’*'\z

+uA+v)(1+y m))m’ Yl A’HZY*)

+BA(1 + V*m)fmy*]
2 v A2 1/A
_ %m/l—l {/\z 14 [(ml—A (1 + " m) ™ A )

~ By (1+ y*m)**

+ ﬁl/)\ ( [/l(l + y*m))wv
Xml—/\fvf/lz)l/)t_l
X [(1 - )tz)mH‘2 +u(1+y m)™

X (1 -A-v-— Az) m AN

+ud+v)(1+ y*m)/\wf1

Abstract and Applied Analysis
Xml—)t—v—)tzmy*] ]
2 * -A-1 *
A B(L+y"m) " my }
Lo a1 RAMRD SR
= { S [(m +u(1+y"m) )]

v 1-A-v-)A? )
m

1/A-1

X [A2 (ml_Az . [4(1 N )/*m)A
+ (1 - /\z)ml,/\z
+ [’t(l + Y*m))HV (1 “dA=-v-— AZ)ml_,\_v_Az

+pA+v)(1+ y*m)/\w_lml_l_v_"zmy*]

< (e ) oy 1y ) )
1 A-1 * -A-1
=—m"(1+y"'m)
A
X{ ;/)‘(mk +[/l(1 +y m))HV 1- A*V*)&z)

X [mH‘z(l + y*m)}Prl

1/A-1

+u(l-A-v+y'm)

xml_A_v_’\z(l + y*m)mv] - Azﬁl} .
(100)
Let F'(m) = 0, then we have
1, .
Xm" Y1+ yptm) A
2 v o2\ /A-1
x { ;/A(ml—/\ +‘M(1 +y*m)/\+ ml A—v—\ )
x[ (1+y m)" u(1-A=v+y m)m 1At
x(1+ y*m)sz] - /\2/31} =0.
(101)
Now, let us define ®(m) by
O (m)
N o 1/A-1
= é/l(ml—)tz [/l(l +y m))H 1-A—v A2>
X [ml_Az(l + my*m))Prl
(L= -v+y m)m N 14y m)uw]
(102)
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It is easy to see that ®(m) is a nondecreasing function
for m € [0,+00), and ®(m) — +00,asm — +00. Thus,
®(m) = A*B, has a unique solution 1, such that

1//\( 1-A%

2 YY) 1/A-1
12 () +/"(1 +y*m) o A—v—A )

0
« [mé_A2(1 +Y*m))u+1

+pu(l-A-v+y'm) mé%w#

(1 + y*m0)2A+v]

= Az/—;p
(103)
and F(m,) = inf,,,,F(m).
So, it remains to prove that R > r = [(1 + yRM")ﬁZ/(R -
y*)]l/l, that is,

A+1 1/A( 1-1 My 1-A—v-A?
m,

2 * /A *
o B my "t +u(1+y'm)  my ) <1+y'my.

(104)

In fact, by (103), we have

A2ﬁ1 2 (/32””‘(1)_/\2)1/){_1 (ﬁzmtl)_Az) = (/32”"(1)_/\2)1/{ (105)

that is,
A/(1-2%)
AZ
my < ( f)} ) . (106)
2
Also we have
B,
1/A 1-A? * AV 1-A—v—22 1/A-1
Zﬂz/ (mo +u(l+y'm) Tmy )
X [(1 -A-v) m(l)_)‘2
1-A-v-A2 ® A+v
+u(l-A-v)m, (1+7y"m) ]
2 v v 2\ /A
= (= A=) B g™+ (1 4y ) g )
(107)
that is,
A 1-2? o AV 1dv22\ /A A2/;
(g 1y ) g ) o
(108)

Thus, we have

A
A+1 ol /AL 1-22 o MY 1-a—v-a2\ Y
My P, (mo +u(l+y 'm)" my

2, \MIA)
By

)

2

A+l
NBy
1-A-v

1
A/(1=1)
:<ﬂ&> VB,
) —A-
)/ 1-A-v
1/(1-1)
= A”/“*M<&> X l+y'm
B, 1-A-v ’
(109)
since0< A v<landl-A—v-2A%>0.
Thus, the proof is complete. O

Remark 19. It is easy to find that analogous results to
Examples 10, 13, 16, and 18 for the general equation with the
nonlinearity in (28) are

ftx)= % +uc(t)x" +e(t), (110)

with b,c > 0, but the notation becomes cumbersome. Here
we consider the nonlinearity (47) only for the simplicity.
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