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The approximate solution to a class of sixth order boundary value problems is obtained using the reproducing kernel spacemethod.
The numerical procedure is applied on linear and nonlinear boundary value problems.The approach provides the solution in terms
of a convergent series with easily computable components. The present method is simple from the computational point of view,
resulting in speed and accuracy significant improvements in scientific and engineering applications.It was observed that the errors
in absolute values are better than compared (Che Hussin and Kiliçman (2011) and, Noor and Mahyud-Din (2008), Wazwaz (2001),
Pandey (2012)). Furthermore, the nonlinear boundary value problem for the integrodifferential equation has been investigated
arising in chemical engineering, underground water flow and population dynamics, and other fields of physics and mathematical
chemistry. The performance of reproducing kernel functions is shown to be very encouraging by experimental results.

1. Introduction

Boundary value problems arise in engineering, appliedmath-
ematics, and several branches of physics and have attracted
much attention. However, it is difficult to obtain closed-form
solutions for boundary value problems, especially for non-
linear problems. In most cases, only approximate solutions
(either numerical solutions or analytical solutions) can be
expected.

It is well known that a wide class of boundary value
problems arise in various branches of pure and applied
sciences including astrophysics, structural engineering, opti-
mization, and economics. The literature of the numerical
solution of sixth order boundary value problems is sparse.
These types of problems generally arise in astrophysics; the
narrow convecting layers bounded by stable layers which are
believed to surround A-type stars may be modeled by sixth
order boundary value problems [1].

Chandrasekhar [2] determined that when an infinite
horizontal layer of fluid is heated from below and is under
the action of rotation, instability sets in.When this instability
is an ordinary convection, the ordinary differential equation
is a sixth order. Details of the theorems which listed the

conditions for the existence and uniqueness of solutions of
sixth order boundary value problems are given in Agarwal
[3], but no numerical methods are contained therein.

Higher order boundary value problems arise in the
study of astrophysics, hydrodynamic and hydromagnetic
stability, fluid dynamics, astronomy, beam and long wave
theory, engineering, and applied physics.The boundary value
problems of higher order have been investigated due to their
mathematical importance and the potential for applications
in diversified applied sciences.

Siddiqi and Akram [4, 5] presented a second order
method using polynomial and nonpolynomial septic splines
for the solution of linear sixth order boundary value prob-
lems with boundary conditions at first and second order
derivatives. Noor and Mohyud-Din [6] proposed a reliable
approach for solving linear and nonlinear sixth order bound-
ary value problems by homotopy perturbation method.
Wazwaz [7] used decomposition and modified domain
decomposition methods to investigate the solution of sixth
order nonlinear boundary value problems by making a com-
parison among differential transformation method (DTM)
and Adomian decomposition method (ADM) [8]. Simos
[9] proposed a new closed Newton-Cotes trigonometrically
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fitted differential method of high algebraic order. Simos [10]
used a hybrid two-step method for the numerical solution
of the radial Schrdinger equation and related problems with
periodic or oscillating solutions. Anastassi and Simos [11]
developed an efficient parametric symmetric linear phase
fitted four-step method for the numerical solution of the
Schrdinger equation and related oscillatory problems. A
reproducing kernel Hilbert space is a useful framework
for constructing approximate solutions of boundary value
problems [12–15]. In this paper, a reproducing kernel method
is used for the solution of a class of sixth order boundary
value problems. To the best of our knowledge, the sixth order
nonlinear boundary value problem for the integrodifferential
equation which arises in chemical engineering, underground
water flow and population dynamics, and other fields of
physics and mathematical chemistry has not been investi-
gated yet. It is illustrated that our methods can also be used
to find the approximate solution of such integrodifferential
equations.

Consider the following sixth order two-point boundary
value problem (BVP):

𝑢
(6)

(𝑥) +

2

∑

𝑖=0

𝑎𝑖 (𝑥) 𝑢
(2𝑖)

(𝑥) + ∫

𝑥

0

𝑔 (𝑥, 𝑠) (𝑢 (𝑠))
2
𝑑𝑠

= 𝑓 (𝑥, 𝑢 (𝑥)) , 0 ≤ 𝑥 ≤ 1,

𝑢
(𝑖)

(0) = 𝐴 𝑖, 𝑢
(𝑖)

(1) = 𝐵𝑖, 𝑖 = 0, 1, 2,

(1)

where 𝐴 𝑖 and 𝐵𝑖, 𝑖 = 0, 1, 2, are finite real constants
and 𝑎𝑖(𝑥), 𝑖 = 0, 1, 2, and 𝑓(𝑥, 𝑢(𝑥)) are the continuous
functions on [0, 1]. Let the differential operator be 𝐿, and
homogenization of the boundary conditions of (1) can be
transformed into the following form:

𝐿𝑢 = 𝑓 (𝑥, 𝑢 (𝑥)) , 𝑎 ≤ 𝑥 ≤ 𝑏,

𝑢
(𝑖)

(0) = 0, 𝑢
(𝑖)

(1) = 0, 𝑖 = 0, 1, 2.

(2)

Therefore, to solve (1), it suffices to solve (2).
The rest of this paper is organized as follows. In Section 2,

the reproducing kernel function is obtained, and reproducing
kernel spaces needed in this paper are defined. After that
in Section 3, a solution of (2) with initial boundary value
conditions is presented. Finally, numerical examples are
discussed to demonstrate the accuracy of the presented
method in Section 4.

2. Reproducing Kernel Spaces

(i) The reproducing kernel space 𝑊
7
2 [0, 1] is defined

by 𝑊
7
2 [0, 1] = {𝑢(𝑥) | 𝑢

(𝑖)
(𝑥), 𝑖 = 0, 1, . . . , 6, are

absolutely continuous real-valued functions in [0, 1],

𝑢
(7)

∈ 𝐿
2
[0, 1]}.The inner product in𝑊

7
2 [0, 1] is given

by

⟨𝑢 (𝑥) , V (𝑥)⟩ = ∫

1

0

(𝑢
(6)

(𝑥) V
(6)

(𝑥) + 𝑢
(7)

(𝑥) V
(7)

(𝑥)) 𝑑𝑥,

𝑢 (𝑥) , V (𝑥) ∈ 𝑊
7

2 [0, 1] .

(3)

(ii) The reproducing kernel space 𝑊
1
2 [0, 1] is defined by

𝑊
1
2 [0, 1] = {𝑢(𝑥) | 𝑢(𝑥) is absolutely continuous real-

valued function in [0, 1], 𝑢(1) ∈ 𝐿
2
[0, 1]}. Also, the

inner product is given by

⟨𝑢 (𝑥) , V (𝑥)⟩ = ∫

1

0

(𝑢 (𝑥) V (𝑥) + 𝑢
(1)

(𝑥) V
(1)

(𝑥)) 𝑑𝑥,

𝑢 (𝑥) , V (𝑥) ∈ 𝑊
1

2 [0, 1] .

(4)

Theorem 1. The space𝑊72 [0, 1] is a reproducing kernel Hilbert
space. That is, for all 𝑢(𝑦) ∈ 𝑊

7
2 [0, 1] and each fixed 𝑥 ∈

[0, 1], 𝑦 ∈ [0, 1], there exists 𝑅𝑥(𝑦) ∈ 𝑊
7
2 [0, 1] such that

⟨𝑢(𝑦), 𝑅𝑥(𝑦)⟩ = 𝑢(𝑥), and 𝑅𝑥(𝑦) is called the reproducing
kernel function of space 𝑊

7
2 [0, 1]. The reproducing kernel

function 𝑅𝑥(𝑦) in [0, 1] is given by

𝑅𝑥 (𝑦) =

{
{
{
{
{

{
{
{
{
{

{

11

∑

𝑖=0

𝑐𝑖𝑦
𝑖
+ 𝑐12𝑒

𝑦
+ 𝑐13𝑒

−𝑦
, 𝑦 ≤ 𝑥.

11

∑

𝑖=0

𝑑𝑖𝑦
𝑖
+ 𝑑12𝑒

𝑦
+ 𝑑13𝑒

−𝑦
, 𝑦 > 𝑥.

(5)

The coefficients 𝑐𝑖, 𝑑𝑖 (𝑖 = 0, 1, 2, . . . , 13) are given in the
appendix at the end.

3. The Exact and Approximate Solutions

The solution of (2) is given in the reproducing kernel Hilbert
space 𝑊

7
2 [0, 1], and the linear operator 𝐿 : 𝑊

7
2 [0, 1] →

𝑊
1
2 [0, 1] is bounded. Choose a countable dense subset 𝐷 =

{𝑥𝑖}
∞
𝑖=1 in the domain [0, 1], and let

𝜑𝑖 (𝑥) = 𝑄𝑥𝑖
(𝑦) , 𝑖 ∈ 𝑁, (6)

where 𝑄𝑥𝑖
(𝑦) ∈ 𝑊

1
2 [0, 1] is reproducing kernel of 𝑊12 [0, 1].

Further assume that 𝜓𝑖(𝑥) = (𝐿
∗
𝜑𝑖)(𝑥), where 𝐿

∗
:

𝑊
1
2 [0, 1] → 𝑊

7
2 [0, 1] is the conjugate operator of 𝐿.

Theorem 2. {𝜓𝑖(𝑥)}
∞
𝑖=1 is a complete system of 𝑊72 [0, 1] and

𝜓𝑖(𝑥) = 𝐿𝑦𝑅𝑥(𝑦)|𝑦=𝑥𝑖
.

Proof. For each fixed 𝑢(𝑥) ∈ 𝑊
7
2 [0, 1], let ⟨𝑢(𝑥), 𝜓𝑖(𝑥)⟩ = 0

(𝑖 = 1, 2, . . .), which implies that

⟨𝑢 (𝑥) , (𝐿
∗
𝜑𝑖) (𝑥)⟩ = ⟨𝐿𝑢 (𝑥) , 𝜑𝑖 (𝑥)⟩ = (𝐿𝑢) (𝑥𝑖) = 0. (7)
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Since {𝑥𝑖}
∞
𝑖=1 is dense in [0, 1], (𝐿𝑢)(𝑥) = 0, which implies that

𝑢 ≡ 0 from the existence of 𝐿−1.
Using reproducing kernel property, it can be written as

𝜓𝑖 (𝑥) = ⟨𝜓𝑖 (𝑦) , 𝑅𝑥 (𝑦)⟩

= ⟨(𝐿
∗
𝜑𝑖) (𝑥) , 𝑅𝑥 (𝑦)⟩

= ⟨𝜑𝑖 (𝑦) , 𝐿𝑅𝑥 (𝑦)⟩

= 𝐿𝑦𝑅𝑥 (𝑦) |𝑦=𝑥𝑖
.

(8)

To orthonormalize the sequence {𝜓𝑖}
∞
𝑖=1 in the reproducing

kernel space𝑊
7
2 [0, 1], Gram-Schmidt process can be used as

𝜓𝑖 (𝑥) =

𝑖

∑

𝑘=1

𝛽𝑖𝑘𝜓𝑘 (𝑥) , 𝑖 = 1, 2, . . . . (9)

Theorem 3. If {𝑥𝑖}
∞
𝑖=1 is dense in [0, 1] and the solution of (2)

is unique, for all 𝑢(𝑥) ∈ 𝑊
7
2 [0, 1], the series is convergent in

the norm of ‖ ⋅ ‖𝑊7
2

. If 𝑢(𝑥) is exact solution; then the solution
of (2) has the form

𝑢 (𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘𝑓 (𝑥𝑘, 𝑢 (𝑥𝑘)) 𝜓𝑖 (𝑥) . (10)

Proof. Since 𝑢(𝑥) ∈ 𝑊
7
2 [0, 1] and can be expanded in

the form of Fourier series about normal orthogonal system
{𝜓𝑖}
∞
𝑖=1 as

𝑢 (𝑥) =

∞

∑

𝑖=1

⟨𝑢 (𝑥) , 𝜓𝑖 (𝑥)⟩ 𝜓𝑖 (𝑥) . (11)

Since the space 𝑊
7
2 [0, 1] is Hilbert space, so the series

∑
∞

𝑖=1⟨𝑢(𝑥), 𝜓𝑖(𝑥)⟩𝜓𝑖(𝑥) is convergent in the norm of ‖ ⋅ ‖𝑊7
2

.
From (9) and (11), it can be written as

𝑢 (𝑥) =

∞

∑

𝑖=1

⟨𝑢 (𝑥) , 𝜓𝑖 (𝑥)⟩ 𝜓𝑖 (𝑥)

=

∞

∑

𝑖=1

⟨𝑢 (𝑥) ,

𝑖

∑

𝑘=1

𝛽𝑖𝑘𝜓𝑘 (𝑥)⟩𝜓𝑖 (𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘 ⟨𝑢 (𝑥) , 𝜓𝑘 (𝑥)⟩ 𝜓𝑖 (𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘 ⟨𝑢 (𝑥) , (𝐿
∗
𝜑𝑘) (𝑥)⟩ 𝜓𝑖 (𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘 ⟨𝐿𝑢 (𝑥) , 𝜑𝑘 (𝑥)⟩ 𝜓𝑖 (𝑥) .

(12)

If 𝑢(𝑥) is the exact solution of (2) and 𝐿𝑢 = 𝑓(𝑥, 𝑢(𝑥)), then

𝑢 (𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘 ⟨𝑓 (𝑥, 𝑢 (𝑥)) , 𝜑𝑘 (𝑥)⟩ 𝜓𝑖 (𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘𝑓 (𝑥𝑘, 𝑢 (𝑥𝑘)) 𝜓𝑖 (𝑥) .

(13)

The approximate solution of 𝑢(𝑥) is given by

𝑢𝑛 (𝑥) =

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘𝑓 (𝑥𝑘, 𝑢 (𝑥𝑘)) 𝜓𝑖 (𝑥) . (14)

Remark 4. If (2) is linear, that is, 𝑓(𝑥, 𝑢(𝑥)) = 𝑓(𝑥), then the
solution can be obtained directly from (14).

If (2) is nonlinear, the approximate solution can be
obtained using the following method.

Using (13), the following iterative formula can be con-
structed as

𝑢0 (𝑥) = 0,

𝑢𝑛+1 =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘𝑓 (𝑥𝑘, 𝑢𝑛 (𝑥𝑘)) 𝜓𝑖 (𝑥) .

(15)

It can be noted that the approximate solution 𝑢𝑛(𝑥) given in
(15) satisfied the boundary conditions of problem (2). In fact,
the solution of problem (2) is considered as the fixed point
of the following functional under the suitable choice of the
initial term 𝑢0(𝑥):

𝑢𝑛+1 =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘𝑓 (𝑥𝑘, 𝑢𝑛 (𝑥𝑘)) 𝜓𝑖 (𝑥) . (16)

Theorem 5 (Banach’s fixed point theorem). Assume that X is
a Banach space and 𝐴 : 𝑋 → 𝑋 is a nonlinear function, and
assume that

‖𝐴 [𝑢] − 𝐴 [V]‖ ≤ 𝛼 ‖𝑢 − V‖ , 𝑢, V ∈ 𝑋, (17)

for some constants 𝛼 < 1. Then, A has a unique fixed point.
Furthermore, the sequence 𝑢𝑛+1 = 𝐴[𝑢𝑛] with an arbitrary
choice of 𝑢0 ∈ 𝑋 converges to the fixed point of A.

According toTheorem 5, for the nonlinear mapping,

𝐴 [𝑢 (𝑥)] =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽𝑖𝑘𝑓 (𝑥𝑘, 𝑢𝑛 (𝑥𝑘)) 𝜓𝑖 (𝑥) . (18)

a sufficient condition for convergence of the present itera-
tion method is strictly contraction of A. Furthermore, the
sequence in (15) converges to the fixed point of A which is
also the solution of problem (2).

The approximate solution 𝑢𝑛,𝑚(𝑥) can be obtained by
taking finitely many terms in the series representation of
𝑢𝑛(𝑥), given by

𝑢𝑛,𝑚 (𝑥) =

𝑛

∑

𝑖=1

i
∑

𝑘=1

𝛽𝑖𝑘𝑓 (𝑥𝑘, 𝑢𝑚−1 (𝑥𝑘)) 𝜓𝑖 (𝑥) . (19)
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Table 1: Maximum absolute error for problem (20) (Max|𝑢 − 𝑢20,1| with maximum CPU time (𝑠) = 0.315 for all cases of 𝑐).

𝑐 = 1 𝑐 = 10 𝑐 = 100 𝑐 = 1000 𝑐 = 100000

6.1746𝐸 − 10 3.05092𝐸 − 9 1.16991𝐸 − 8 1.51919𝐸 − 9 1.07433𝐸 − 8

Table 2: Absolute error obtained by the present method and other methods [8] for problem (22) with CPU time (𝑠) = 0.331.

𝑥 Present method (𝑛 = 20,𝑚 = 1) Wazwaz [7] Noor and Mohyud-Din [6]
0.0 0 0 0
0.1 0 1.233𝐸 − 4 1.233𝐸 − 4

0.2 2.66𝐸 − 15 2.354𝐸 − 4 2.354𝐸 − 4

0.3 6.66𝐸 − 15 3.257𝐸 − 4 3.257𝐸 − 4

0.4 9.10𝐸 − 15 3.855𝐸 − 4 3.855𝐸 − 4

0.5 1.08𝐸 − 14 4.086𝐸 − 4 4.086𝐸 − 4

0.6 1.04𝐸 − 14 3.919𝐸 − 4 3.919𝐸 − 4

0.7 8.43𝐸 − 15 3.361𝐸 − 4 3.361𝐸 − 4

0.8 3.55𝐸 − 15 2.459𝐸 − 4 2.459𝐸 − 4

0.9 4.44𝐸 − 16 1.299𝐸 − 4 1.299𝐸 − 4

1.0 0 2.000𝐸 − 9 2.000𝐸 − 9

4. Numerical Examples

To illustrate the applicability and effectiveness of ourmethod,
three numerical examples are constructed. All the numerical
computations are performed by using Mathematica 5.2 on a
system with Intel Core 2 Quad 2.6GHz CPU and 3GB of
RAM.

Example 6. Consider the following special sixth order
boundary value problem involving a parameter c [6]:

𝑢
(6)

(𝑥) = (1 + 𝑐) 𝑢
(4)

(𝑥)

− 𝑐𝑢
(2)

(𝑥) + 𝑐𝑥, 0 ≤ 𝑥 ≤ 1,

𝑢 (0) = 𝑢
(1)

(0) = 1, 𝑢
(2)

(0) = 0,

𝑢 (0) =

7

6

+ sinh 1, 𝑢
(1)

(1) =

1

2

+ cosh 1,

𝑢
2
(1) = 1 + sinh 1.

(20)

The exact solution of problem (20) is

𝑢 (𝑥) = 1 +

1

6

𝑥
3
+ sinh𝑥. (21)

A comparison of the errors in absolute values between
the method developed in this paper and that of Noor and
Mohyud-Din [6] is shown in Table 1. For small values of
𝑐 = 1, 10, 1000, and 1000, it is noted that the results obtained
by our method are better than the method developed by
Noor and Mohyud-Din [6]. The results obtained by Noor
and Mohyud-Din using Adomian’s decomposition method,
variation iteration method, and Homotopy perturbation
method for large values of 𝑐 = 1000000 are no longer valid as
given in [6], but the results obtained by the present method

for Example 6 are also valid and accurate for large value of
𝑐 = 1000000.

Example 7. Consider the following nonlinear boundary value
problem of sixth order [6, 7]:

𝑢
(6)

(𝑥) = 𝑒
−𝑥

(𝑢 (𝑥))
2
, 0 ≤ 𝑥 ≤ 1,

𝑢 (0) = 𝑢
(1)

(0) = 𝑢
(2)

(0) = 1

𝑢 (1) = 𝑢
(1)

(1) = 𝑢
(2)

(1) = 𝑒.

(22)

The exact solution of problem (22) is

𝑢 (𝑥) = 𝑒
𝑥
. (23)

A comparison of the errors in absolute values between the
method developed in this paper and that of Wazwaz [7]
and Noor and Mohyud-Din [6] is shown in Table 2 and
Figures 1 and 2.

Example 8. Consider the followingnonlinear boundary value
problem of sixth order:

𝑢
(6)

(𝑥) = 𝑒
𝑥
(𝑢 (𝑥))

3
, 0 < 𝑥 < 1,

𝑢 (0) = 1, 𝑢
(1)

(0) =

−1

2

, 𝑢
(2)

(0) =

1

4

,

𝑢 (1) = 𝑒
−1/2

, 𝑢
(1)

(1) =

−1

2

𝑒
−1/2

, 𝑢
(2)

(1) =

1

4

𝑒
−1/2

.

(24)

The exact solution of problem (24) is

𝑢 (𝑥) = 𝑒
−𝑥/2

. (25)
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Table 3: Comparison of the numerical results for problem (24) with CPU time (𝑠) = 0.379.

𝑥 Exact DTM [8] ADM [8] Present method 𝑢20,1

0.1 1 1 1 1
0.1 0.9512294245 0.9492075127 0.9492075127 0.9512294245
0.2 0.9048374181 0.8916268943 0.8916268943 0.9048374180
0.3 0.8607079765 0.8251427077 0.8251427077 0.8607079764
0.4 0.8187307532 0.7534730280 0.7534730280 0.8187307531
0.5 0.7788007831 0.6839803183 0.6839803183 0.7788007831
0.6 0.7408182206 0.6254839642 0.6254839642 0.7408182207
0.7 0.7046880897 0.7046783358 0.5860748693 0.7046880897
0.8 0.6703200461 0.6703157625 0.5709325210 0.6703200460
0.9 0.6376281517 0.6376273947 0.5801448253 0.6376281516
1 0.6065306598 .6065306599 0.6065306590 0.6065306597

Table 4: Absolute and relative error between exact and approximate
solutions for problem (26) with CPU time (𝑠) = 2.359.

𝑥
Absolute error
(𝑛 = 20, 𝑚 = 1)

Relative error
(𝑛 = 20, 𝑚 = 1)

0.1 4.70𝐸 − 7 4.69𝐸 − 6

0.2 2.73𝐸 − 6 1.35𝐸 − 5

0.3 6.37𝐸 − 6 2.09𝐸 − 5

0.4 9.82𝐸 − 6 2.39𝐸 − 5

0.5 114𝐸 − 5 2.19𝐸 − 5

0.6 104𝐸 − 5 1.64𝐸 − 5

0.7 7.21𝐸 − 6 9.51𝐸 − 6

0.8 3.28𝐸 − 6 3.70𝐸 − 6

0.9 6.02𝐸 − 7 5.86𝐸 − 7

1 4.44𝐸 − 16 3.77𝐸 − 16

2.75

2.5

2.25

2

1.75

1.5

1.25

0.2 0.4 0.6 0.8 1

Figure 1: Blue line: exact solution. Red line: approximate solution.

A comparison of the errors in absolute values between the
method developed in this paper and that of Che Hussin and
Kiliçman [8] is shown in Table 3 and Figures 3 and 4.
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Figure 2: |𝑢 − 𝑢20,1|.
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Figure 3: Blue line: exact solution. Red line: approximate solution.
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Figure 4: |𝑢 − 𝑢20,1|.
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Table 5: Maximum absolute error for problem (28) (𝑚 = 1).

𝑛 = 8 𝑛 = 16 𝑛 = 32 𝑛 = 64 𝑛 = 128

MAE [16] .101414𝐸 − 2 .569422𝐸 − 4 .346105𝐸 − 5 .205712𝐸 − 6 .250685𝐸 − 9

MAE (present method) .4647𝐸 − 4 .4728𝐸 − 5 .38191𝐸 − 6 .4982𝐸 − 8 .2264𝐸 − 10

1.2

1

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1

Figure 5: Blue line: exact solution. Red line: approximate solution.

Example 9. Consider the following nonlinear integral
boundary value problem of sixth order:

𝑢
(6)

(𝑥) + 𝑢
(4)

(𝑥) + ∫

𝑥

0

𝑒
𝑠
(𝑢 (𝑠))

2
𝑑𝑠 = 𝑓 (𝑥) , 0 < 𝑥 < 1,

𝑢 (0) = 0, 𝑢
(1)

(0) = 1, 𝑢
(2)

(0) = 0,

𝑢 (1) = sinh 1, 𝑢
(1)

(1) = cosh 1, 𝑢
(2)

(1) = sinh 1.

(26)

The exact solution of problem (24) is

𝑢 (𝑥) = sinh𝑥𝑓 (𝑥) = 2 sinh𝑥 −

1

12

𝑒
−𝑥

(𝑒
𝑥
− 1)
3
(𝑒
𝑥
+ 3) .

(27)

Theabsolute error (between exact and approximate solutions)
and relative error are given in Table 4 and Figures 5 and 6.

Example 10. Consider the following nonlinear boundary
value problem of sixth order:

𝑢
(6)

(𝑥) = 𝑢
(1)

(𝑥) 𝑢
(5)

(𝑥)

+ (𝑢
(3)

(𝑥))

3
+ 𝑓 (𝑥) , 0 < 𝑥 < 1,

𝑢 (0) = 0, 𝑢
(1)

(0) = 𝜋, 𝑢
(2)

(0) = 0,

𝑢 (1) = 0, 𝑢
(1)

(1) = −𝜋, 𝑢
(2)

(1) = 0.

(28)

The exact solution of problem (24) is

𝑢 (𝑥) = sin𝜋𝑥. (29)

It is observed that the results obtained from our method
which are obtained in the form of maximum absolute error

0.2 0.4 0.6 0.8 1

×10
−6

10

8

6

4

2

Figure 6: |𝑢 − 𝑢20,1|.

(MAE) are better than the results obtained from the finite
difference method [16] as shown in Table 5. It is noted that
CPU time (s) for 𝑛 = 8 is 0.346, 𝑛 = 16 is 0.416, 𝑛 = 32 is
0.687, 𝑛 = 64 is 1.886, and 𝑛 = 128 is 4.366.

5. Conclusion

In this paper, a reproducing kernel space method to find the
solution of a class of sixth order boundary value problems is
considered. The properties of the reproducing kernel space
require no more integral computation for some functions,
instead of computing some values of a function at some
nodes. This simplification of integral computation not only
improves the computational speed but also improves the
computational accuracy. It was observed that the errors in
absolute values are better than the other developed methods
[6–8, 16]. Mathematica software is used for all computational
work. The numerical results show that only a few number of
iteration steps can be used for numerical purpose with a high
degree of accuracy. It is analyzed that our proposedmethod is
well suited for use in higher order boundary value problems
as it provides the best solution in a less number of iterations
and reduces the computational work. Therefore, the present
method is an accurate and reliable analytical technique for
sixth order boundary value problems.

Appendix

𝑐0 = 𝑒
−𝑥

(−2𝑒
2
− 2𝑒
2
− 𝑒
𝑥
(−2𝑒𝑥

3
(21 + 𝑥(−32 + 13𝑥)) +

(−1 + 𝑥)
3
(2 + 𝑥(6 + 13𝑥)) + 𝑒

2
(−1 + 𝑥)

3
(2 + 𝑥(6 +

13𝑥))))/2(−1 + 𝑒
2
),

𝑐1 = (−1 + 𝑥)
3
(2 + 𝑥(6 + 13𝑥))/2,



Abstract and Applied Analysis 7

𝑐2 = 𝑒
−𝑥

(−2𝑒
2
− 2𝑒
2𝑥

− 𝑒
𝑥
(−2𝑒𝑥

3
(21 + 𝑥(−32 + 13𝑥)) +

(−1 + 𝑥)
3
(2 + 𝑥(6 + 13𝑥)) + 𝑒

2
(−1 + 𝑥)

3
(2 + 𝑥(6 +

13𝑥))))/4(−1 + 𝑒
2
),

𝑐3 = (1/(39916800(−1 + 𝑒
2
)))(𝑒
−𝑥

(−19958400𝑒
2

𝑥(−23 + 21𝑒) + 19958400𝑒(−21 + 23𝑒) +

𝑒
𝑥
(−13305600(34 + 7𝑒(−9 + 5𝑒)) + 459043200(−1 +

𝑒
2
)𝑥−6652800(34+7𝑒(−9+5𝑒))𝑥

2
+200(70169941+

𝑒(−96399072 + 26628299𝑒))𝑥
3

− 2835(7328513 +

𝑒(−10060160 + 2745727𝑒))𝑥
4

+ 13(−1 + 𝑒)

(−638372743 + 239796857𝑒)𝑥
5

− 341880(−1 +

𝑒
2
)𝑥
6

+ 91080(−1 + 𝑒
2
)𝑥
7

− 6105(−1 + 𝑒
2
)𝑥
8

+

1265(−1 + 𝑒
2
)𝑥
9
− 66(−1 + 𝑒

2
)𝑥
10

+ 10(−1 + 𝑒
2
)𝑥
11
)),

𝑐4 = (1/(39916800(−1+𝑒
2
)))(𝑒
−
𝑥(19958400𝑒

2𝑥
(−33+

32𝑒) − 19958400𝑒(−32 + 33𝑒) + 𝑒
𝑥
(19958400(33 +

𝑒(−64 + 33𝑒)) − 656964000(−1 + 𝑒
2
)𝑥 + 9979200(33 +

𝑒(−64 + 33𝑒))𝑥
2
− 315(65957497 + 𝑒(−90541440 +

24710663𝑒))𝑥
3
+ 80(385150973 + 𝑒(−526901760 +

142000267𝑒))𝑥
4

− 3(−1 + 𝑒)(−4106240179 +

1515375821𝑒)𝑥
5

+ 443520(−1 + 𝑒
2
)𝑥
6

− 130350

(−1 + 𝑒
2
)𝑥
7
+ 7920(−1 + 𝑒

2
)𝑥
8
− 1815(−1 + 𝑒

2
)𝑥
9
+

88(−1 + 𝑒
2
)𝑥
10

− 15(−1 + 𝑒
2
)𝑥
11
))),

𝑐5 = (1/39916800(1 + 𝑒))(𝑒
−𝑥

(259459200𝑒 −

259459200𝑒
2𝑥

+ 𝑒
𝑥
(−332640(−779 + 781𝑒) +

259459200(1 + 𝑒)𝑥 − 166320(−779 + 781𝑒)𝑥
2

+

13(−638372743 + 239796857𝑒)𝑥
3
− 3(−4106235559 +

1515380441𝑒)𝑥
4
+ 42(−117317897 + 43299703𝑒)𝑥

5
−

166782(1 + 𝑒)𝑥
6
+ 51480(1 + 𝑒)𝑥

7
− 2970(1 + 𝑒)𝑥

8
+

715(1 + 𝑒)𝑥
9
− 33(1 + 𝑒)𝑥

10
+ 6(1 + 𝑒)𝑥

11
))),

𝑐6 = −(−1 + 𝑥)
3
𝑥(1 + 3𝑥)/720,

𝑐7 = (−1 + 𝑥)
3
(2 + 𝑥(6 + 13𝑥))/10080,

𝑐8 = −(−1 + 𝑥)
3
𝑥(1 + 3𝑥)/40320,

𝑐9 = (−1 + 𝑥)
3
(2 + 𝑥(6 + 13𝑥))/725760,

𝑐10 = −(−1 + 𝑥)
3
𝑥(1 + 3𝑥)/3628800,

𝑐11 = (−1 + 𝑥)
3
(1 + 3𝑥 + 6𝑥

2
)/39916800,

𝑐12 = 𝑒
−𝑥

(𝑒
2
+ 𝑒
2𝑥

+ 𝑒
1+𝑥

𝑥
3
(21 + (−32 + 13𝑥)𝑥) +

𝑒(−1 + 𝑥)
3
(2 + 𝑥(6 + 13𝑥))))/2(𝑒

2
− 1),

𝑐13 = 𝑒
−𝑥

(𝑒
2
+ 𝑒
2𝑥

+ 𝑒
1+𝑥

(𝑥
3
(−21 + (32 − 13𝑥)𝑥) +

𝑒(−1 + 𝑥)
3
(2 + 𝑥(6 + 13𝑥))))/2(𝑒

2
− 1),

𝑑0 = 39916800(−1 + 𝑒
2
)(𝑒 − 𝑥(−39916800𝑒

2
−

39916800𝑒
2𝑥

−𝑒
𝑥
(−39916800(1+𝑒

2
)+39916800(−1+

𝑒
2
)𝑥 − 19958400(1 + 𝑒

2
)𝑥
2
+ 13305600(34 + 7𝑒(−9 +

5𝑒))𝑥
3
−19958400(33+𝑒(−64+33𝑒))𝑥

4
+332640(−1+

𝑒)(−779+781𝑒)𝑥
5
+7920(−1+𝑒

2
)𝑥
7
+110(−1+𝑒

2
)𝑥
9
+

(−1 + 𝑒
2
)𝑥
11
))),

𝑑1 = 𝑥
3
(41731200 + 𝑥(−59724000 + 𝑥(23587200 +

5040𝑥 + 90𝑥
3
+ 𝑥
5
)))/3628800,

𝑑2 = (1/725760(−1+𝑒
2
))(𝑒
−𝑥

(−362880𝑒
2
−362880𝑒

2𝑥

−𝑒
𝑥
(−362880(1+𝑒

2
)+362880(−1+𝑒

2
)𝑥−181440(1+

𝑒
2
)𝑥
2
+ 120960(34 + 7𝑒(−9 + 5𝑒))𝑥

3
− 181440(33 +

𝑒(−64+33𝑒))𝑥
4
+3024(−1+𝑒)(−779+781𝑒)𝑥

5
+72(−1+

𝑒
2
)𝑥
7
+ (−1 + 𝑒

2
)𝑥
9
))),

𝑑3 = (1/39916800(−1+𝑒
2
))(𝑒
−𝑥

(−19958400𝑒
2𝑥
(−23+

21𝑒) + 19958400𝑒(−21 + 23𝑒) + 𝑒
𝑥
(−19958400(23 +

𝑒(−42 + 23𝑒)) + 459043200(−1 + 𝑒
2
)𝑥 − 9979200(23 +

𝑒(−42 + 23𝑒))𝑥
2
+ 200(70169941 + 𝑒(−96399072 +

26628299𝑒))𝑥
3

− 315(65957497 + 𝑒(−90541440 +

24710663𝑒))𝑥
4

+ 13(−1 + 𝑒)(−638372743 +

39796857𝑒)𝑥
5
− 332640(−1 + 𝑒

2
)𝑥
6
+ 91080(−1 +

𝑒
2
)𝑥
7
− 5940(−1 + 𝑒

2
)𝑥
8
+ 1265(−1 + 𝑒

2
)𝑥
9
− 66(−1 +

𝑒
2
)𝑥
10

+ 10(−1 + 𝑒
2
)𝑥
11
))),

𝑑4 = (1/39916800(−1 + 𝑒
2
))(𝑒
−𝑥

(19958400𝑒
2𝑥
(−33 +

32𝑒) − 19958400𝑒(−32 + 33𝑒) + 𝑒
𝑥
(19958400(33 +

𝑒(−64 + 33𝑒)) − 658627200(−1 + 𝑒
2
)𝑥 + 9979200(33 +

𝑒(−64 + 33𝑒))𝑥
2
− 2835(7328513 + 𝑒(−10060160 +

2745727𝑒))𝑥
3

+ 80(385150973 + 𝑒(−526901760 +

142000267𝑒))𝑥
4

− 3(−1 + 𝑒)(−4106235559 +

1515380441𝑒)𝑥
5
+ 443520(−1 + 𝑒

2
)𝑥
6
− 130680(−1 +

𝑒
2
)𝑥
7
+ 7920(−1 + 𝑒

2
)𝑥
8
− 1815(−1 + 𝑒

2
)𝑥
9
+ 88(−1 +

𝑒
2
)𝑥
10

− 15(−1 + 𝑒)𝑥
11
))),

𝑑5 = (1/39916800(1 + 𝑒))𝑒
−𝑥

(259459200𝑒 −

259459200𝑒
2𝑥

+ 𝑒
𝑥
(−259459200(−1 + 𝑒) +

259459200(1 + 𝑒)𝑥 − 129729600(−1 + 𝑒)𝑥
2

+

13(−638372743 + 239796857𝑒)𝑥
3
− 3(−4106240179 +

1515375821𝑒)𝑥
4
+ 42(−117317897 + 43299703𝑒)𝑥

5
−

166320(1 + 𝑒)𝑥
6
+ 51480(1 + 𝑒)𝑥

7
− 2970(1 + 𝑒)𝑥

8
+

715(1 + 𝑒)𝑥
9
− 33(1 + 𝑒)𝑥

10
+ 6(1 + 𝑒)𝑥

11
)),

𝑑6 = −𝑥
3
(740 + 𝑥(−960 + 361𝑥))/86400,

𝑑7 = 𝑥
3
(276 + 𝑥(−395 + 156𝑥))/120960,

𝑑8 = −(𝑥
3
(37 + 6𝑥(−8 + 3𝑥)))/241920,

𝑑9 = −(𝑥
3
(23 + 𝑥(−33 + 13𝑥)))/725760,

𝑑10 = −(𝑥
3
(6 + 𝑥(−8 + 3𝑥)))/39916800,

𝑑11 = 𝑥
3
(10 + 3𝑥(−5 + 2𝑥))/39916800,

𝑑12 = (−2 + 𝑥
2
(−1 + 𝑥(23 + 𝑥(−33 + 13𝑥) + 𝑒(−21 +

(32 − 13𝑥)𝑥))) + 2 cosh 𝑥)/2(𝑒
2
− 1),

𝑑13 = (𝑒(𝑥
3
(−21+ (32−13𝑥)𝑥)+ 𝑒(−1 + 𝑥)

3
(2+𝑥(6+

13𝑥))) + 2𝑒 cosh 𝑥))/2(𝑒
2
− 1).

References

[1] J. Toomre, J. R. Zahn, J. Latour, and E. A. Spiegel, “Stellar con-
vection theory ii:single mode study of the second convection
zone in a-type stars,”TheAstrophysical Journal, vol. 207, pp. 545–
563, 1976.

[2] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability,
The International Series of Monographs on Physics, Clarendon
Press, Oxford, UK, 1961.

[3] R. P. Agarwal, Boundary Value Problems for Higher Order
Differential Equations, World Scientific Publishing, Singapore,
1986.

[4] G. Akram and S. S. Siddiqi, “Solution of sixth order bound-
ary value problems using non-polynomial spline technique,”
Applied Mathematics and Computation, vol. 181, no. 1, pp. 708–
720, 2006.

[5] S. S. Siddiqi and G. Akram, “Septic spline solutions of sixth-
order boundary value problems,” Journal of Computational and
Applied Mathematics, vol. 215, no. 1, pp. 288–301, 2008.

[6] M. A. Noor and S. T. Mohyud-Din, “Homotopy perturbation
method for solving sixth-order boundary value problems,”
Computers & Mathematics with Applications, vol. 55, no. 12, pp.
2953–2972, 2008.



8 Abstract and Applied Analysis

[7] A.-M. Wazwaz, “The numerical solution of sixth-order bound-
ary value problems by the modified decomposition method,”
AppliedMathematics and Computation, vol. 118, no. 2-3, pp. 311–
325, 2001.

[8] C. H. CheHussin and A. Kiliçman, “On the solutions of nonlin-
ear higher-order boundary value problems by using differential
transformation method and Adomian decomposition method,”
Mathematical Problems in Engineering, vol. 2011, Article ID
724927, 19 pages, 2011.

[9] T. E. Simos, “New stable closed Newton-Cotes trigonometri-
cally fitted formulae for long-time integration,” Abstract and
Applied Analysis, Article ID 182536, 15 pages, 2012.

[10] T. E. Simos, “Optimizing a hybrid two-step method for the
numerical solution of the Schrödinger equation and related
problems with respect to phase-lag,” Journal of Applied Math-
ematics, Article ID 420387, 17 pages, 2012.

[11] Z. A. Anastassi and T. E. Simos, “A parametric symmetric
linear four-step method for the efficient integration of the
Schrödinger equation and related oscillatory problems,” Journal
of Computational and Applied Mathematics, vol. 236, no. 16, pp.
3880–3889, 2012.

[12] G. Akram and H. U. Rehman, “Solution of first order singularly
perturbed initial value problem in reproducing kernel Hilbert
space,” European Journal of Scientific Research, vol. 53, no. 4, pp.
516–523, 2011.

[13] G. Akram and H. U. Rehman, “Numerical solution of eighth
order boundary value problems in reproducing kernel space,”
Numerical Algorithms, vol. 62, no. 3, pp. 527–540, 2013.

[14] G. Akram and H. U. Rehman, “Solution of fifth order boundary
value problems in the reproducing kernel space,” Middle East
Journal of Scientific Research, vol. 10, no. 2, pp. 191–195, 2011.

[15] H. Yao, “New algorithm for the numerical solution of the
integro-differential equation with an integral boundary condi-
tion,” Journal ofMathematical Chemistry, vol. 47, no. 3, pp. 1054–
1067, 2010.

[16] P. K. Pandey, “High order finite differencemethod for numerical
solution of general two- point boundary value problems involv-
ing sixth order differential equation,” International Journal of
Pure and Applied Mathematics, vol. 76, no. 3, pp. 317–326, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


