
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 534083, 5 pages
http://dx.doi.org/10.1155/2013/534083

Research Article
An Opial-Type Inequality on Time Scales

Qiao-Luan Li1 and Wing-Sum Cheung2

1 College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China
2Department of Mathematics, The University of Hong Kong, Hong Kong

Correspondence should be addressed to Qiao-Luan Li; qll71125@163.com

Received 4 January 2013; Accepted 16 January 2013

Academic Editor: Allan Peterson

Copyright © 2013 Q.-L. Li and W.-S. Cheung. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We establish some new Opial-type inequalities involving higher order delta derivatives on time scales. These extend some known
results in the continuous case in the literature and provide new estimates in the setting of time scales.

1. Introduction

Opial’s inequality appeared for the first time in 1960 in
[1] and has been receiving continual attention throughout
the years (cf., e.g., [2–7]). The inequality together with its
numerous generalizations, extensions, and discretizations
has been playing a fundamental role in the study of the
existence and uniqueness properties of solutions of initial and
boundary value problems for differential equations as well as
difference equations [8, 9]. Two excellent surveys on these
inequalities can be found in [10, 11].

In 1960, Opial established the following integral inequal-
ity.

TheoremA (see [1]). If𝑓 ∈ 𝐶1[0, ℎ] satisfies𝑓(0) = 𝑓(ℎ) = 0
and 𝑓(𝑥) > 0 for all 𝑥 ∈ (0, ℎ), then

∫
ℎ

0

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥)𝑓
󸀠
(𝑥)

󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 ≤
ℎ

4
∫
ℎ

0

󵄨󵄨󵄨󵄨󵄨𝑓
󸀠
(𝑥)

󵄨󵄨󵄨󵄨󵄨
2

𝑑𝑥. (1)

Shortly after the publication of Opial’s paper, Olech
provided amodified version ofTheoremA.His result is stated
in the following.

Theorem B (see [12]). If 𝑓 is absolutely continuous on [0, ℎ]
with 𝑓(0) = 0, then

∫
ℎ

0

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥)𝑓
󸀠
(𝑥)

󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 ≤
ℎ

2
∫
ℎ

0

𝑓󸀠(𝑥)
2𝑑𝑥. (2)

The equality in (2) holds if and only if 𝑓(𝑥) = 𝑐𝑥, where 𝑐
is a constant.

Thefirst natural extension of Opial’s inequality (1) involv-
ing higher order derivatives 𝑥(𝑛)(𝑠) (𝑛 ≥ 1) is embodied in
the following.

Theorem C (see [10]). Let 𝑥(𝑡) ∈ 𝐶(𝑛)[0, 𝑎] be such that
𝑥(𝑖)(0) = 0, 0 ≤ 𝑖 ≤ 𝑛 − 1 (𝑛 ≥ 1). Then the following
inequality holds:

∫
𝑎

0

󵄨󵄨󵄨󵄨󵄨𝑥 (𝑡) 𝑥
(𝑛)
(𝑡)

󵄨󵄨󵄨󵄨󵄨 𝑑𝑡 ≤
1

2
𝑎𝑛 ∫
𝑎

0

󵄨󵄨󵄨󵄨󵄨𝑥
(𝑛)

(𝑡)
󵄨󵄨󵄨󵄨󵄨
2

𝑑𝑡. (3)

In 1997, Alzer [13] considered Opial-type inequalities
which involve higher-order derivatives of two functions.
These generalize earlier results of Agarwal and Pang [14].

In this paper, we consider theOpial-type inequalitywhich
involves higher-order delta derivatives of two functions on
time scales. Our results in special cases yield some of the
recent results on Opial’s inequality and provide some new
estimates on such types of inequalities in this general setting.

2. Main Results

Let T be a time scale; that is, T is an arbitrary nonempty
closed subset of real numbers. Let 𝑎, 𝑏 ∈ T . We suppose that
the reader is familiar with the basic features of calculus on
time scales for dynamic equations. Otherwise one can consult
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Bohner and Peterson’s book [15] for most of the materials
needed.

We first quote the following elementary lemma and the
delta time scales Taylor formula.

Lemma 1 (see [16]). Let 𝑎 ≥ 0, 𝑝 ≥ 1 be real constants.Then

𝑎1/𝑝 ≤
1

𝑝
𝑘(1−𝑝)/𝑝𝑎 +

𝑝 − 1

𝑝
𝑘1/𝑝 (4)

for any 𝑘 > 0.

Lemma 2 (see [17]). Let 𝑓 ∈ 𝐶𝑚
𝑟𝑑
(T) = the set of functions

that are 𝑚 times differentiable with rd-continuous derivatives
on T , 𝑚 ∈ N. Then for any 𝑎, 𝑏 ∈ T and 𝑡 ∈ [𝑎, 𝑏] ∩ T ,

𝑓(𝑡) =
𝑚−1

∑
𝑘=0

ℎ
𝑘
(𝑡, 𝑎) 𝑓

Δ
𝑘

(𝑎)

+ ∫
𝑡

𝑎

ℎ
𝑚−1

(𝑡, 𝜎 (𝜏)) 𝑓
Δ
𝑚

(𝜏) Δ𝜏,

(5)

where ℎ
0
(𝑡, 𝑠) := 1, ℎ

𝑛+1
(𝑡, 𝑠) := ∫

𝑡

𝑠
ℎ
𝑛
(𝜏, 𝑠)Δ𝜏, 𝑛 ∈ N.

Our main results are given in the following theorems.

Theorem 3. Let 0 ≤ 𝑟 ≤ 𝑠 < 𝑡, 𝑠 > 0, 𝑡 > 1 be real numbers,
and let𝑚, 𝑘 be integers with 0 ≤ 𝑘 ≤ 𝑚−1. Let𝑝 > 0 and 𝑞 ≥ 0
be measurable functions on Υ := [𝑎, 𝑏] ∩ T . Further, let 𝑓, 𝑔 ∈

𝐶𝑚−1
𝑟𝑑

(Υ) with 𝑓Δ
𝑖

(𝑎) = 𝑔Δ
𝑖

(𝑎) = 0, 𝑖 = 0, 1, . . . , 𝑚 − 1,
and let𝑓Δ

𝑚−1

, 𝑔Δ
𝑚−1

be absolutely continuous on Υ such that the
integrals ∫

𝑏

𝑎
𝑝(𝑥)|𝑓Δ

𝑚

(𝑥)|𝑡Δ𝑥 and ∫
𝑏

𝑎
𝑝(𝑥)|𝑔Δ

𝑚

(𝑥)|𝑡Δ𝑥 exist.
Then one has

∫
𝑏

𝑎

𝑞 (𝑥) [
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

]Δ𝑥

≤ 21−𝛼(∫
𝑏

𝑎

ℎ(𝑥)
𝑡/(𝑡−𝑠)Δ𝑥)

1−𝛼

⋅ [𝛽𝑘𝛽−1𝐹 (𝑏) 𝐺 (𝑏) + (1 − 𝛽) 𝑘𝛽 (𝐹 (𝑏) + 𝐺 (𝑏))]
𝛼

,

(6)

where 𝛼 := 𝑠/𝑡, 𝛽 := 𝑟/𝑠,

𝑃 (𝑥) := ∫
𝑥

𝑎

ℎ𝑡/(𝑡−1)
𝑚−𝑘−1

(𝑥, 𝜎 (𝜏)) 𝑝(𝜏)
1/(1−𝑡)Δ𝜏,

ℎ (𝑥) := 𝑞 (𝑥) 𝑝(𝑥)
−𝛼𝑃(𝑥)

𝑟(𝑡−1)/𝑡,

𝐹 (𝑥) := ∫
𝑥

𝑎

𝑝 (𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑡

Δ𝜏,

𝐺 (𝑥) := ∫
𝑥

𝑎

𝑝 (𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑚

(𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑡

Δ𝜏.

(7)

Proof. Since 𝑓Δ
𝑖

(𝑎) = 0, 𝑖 = 0, 1, . . . , 𝑚 − 1, we obtain from
Taylor’s theorem that for all 𝑥 ∈ Υ,

𝑓(𝑥) = ∫
𝑥

𝑎

ℎ
𝑚−1

(𝑥, 𝜎 (𝜏)) 𝑓
Δ
𝑚

(𝜏) Δ𝜏, (8)

and hence

𝑓Δ
𝑘

(𝑥) = ∫
𝑥

𝑎

ℎ
𝑚−𝑘−1

(𝑥, 𝜎 (𝜏)) 𝑓
Δ
𝑚

(𝜏) Δ𝜏. (9)

From (9) and Hölder’s inequality we get

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫
𝑥

𝑎

ℎ
𝑚−𝑘−1

(𝑥, 𝜎 (𝜏))
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝜏

= ∫
𝑥

𝑎

ℎ
𝑚−𝑘−1

(𝑥, 𝜎 (𝜏)) 𝑝(𝜏)
−1/𝑡𝑝(𝜏)

1/𝑡
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝜏

≤ [∫
𝑥

𝑎

ℎ𝑡/(𝑡−1)
𝑚−𝑘−1

(𝑥, 𝜎 (𝜏)) 𝑝(𝜏)
1/(1−𝑡)Δ𝜏]

1−1/𝑡

⋅ (∫
𝑥

𝑎

𝑝 (𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑡

Δ𝜏)
1/𝑡

= 𝑃(𝑥)
1−1/𝑡𝐹(𝑥)

1/𝑡,

(10)

where 𝑃(𝑥) := ∫
𝑥

𝑎
ℎ𝑡/(𝑡−1)
𝑚−𝑘−1

(𝑥, 𝜎(𝜏))𝑝(𝜏)1/(1−𝑡)Δ𝜏, 𝐹(𝑥) :=

∫
𝑥

𝑎
𝑝(𝜏)|𝑓Δ

𝑚

(𝜏)|𝑡Δ𝜏.
Let

𝐺 (𝑥) := ∫
𝑥

𝑎

𝑝 (𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑚

(𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑡

Δ𝜏. (11)

Then we have
󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

= 𝐺Δ(𝑥)
𝑠/𝑡𝑝(𝑥)

−𝑠/𝑡. (12)

So (10) together with (12) implies

𝑞 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

≤ ℎ (𝑥) 𝐹(𝑥)
𝑟/𝑡𝐺Δ(𝑥)

𝑠/𝑡, (13)

where ℎ(𝑥) := 𝑞(𝑥)𝑝(𝑥)−𝑠/𝑡𝑃(𝑥)𝑟(𝑡−1)/𝑡. Integrating both sides
of (13) over Υ and making use of Hölder’s inequality, we
obtain

∫
𝑏

𝑎

𝑞 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

Δ𝑥

≤ ∫
𝑏

𝑎

ℎ (𝑥) 𝐹(𝑥)
𝑟/𝑡𝐺Δ(𝑥)

𝑠/𝑡Δ𝑥

≤ (∫
𝑏

𝑎

ℎ(𝑥)
𝑡/(𝑡−𝑠)Δ𝑥)

1−𝑠/𝑡

(∫
𝑏

𝑎

𝐹(𝑥)
𝑟/𝑠𝐺Δ (𝑥) Δ𝑥)

𝑠/𝑡

.

(14)

Similarly, we get

∫
𝑏

𝑎

𝑞 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

Δ𝑥

≤ (∫
𝑏

𝑎

ℎ(𝑥)
𝑡/(𝑡−𝑠)Δ𝑥)

1−𝑠/𝑡

⋅ (∫
𝑏

𝑎

𝐺(𝑥)
𝑟/𝑠𝐹Δ (𝑥) Δ𝑥)

𝑠/𝑡

.

(15)
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Recall the elementary inequalities

𝑐
𝛼
(𝐴 + 𝐵)

𝛼 ≤ 𝐴𝛼 + 𝐵𝛼 ≤ 𝑑
𝛼
(𝐴 + 𝐵)

𝛼, (𝐴, 𝐵 ≥ 0) , (16)

where

𝑐
𝛼
:= {

1, 0 ≤ 𝛼 ≤ 1,

21−𝛼, 𝛼 ≥ 1,

𝑑
𝛼
:= {

21−𝛼, 0 ≤ 𝛼 ≤ 1,

1, 𝛼 ≥ 1.

(17)

Let 𝛽 = 𝑟/𝑠. Since 𝛼 = 𝑠/𝑡 ∈ (0, 1) and𝐹 is nondecreasing,
from (14)–(16), we have

∫
𝑏

𝑎

𝑞 (𝑥) [
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

]Δ𝑥

≤ (∫
𝑏

𝑎

ℎ(𝑥)
𝑡/(𝑡−𝑠)Δ𝑥)

1−𝛼

⋅ [(∫
𝑏

𝑎

𝐹Δ (𝑥) 𝐺
𝛽
(𝑥) Δ𝑥)

𝛼

+ (∫
𝑏

𝑎

𝐺Δ (𝑥) 𝐹
𝛽
(𝑥) Δ𝑥)

𝛼

]

≤ (∫
𝑏

𝑎

ℎ(𝑥)
𝑡/(𝑡−𝑠)Δ𝑥)

1−𝛼

⋅21−𝛼 (∫
𝑏

𝑎

[𝐹Δ (𝑥) 𝐺
𝛽
(𝑥) + 𝐺Δ (𝑥) 𝐹

𝛽
(𝑥)] Δ𝑥)

𝛼

≤ (∫
𝑏

𝑎

ℎ(𝑥)
𝑡/(𝑡−𝑠)Δ𝑥)

1−𝛼

⋅ 21−𝛼(∫
𝑏

𝑎

[𝐹Δ (𝑥) 𝐺
𝛽
(𝑥) + 𝐺Δ (𝑥) 𝐹

𝛽
(𝜎 (𝑥))] Δ𝑥)

𝛼

.

(18)

By Lemma 1, we get

∫
𝑏

𝑎

[𝐹Δ (𝑥) 𝐺
𝛽
(𝑥) + 𝐺Δ (𝑥) 𝐹

𝛽
(𝜎 (𝑥))] Δ𝑥

≤ ∫
𝑏

𝑎

[𝛽𝑘𝛽−1𝐺 (𝑥) 𝐹
Δ
(𝑥) + (1 − 𝛽) 𝑘𝛽𝐹Δ (𝑥)

+ 𝛽𝑘𝛽−1𝐹 (𝜎 (𝑥)) 𝐺
Δ
(𝑥) + (1 − 𝛽) 𝑘𝛽𝐺Δ (𝑥)] Δ𝑥

= 𝛽𝑘𝛽−1 ∫
𝑏

𝑎

[𝐺 (𝑥) 𝐹
Δ
(𝑥) + 𝐹 (𝜎 (𝑥)) 𝐺

Δ
(𝑥)] Δ𝑥

+ (1 − 𝛽) 𝑘𝛽 [∫
𝑏

𝑎

𝐹Δ (𝑥) Δ𝑥 +∫
𝑏

𝑎

𝐺Δ (𝑥) Δ𝑥]

= 𝛽𝑘𝛽−1𝐹 (𝑏) 𝐺 (𝑏) + (1 − 𝛽) 𝑘𝛽 [𝐹 (𝑏) + 𝐺 (𝑏)] .

(19)

From (18) and (19), we conclude

∫
𝑏

𝑎

𝑞 (𝑥) [
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

]Δ𝑥

≤ 21−𝛼(∫
𝑏

𝑎

ℎ(𝑥)
𝑡/(𝑡−𝑠)Δ𝑥)

1−𝛼

⋅ [𝛽𝑘𝛽−1𝐹 (𝑏) 𝐺 (𝑏) + (1 − 𝛽) 𝑘𝛽 (𝐹 (𝑏) + 𝐺 (𝑏))]
𝛼

.

(20)

The proof is complete.

Theorem 4. Let 𝑟 ≥ 0, 𝑠 > 0, 𝑠 < 𝑡, 𝑡 > 1 be real numbers, and
let 𝑚, 𝑘 be integers with 0 ≤ 𝑘 ≤ 𝑚 − 1. Let 𝑝 > 0, and 𝑞 ≥ 0
be measurable functions on Υ := [𝑎, 𝑏] ∩ T . Further, let 𝑓, 𝑔 ∈

𝐶𝑚−1
𝑟𝑑

(Υ)with let 𝑓Δ
𝑖

(𝑎) = 𝑔Δ
𝑖

(𝑎) = 0, 𝑖 = 0, 1, . . . , 𝑚 − 1,
and 𝑓Δ

𝑚−1

, 𝑔Δ
𝑚−1

be absolutely continuous on Υ such that the
integrals ∫

𝑏

𝑎
𝑝(𝑥)|𝑓Δ

𝑚

(𝑥)|𝑡Δ𝑥 and ∫
𝑏

𝑎
𝑝(𝑥)|𝑔Δ

𝑚

(𝑥)|𝑡Δ𝑥 exist.
Then one has

∫
𝑏

𝑎

𝑞 (𝑥) [
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

]Δ𝑥

≤ 21−𝛼(∫
𝑏

𝑎

ℎ(𝑥)
𝑡/(𝑡−𝑠)Δ𝑥)

1−𝛼

⋅ [𝑑
𝛽
Γ (𝐺 + 𝐹) − Γ (𝐺) − Γ (𝐹)]

𝛼

,

(21)

where Γ(𝐻) := ∫
𝑏

𝑎
𝐻𝛽Δ𝐻, 𝛽:=𝑟/𝑠, 𝛼:=𝑠/𝑡, ℎ(𝑥) :=𝑞(𝑥)𝑝(𝑥)−𝛼

𝑃(𝑥)𝑟(𝑡−1)/𝑡, 𝑃(𝑥) := ∫
𝑥

𝑎
ℎ𝑡/(𝑡−1)
𝑚−𝑘−1

(𝑥, 𝜎(𝜏))𝑝(𝜏)1/(1−𝑡)Δ𝜏, and

𝑑
𝛽
:= {

21−𝛽, 0 ≤ 𝛽 ≤ 1,

1, 𝛽 ≥ 1.
(22)

Proof. Following the proof of Theorem 3, we obtain

∫
𝑏

𝑎

𝑞 (𝑥) [
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑔Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

]Δ𝑥

≤ (∫
𝑏

𝑎

ℎ(𝑥)
𝑡/(𝑡−𝑠)Δ𝑥)

1−𝛼

⋅ 21−𝛼(∫
𝑏

𝑎

[𝐹Δ (𝑥) 𝐺
𝛽𝑥 + 𝐺Δ (𝑥) 𝐹

𝛽
(𝑥)] Δ𝑥)

𝛼

.

(23)
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Using (16),

∫
𝑏

𝑎

[𝐹Δ (𝑥) 𝐺
𝛽
(𝑥) + 𝐺Δ (𝑥) 𝐹

𝛽
(𝑥)] Δ𝑥

= ∫
𝑏

𝑎

(𝐺𝛽 (𝑥) + 𝐹𝛽 (𝑥)) (𝐺
Δ
(𝑥) + 𝐹Δ (𝑥)) Δ𝑥

− ∫
𝑏

𝑎

(𝐺𝛽 (𝑥) 𝐺
Δ
(𝑥) + 𝐹𝛽 (𝑥) 𝐹

Δ
(𝑥)) Δ𝑥

≤ 𝑑
𝛽
∫
𝑏

𝑎

(𝐺 (𝑥) + 𝐹 (𝑥))
𝛽Δ (𝐺 (𝑥) + 𝐹 (𝑥))

− ∫
𝑏

𝑎

𝐺𝛽 (𝑥) Δ𝐺 (𝑥) − ∫
𝑏

𝑎

𝐹𝛽 (𝑥) Δ𝐹 (𝑥)

= 𝑑
𝛽
Γ (𝐺 + 𝐹) − Γ (𝐺) − Γ (𝐹) .

(24)

The proof is complete.

Remark 5. In the special case where T = R, Theorem 4
reduces to Theorem 1 of [13].

Theorem 6. Let 𝑓 ∈ 𝐶𝑚−1
𝑟𝑑

(Υ), Υ := [𝑎, 𝑏] ∩ T be such that
𝑓Δ
𝑖

(𝑎) = 0, 0 ≤ 𝑘 ≤ 𝑚−1, let𝑓Δ
𝑚−1

(𝑥) be absolutely continuous
on Υ, and let ∫𝑏

𝑎
|𝑓Δ
𝑚

(𝑥)|2Δ𝑥 < ∞. Then

∫
𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥) 𝑓
Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝑥

≤ (∫
𝑏

𝑎

∫
𝑥

𝑎

ℎ2
𝑚−𝑘−1

(𝑥, 𝜎 (𝜏)) Δ𝜏Δ𝑥)

1/2

⋅ (∫
𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨

2

Δ𝜏)

1/2

.

(25)

Proof. From the hypotheses, we have

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫
𝑥

𝑎

ℎ
𝑚−𝑘−1

(𝑥, 𝜎 (𝜏))
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝜏. (26)

Multiplying (26) by |𝑓Δ
𝑚

(𝑥)| and using Cauchy-Schwarz
inequality, we obtain

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥) 𝑓
Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑥

𝑎

ℎ
𝑚−𝑘−1

(𝑥, 𝜎 (𝜏))
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝜏

≤
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
(∫
𝑥

𝑎

ℎ2
𝑚−𝑘−1

(𝑥, 𝜎 (𝜏)) Δ𝜏)
1/2

⋅ (∫
𝑥

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨

2

Δ𝜏)
1/2

.

(27)

Integrating both sides over 𝑥 from 𝑎 to 𝑏 and using
Cauchy-Schwarz inequality, we observe

∫
𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥) 𝑓
Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝑥

≤ [∫
𝑏

𝑎

∫
𝑥

𝑎

ℎ2
𝑚−𝑘−1

(𝑥, 𝜎 (𝜏)) Δ𝜏Δ𝑥]

1/2

⋅ [∫
𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

2

∫
𝑥

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨

2

Δ𝜏Δ𝑥]

1/2

= [∫
𝑏

𝑎

∫
𝑥

𝑎

ℎ2
𝑚−𝑘−1

(𝑥, 𝜎 (𝜏)) Δ𝜏Δ𝑥]

1/2

⋅ [∫
𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨

2

Δ𝜏]

1/2

.

(28)

The proof is complete.

Theorem 7. Let 𝑝(𝑥) > 0, 𝑞(𝑥) be nonnegative and measur-
able on Υ = [𝑎, 𝑏] ∩ T , and let 𝑓 ∈ 𝐶𝑚−1

𝑟𝑑
(Υ) be such that

𝑓Δ
𝑘

(𝑎) = 0, 0 ≤ 𝑘 ≤ 𝑚−1. If 𝑓Δ
𝑚−1

(𝑥) is absolutely continuous
on Υ, then for 𝑟 > 1, 𝑟

𝑘
> 0, and any 0 ≤ 𝑟

𝑚
< 𝑟,

∫
𝑏

𝑎

𝑞 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟𝑚 󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟𝑘

Δ𝑥

≤ [∫
𝑏

𝑎

𝑞(𝑥)
𝑟/(𝑟−𝑟𝑚)𝑝(𝑥)

−𝑟𝑚/(𝑟−𝑟𝑚)

× 𝑄(𝑥)
(𝑟−1)𝑟𝑚/(𝑟−𝑟𝑚)Δ𝑥]

(𝑟−𝑟𝑚)/𝑟

Φ(𝑦)
𝑟𝑚/𝑟,

(29)

where 𝑄(𝑥) := ∫
𝑥

𝑎
ℎ𝑟/𝑟−1
𝑚−𝑘−1

(𝑥, 𝜎(𝜏))𝑝(𝜏)−(𝑟/𝑟−1)Δ𝜏, Φ(𝑦) :=

∫
𝑏

𝑎
𝑦𝑟𝑘/𝑟𝑚Δ𝑦(𝑥),𝑦(𝑥) := ∫

𝑥

𝑎
𝑝(𝜏)|𝑓Δ

𝑚

(𝜏)|𝑟Δ𝜏.

Proof. Following the hypotheses, it is easy to see that (26)
holds. By usingHölder’s inequalitywith indices 𝑟 and 𝑟/(𝑟−1),
we obtain

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
𝑥

𝑎

ℎ
𝑚−𝑘−1

(𝑥, 𝜎 (𝜏)) 𝑝(𝜏)
−1/𝑟𝑝(𝜏)

1/𝑟
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝜏

≤ [∫
𝑥

𝑎

ℎ𝑟/(𝑟−1)
𝑚−𝑘−1

(𝑥, 𝜎 (𝜏)) 𝑝(𝜏)
−𝑟/(𝑟−1)Δ𝜏]

(𝑟−1)/𝑟

⋅ [∫
𝑥

𝑎

𝑝 (𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

Δ𝜏]
1/𝑟

= 𝑄(𝑥)
(𝑟−1)/𝑟𝑦(𝑥)

1/𝑟,

(30)

where 𝑄(𝑥) := ∫
𝑥

𝑎
ℎ𝑟/(𝑟−1)
𝑚−𝑘−1

(𝑥, 𝜎(𝜏))𝑝(𝜏)−𝑟/(𝑟−1)Δ𝜏, 𝑦(𝑥) :=

∫
𝑥

𝑎
𝑝(𝜏)|𝑓Δ

𝑚

(𝜏)|𝑟Δ𝜏. So we get

𝑦Δ (𝑥) = 𝑝 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟

, (31)
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and hence for any 𝑟
𝑚
,

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟𝑚

= (𝑝 (𝑥))
−𝑟𝑚/𝑟(𝑦Δ (𝑥))

𝑟𝑚/𝑟

. (32)

Thus for 𝑟
𝑘
> 0,

𝑞 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟𝑚 󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟𝑘

≤ 𝑞 (𝑥) (𝑝 (𝑥))
−𝑟𝑚/𝑟(𝑦Δ (𝑥))

𝑟𝑚/𝑟

× 𝑄(𝑥)
(𝑟−1)𝑟𝑘/𝑟𝑦(𝑥)

𝑟𝑘/𝑟.

(33)

Integrating both sides of (33) from 𝑎 to 𝑏 and applying
Hölder’s inequality with indices 𝑟/𝑟

𝑚
and 𝑟/(𝑟−𝑟

𝑚
), we obtain

∫
𝑏

𝑎

𝑞 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑚

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟𝑚 󵄨󵄨󵄨󵄨󵄨󵄨
𝑓Δ
𝑘

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑟𝑘

Δ𝑥

≤ ∫
𝑏

𝑎

𝑞 (𝑥) 𝑝(𝑥)
−𝑟𝑚/𝑟(𝑦Δ (𝑥))

𝑟𝑚/𝑟

𝑄(𝑥)
(𝑟−1)𝑟𝑘/𝑟𝑦(𝑥)

𝑟𝑘/𝑟Δ𝑥

≤[∫
𝑏

𝑎

𝑞(𝑥)
𝑟/(𝑟−𝑟𝑚)𝑝(𝑥)

−𝑟𝑚/(𝑟−𝑟𝑚)𝑄(𝑥)
(𝑟−1)𝑟𝑘/(𝑟−𝑟𝑚)Δ𝑥]

(𝑟−𝑟𝑚)/𝑟

⋅ [∫
𝑏

𝑎

𝑦Δ (𝑥) 𝑦(𝑥)
𝑟𝑘/𝑟𝑚Δ𝑥]

𝑟𝑚/𝑟

= [∫
𝑏

𝑎

𝑞(𝑥)
𝑟/(𝑟−𝑟𝑚)𝑝(𝑥)

−𝑟𝑚/(𝑟−𝑟𝑚)

×𝑄(𝑥)
(𝑟−1)𝑟𝑘/(𝑟−𝑟𝑚)Δ𝑥]

(𝑟−𝑟𝑚)/𝑟

Φ(𝑦)
𝑟𝑚/𝑟,

(34)

whereΦ(𝑦) := ∫
𝑏

𝑎
𝑦(𝑥)𝑟𝑘/𝑟𝑚Δ𝑦(𝑥). The proof is complete.

Remark 8. In the special case where T = R, Theorems 6 and
7 reduce to Theorems 1 and 2 of [18].
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