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We consider the problem of existence of conformal metrics with prescribed Q-curvature on standard sphere 𝑆𝑛, 𝑛 ≥ 5. Under the
assumption that the order of flatness at critical points of prescribed Q-curvature function 𝐾(𝑥) is 𝛽 ∈ ]1, 𝑛 − 4], we give precise
estimates on the losses of the compactness, andwe prove new existence andmultiplicity results through an Euler-Hopf type formula.

1. Introduction and Main Result

The Paneitz operator on 𝑛-Riemannian manifold (𝑀, 𝑔
0
) is a

fourth-order differential operator which arises in conformal
geometry and satisfies a certain covariance property (see [1]).
For 𝑛 ≥ 5 it is defined by
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Such a 𝑄𝑛

𝑔0

is a fourth-order invariant called Q-curvature or
Paneitz curvature. See [2, 3] for details about the properties
of 𝑃𝑛

𝑔0

.

If 𝑔 = 𝑢
4/(𝑛−4)

𝑔
0
is a conformal metric to 𝑔

0
, where 𝑢 is

a smooth positive function, then the conformal covariance
property of the Paneitz operator reads as follows:
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If one prescribes the Q-curvature for the metric 𝑔 by a
function𝐾, this leads to the following equation:
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The literature for the existence of solutions of the prescribed
Q-curvature problem on compact manifolds is consider-
ably bigger. In [4–7], existence results for the constant Q-
curvature problem in 4-dimensional manifolds are given. On
manifolds of dimension greater than 4, existence results were
given for Einsteinmanifolds in [3]. On the sphere 𝑆𝑛, we refer
to results of [8–14] and the references therein.

In this paper we continue to study the problem of
prescribing Q-curvature on the standard sphere (𝑆𝑛, 𝑔

0
), 𝑛 ≥

5. The Paneitz operator in this case is coercive on the Sobolev
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According to problem (4), the problem can be formulated
as follows. Given a smooth function 𝐾 on 𝑆𝑛, we look for
solutions of
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The special case where themanifold is a sphere endowedwith
its standard metric deserves particular attention. Indeed due
to Kazdan-Warner type obstructions, see [3], conditions have
to be imposed on the function𝐾.

To state our result we set up the following conditions and
notation.
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and 𝐺 is the Green function for the operator P(𝑢) on 𝑆
𝑛.

Here 𝑥
1
is the first component of 𝑥 in some geodesic normal

coordinate system.
Let 𝜌(𝜏

𝑝
) be the least eigenvalue of 𝑀(𝜏

𝑝
). It was first

pointed out by Bahri [15] that when the interaction between
the different bubbles is of the same order as the self inter-
action, the least eigenvalue of some matrices like (11) plays
a fundamental role in the existence of solutions to problems
like (7). Regarding problem (7), such kind of phenomenon
appears under (𝑓)

𝛽
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𝑛−4
; see [11].
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The main result of this paper is the following.

Theorem 1. Assume that 𝐾 satisfies (𝐴
1
) and (𝑓)

𝛽
, with

1 < 𝛽 ≤ 𝑛 − 4. (14)
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Then (7) has at least one solution.
Moreover if (𝑛 − 4)/2 < 𝛽 ≤ 𝑛 − 4, for generic 𝐾 one has

♯𝑆 ≥ |𝑑| , (16)

where 𝑆 denotes the set of solutions to (7).

Our argument uses a careful analysis of the lack of
compactness of the Euler Lagrange functional 𝐽 associated
with problem (7). Namely, we study the noncompact orbits
of the gradient flow of 𝐽 the so-called critical points at
infinity following the terminology of Bahri [15].These critical
points at infinity can be treated as usual critical points
once a Morse lemma at infinity is performed from which
we can derive just as in the classical Morse theory the
difference of topology induced by these noncompact orbits
and compute their Morse index. Such a Morse lemma at
infinity is obtained through the construction of suitable pseu-
dogradient for which the Palais-Smale condition is satisfied
along the decreasing flow lines, as long as these flow lines do
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not enter the neighborhood of a finite number 𝑦
1
, . . . , 𝑦

𝑝
of

critical points of 𝐾 such that (𝑦
1
, . . . , 𝑦

𝑝
) ∈ C

∞
.

Similar Morse lemma at infinity has been established for
the problem (7) on the sphere 𝑆𝑛, 𝑛 ≥ 5, under the hypothesis
that the order of flatness at critical points of𝐾 is 𝛽 ∈ [𝑛−4, 𝑛[;
see [11].

The rest of this paper is organized as follows. In Section 2,
we set up the variational problem andwe recall the expansion
of the gradient of the associated Euler-Lagrange functional
near infinity. In Section 3, we characterize the critical points
at infinity of the associated variational problem. Section 4 is
devoted to the proof of the main result Theorem 1, while we
give in Section 5 a more general statement thanTheorem 1.

2. General Framework and Some Known Facts

2.1. Variational Structure and Lack of Compactness. Our
problem (7) enjoys a variational structure. Indeed, solutions
to (7) correspond to positive critical points of the functional
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For 𝑤 a solution to (7) we also define 𝑉(𝑝, 𝜀, 𝑤) as
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If 𝑢 is a function in 𝑉(𝑝, 𝜀, 𝑤), one can find an optimal
representation, following the ideas introduced in Proposition
5.2 of [15] and [16, pages 348–350]. Namely, we have the
following.
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Notice that Proposition 2 is also true if we take 𝑤 = 0 and,
therefore, ℎ = 0 and 𝑢 in 𝑉(𝑝, 𝜀).

We are ready now to state the characterization of the
sequences failing the Palais-Smale condition. For technical
reasons, we introduce the following subsets of Σ. Let Σ+

=

{𝑢 ∈ Σ, 𝑢 ≥ 0} and let for 𝜂 positive very small,
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where 𝑢−

= max(0, −𝑢). Using the idea introduced in [16, 18],
see also [19], we have the following proposition.
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Proposition 3. Let (𝑢
𝑘
) be a sequence in 𝑉
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+

) such that
𝐽(𝑢
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Now arguing as in [16] (pages 326, 327, and 334), we
have the following Morse lemma which completely gets rid
of the V-contributions and shows that it can be neglected with
respect to the concentration phenomenon.

Proposition 4. There is aC1-map which to each (𝛼
𝑖
, 𝑎

𝑖
, 𝜆

𝑖
, ℎ)

such that ∑𝑝

𝑖=1
𝛼
𝑖
𝛿
(𝑎𝑖 ,𝜆𝑖)

+ 𝛼
0
(𝑤 + ℎ) belongs to 𝑉(𝑝, 𝜀, 𝑤)

associates V = V(𝛼, 𝑎, 𝜆, ℎ) such that V is unique and satisfies

𝐽(

𝑝

∑

𝑖=1

𝛼
𝑖
𝛿
(𝑎𝑖 ,𝜆𝑖)

+ 𝛼
0
(𝑤 + ℎ) + V)

= min
V∈(𝑉0)

{𝐽(

𝑝

∑

𝑖=1

𝛼
𝑖
𝛿
(𝑎𝑖 ,𝜆𝑖)

+ 𝛼
0
(𝑤 + ℎ) + V)} .

(27)

Moreover, there exists a change of variables V − V → 𝑉 such
that

𝐽(

𝑝

∑

𝑖=1

𝛼
𝑖
𝛿
(𝑎𝑖 ,𝜆𝑖)

+ 𝛼
0
(𝑤 + ℎ) + V)

= 𝐽(

𝑝

∑

𝑖=1

𝛼
𝑖
𝛿
(𝑎𝑖 ,𝜆𝑖)

+ 𝛼
0
(𝑤 + ℎ) + V) + ‖𝑉‖

2

.

(28)

The following proposition gives precise estimates of V.

Proposition 5 (see [11, Lemma 3.1]). Let 𝑢 = ∑
𝑝

𝑖=1
𝛼
𝑖
𝛿
𝑖
+

𝛼
0
(𝑤 + ℎ) ∈ 𝑉(𝑝, 𝜀, 𝑤) and let V be defined in Proposition 4.

One has the following estimates: there exists 𝑐 > 0 independent
of 𝑢 such that the following holds:

‖V‖ ≤ 𝑐

𝑝

∑

𝑖=1

[
1

𝜆
𝑛/2

𝑖

+
1

𝜆
𝛽

𝑖

+

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

+
(log 𝜆

𝑖
)
(𝑛+4)/2𝑛

𝜆
(𝑛+4)/2

𝑖

]

+ 𝑐

{{{

{{{

{

∑

𝑘 ̸= 𝑟

𝜀
(𝑛+4)/2(𝑛−4)

𝑘𝑟
(log 𝜀−1

𝑘𝑟
)
(𝑛+4)/2𝑛

, 𝑖𝑓 𝑛 ≥ 12

∑

𝑘 ̸= 𝑟

𝜀
𝑘𝑟
(log 𝜀−1

𝑘𝑟
)
(𝑛−4)/𝑛

, 𝑖𝑓 𝑛 < 12.

(29)

At the end of this subsection, we give the following
definition.

Definition 6 (see [16, 18]). A critical point at infinity of 𝐽 on
𝑉
𝜂
(Σ

+

) is a limit of a flow line 𝑢(𝑠) of the equation

𝜕𝑢

𝜕𝑠
= −𝜕𝐽 (𝑢 (𝑠)) ,

𝑢 (0) = 𝑢
0
,

(30)

such that 𝑢(𝑠) remains in 𝑉(𝑝, 𝜀(𝑠), 𝑤) for 𝑠 ≥ 𝑠
0
. Here

𝑤 is either zero or a solution to (7) and 𝜀(𝑠) is some

positive function tending to zero when 𝑠 → +∞. Using
Proposition 2, 𝑢(𝑠) can be written as

𝑢 (𝑠) =

𝑝

∑

𝑖=1

𝛼
𝑖
(𝑠) 𝛿

(𝑎𝑖(𝑠),𝜆𝑖(𝑠))
+ 𝛼

0
(𝑠) (𝑤 + ℎ (𝑠)) + V (𝑠) . (31)

Denoting 𝛼̃
𝑖
:= lim

𝑠→+∞
𝛼
𝑖
(𝑠), 𝑦̃

𝑖
:= lim

𝑠→+∞
𝑎
𝑖
(𝑠), we

denote by

𝑝

∑

𝑖=1

𝛼̃
𝑖
𝛿
(𝑦̃
𝑖
,∞)

+ 𝛼̃
0
𝑤 or (𝑦̃

1
, ..., 𝑦̃

𝑝
, 𝑤)

∞

(32)

such a critical point at infinity. If 𝑤 ̸= 0, it is called of 𝑤-type
or mixed type.

Notice that 𝑉
𝜂
(Σ

+

) remains invariant under the flow
generated by (−𝜕𝐽) (see Lemma 5.1 of [20]; see also Lemma
4.1 of [18]).

2.2. Expansion of the Gradient of the Functional. In this
subsection, we recall the expansion of the gradient of the
functional 𝐽 in 𝑉(𝑝, 𝜀), 𝑝 ≥ 1.

Proposition 7 (see [11]). For any 𝑢 = ∑𝑝

𝑗=1
𝛼
𝑗
𝛿
𝑗
in𝑉(𝑝, 𝜀), the

following expansion holds
(i)

⟨𝜕𝐽 (𝑢) , 𝜆
𝑖

𝜕𝛿
𝑖

𝜕𝜆
𝑖

⟩ = − 2𝑐
2
𝐽 (𝑢) ∑

𝑖 ̸= 𝑗

𝛼
𝑗
𝜆
𝑖

𝜕𝜀
𝑖𝑗

𝜕𝜆
𝑖

+ 𝑜(∑

𝑖 ̸= 𝑗

𝜀
𝑖𝑗
) + 𝑜(

1

𝜆
𝑖

) ,

(33)

where 𝑐
2
= 𝑐

2𝑛/(𝑛−4)

0
∫
R𝑛
𝑑𝑦/(1 + |𝑦|

2

)
(𝑛+4)/2.

(ii) If 𝑎
𝑖
∈ 𝐵(𝑦

𝑗𝑖
, 𝜌), 𝑦

𝑗𝑖
∈ K and 𝜌 is a positive constant

small enough, one has

⟨𝜕𝐽 (𝑢) , 𝜆
𝑖

𝜕𝛿
𝑖

𝜕𝜆
𝑖

⟩

= 2𝐽 (𝑢) [

[

−𝑐
2
∑

𝑗 ̸= 𝑖

𝛼
𝑗
𝜆
𝑖

𝜕𝜀
𝑖𝑗

𝜕𝜆
𝑖

+
𝑛 − 4

2𝑛
𝑐
2𝑛/(𝑛−4)

0
𝛽

𝛼
𝑖

𝐾(𝑎
𝑖
)

×
∑

𝑛

𝑘=1
𝑏
𝑘

𝜆
𝛽

𝑖

∫
R𝑛

signe(𝑥
𝑘
+ 𝜆

𝑖
(𝑎

𝑖
− 𝑦

𝑗𝑖
)
𝑘

)

×
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑘
+ 𝜆

𝑖
(𝑎

𝑖
− 𝑦

𝑗𝑖
)
𝑘

󵄨󵄨󵄨󵄨󵄨

𝛽−1

×
𝑥
𝑘

(1 + |𝑥|
2

)
𝑛
𝑑𝑥

+𝑜(∑

𝑗 ̸= 𝑖

𝜀
𝑖𝑗
+

𝑝

∑

𝑗=1

1

𝜆
𝛽

𝑗

)]

]

.

(34)



Abstract and Applied Analysis 5

(iii) Furthermore if 𝜆
𝑖
|𝑎

𝑖
− 𝑦

𝑗𝑖
| < 𝛿, for 𝛿 very small, one

then has

⟨𝜕𝐽 (𝑢) , 𝜆
𝑖

𝜕𝛿
𝑖

𝜕𝜆
𝑖

⟩

= 2𝐽 (𝑢) × [

[

𝑛 − 4

2𝑛
𝛽𝑐

3

𝛼
𝑖

𝐾(𝑎
𝑖
)

∑
𝑛

𝑘=1
𝑏
𝑘

𝜆
𝛽

𝑖

− 𝑐
2
∑

𝑗 ̸= 𝑖

𝛼
𝑗
𝜆
𝑖

𝜕𝜀
𝑖𝑗

𝜕𝜆
𝑖

+𝑜(∑

𝑗 ̸= 𝑖

𝜀
𝑖𝑗
+

𝑝

∑

𝑗=1

1

𝜆
𝛽

𝑗

)]

]

,

(35)

where 𝑐
3
= 𝑐

2𝑛/(𝑛−4)

0
∫
𝑆
𝑛
|𝑥

1
|
𝛽

/(1 + |𝑥|
2

)
𝑛

𝑑𝑥.

Proposition 8 (see [11]). Letting 𝑢 = ∑𝑝

𝑗=1
𝛼
𝑗
𝛿
𝑗
∈ 𝑉(𝑝, 𝜀), one

has
(i)

⟨𝜕𝐽 (𝑢) ,
1

𝜆
𝑖

𝜕𝛿
𝑖

𝜕𝑎
𝑖

⟩

= −𝑐
5
(𝐽 (𝑢))

2(𝑛−2)/(𝑛−4)

𝛼
(𝑛+4)/(𝑛−4)

𝑖

∇𝐾 (𝑎
𝑖
)

𝜆
𝑖

+ 𝑂(∑

𝑖 ̸= 𝑗

1

𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝜀
𝑖𝑗

𝜕𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) + 𝑜(∑

𝑖 ̸= 𝑗

𝜀
𝑖𝑗
+
1

𝜆
𝑖

) ,

(36)

where 𝑐
5
= ∫

R𝑛
𝑑𝑦/(1 + |𝑦|

2

)
𝑛.

(ii) If 𝑎
𝑖
∈ 𝐵(𝑦

𝑗𝑖
, 𝜌), 𝑦

𝑗𝑖
∈K, one has

⟨𝜕𝐽 (𝑢) ,
1

𝜆
𝑖

𝜕𝛿
𝑖

𝜕(𝑎
𝑖
)
𝑘

⟩

= −2 (𝑛 − 4) 𝑐
2𝑛/(𝑛−4)

0
𝛼
(𝑛+4)/(𝑛−4)

𝑖
(𝐽 (𝑢))

2(𝑛−2)/(𝑛−4)
1

𝜆
𝛽

𝑖

× ∫
R𝑛
𝑏
𝑘

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑘
+ 𝜆

𝑖
(𝑎

𝑖
− 𝑦

𝑗𝑖
)
𝑘

󵄨󵄨󵄨󵄨󵄨

𝛽 𝑥
𝑘

(1 + |𝑥|
2

)
𝑛+1

𝑑𝑦

+ 𝑜(∑

𝑖 ̸= 𝑗

𝜀
𝑖𝑗
) + 𝑜(

𝑝

∑

𝑖=1

1

𝜆
𝛽

𝑖

) + 𝑂(∑

𝑖 ̸= 𝑗

1

𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝜀
𝑖𝑗

𝜕𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) ,

(37)

where 𝑘 = 1, . . . , 𝑛 and (𝑎
𝑖
)
𝑘
is the 𝑘th component of 𝑎

𝑖
in some

geodesic normal coordinates system.

3. Characterization of the Critical
Points at Infinity

This section is devoted to the characterization of the critical
points at infinity in𝑉(𝑝, 𝜀), 𝑝 ≥ 1, under 𝛽-flatness condition
with 1 < 𝛽 ≤ 𝑛 − 4. This characterization is obtained
through the construction of a suitable pseudogradient at
infinity for which the Palais-Smale condition is satisfied along
the decreasing flow-lines as long as these flow lines do not

enter in the neighborhood of finite number of critical points
𝑦
𝑖
, 𝑖 = 1, . . . , 𝑝 of 𝐾 such that (𝑦

1
, . . . , 𝑦

𝑝
) ∈ C

∞
.

Now we introduce the following main result.

Theorem 9. Assume that 𝐾 satisfies (𝐴
1
) and (𝑓)

𝛽
, 1 < 𝛽 ≤

𝑛 − 4.
Let 𝛽 := max{𝛽(𝑦)/𝑦 ∈ K}. For 𝑝 ≥ 1, there exists a

pseudogradient𝑊 in 𝑉(𝑝, 𝜀) so that the following holds.
There exists a constant 𝑐 > 0 independent of 𝑢 =

∑
𝑝

𝑖=1
𝛼
𝑖
𝛿
(𝑎𝑖𝜆𝑖)

∈ 𝑉(𝑝, 𝜀) such that

(𝑖) ⟨𝜕𝐽 (𝑢) ,𝑊 (𝑢)⟩

≤ −𝑐(

𝑝

∑

𝑖=1

1

𝜆
𝛽

𝑖

+

𝑝

∑

𝑖=1

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

+ ∑

𝑗 ̸= 𝑖

𝜀
𝑖𝑗
) .

(𝑖𝑖) ⟨𝜕𝐽 (𝑢 + V) ,𝑊 (𝑢) +
𝜕V

𝜕 (𝛼
𝑖
, 𝑎

𝑖
, 𝜆

𝑖
)
(𝑊 (𝑢))⟩

≤ −𝑐(

𝑝

∑

𝑖=1

1

𝜆
𝛽

𝑖

+

𝑝

∑

𝑖=1

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

+ ∑

𝑗 ̸= 𝑖

𝜀
𝑖𝑗
) .

(38)

Furthermore |𝑊| is bounded and the only case where the
maximum of the 𝜆

𝑖
’s is not bounded is when 𝑎

𝑖
∈ 𝐵(𝑦

𝑙𝑖
, 𝜌) with

𝑦
𝑙𝑖
∈K, for all 𝑖 = 1, . . . , 𝑝, (𝑦

𝑙1
, . . . , 𝑦

𝑙𝑝
) ∈ C

∞
.

We will prove Theorem 9 at the end of the section. Now
we state two results which deal with two specific cases of
Theorem 9. Let

𝑉
1
(𝑝, 𝜀) = {𝑢 =

𝑝

∑

𝑖=1

𝛼
𝑖
𝛿
𝑖
∈ 𝑉 (𝑝, 𝜀) s.t., 𝑎

𝑖
∈ 𝐵 (𝑦

𝑙𝑖
, 𝜌) ,

𝑦
𝑙𝑖
∈K \K

𝑛−4
∀𝑖 = 1, . . . , 𝑝} ,

𝑉
2
(𝑝, 𝜀) = {𝑢 =

𝑝

∑

𝑖=1

𝛼
𝑖
𝛿
𝑖
∈ 𝑉 (𝑝, 𝜀) s.t., 𝑎

𝑖
∈ 𝐵 (𝑦

𝑙𝑖
, 𝜌) ,

𝑦
𝑙𝑖
∈K

𝑛−4
∀𝑖 = 1, . . . , 𝑝} .

(39)

We then have the following.

Proposition 10 (see [11], Proposition 3.7). For 𝑝 ≥ 1 there
exists a pseudogradient 𝑊

2
in 𝑉

2
(𝑝, 𝜀) such that for all 𝑢 =

∑
𝑝

𝑖=1
𝛼
𝑖
𝛿
𝑖
∈ 𝑉

2
(𝑝, 𝜀), one has

⟨𝜕𝐽 (𝑢) ,𝑊
2
(𝑢)⟩ ≤ −𝑐(

𝑝

∑

𝑖=1

1

𝜆
𝑛−4

𝑖

+ ∑

𝑖 ̸= 𝑗

𝜀
𝑖𝑗
+

𝑝

∑

𝑖=1

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

) ,

(40)

where 𝑐 is a positive constant independent of 𝑢. Furthermore,
one has |𝑊

2
| which is bounded and the only case where the

maximum of 𝜆
𝑖
’s is not bounded is when 𝑎

𝑖
∈ 𝐵(𝑦

𝑙𝑖
, 𝜌), 𝑦

𝑙𝑖
∈

K+, for all 𝑖 = 1, . . . , 𝑝, with 𝜌(𝑦
𝑙1
, . . . , 𝑦

𝑙𝑝
) > 0.
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Proposition 11. For 𝑝 ≥ 1, there exists a pseudogradient𝑊
1

in 𝑉
1
(𝑝, 𝜀) so that the following holds.
There exists 𝑐 > 0 independent of 𝑢 = ∑𝑝

𝑖=1
𝛼
𝑖
𝛿
𝑖
∈ 𝑉

1
(𝑝, 𝜀)

such that

⟨𝜕𝐽 (𝑢) ,𝑊
1
(𝑢)⟩ ≤ −𝑐(

𝑝

∑

𝑖=1

1

𝜆
𝛽

𝑖

+ ∑

𝑖 ̸= 𝑗

𝜀
𝑖𝑗
+

𝑝

∑

𝑖=1

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

) .

(41)

Furthermore |𝑊
1
| is bounded and the only case where the

maximum of the 𝜆
𝑖
’s is not bounded is when 𝑎

𝑖
∈ 𝐵(𝑦

𝑙𝑖
, 𝜌) with

𝑦
𝑙𝑖
∈K+, for all 𝑖 = 1, . . . , 𝑝, and 𝑦i ̸= 𝑦

𝑗
for all 𝑖 ̸= 𝑗.

Observe that in 𝑉
1
(𝑝, 𝜀) the interaction of two bubbles

is negligible with respect to the self-interaction. Similar
phenomena occur for the scalar curvature problem, see [21],
so the proof of Proposition 11 is similar to the corresponding
statement in [21].

Before giving the proof of Theorem 9, we state the
following notations extracted from [11].

Let𝑀
1
be a fixed positive constant large enough and let

𝑢 = ∑
𝑝

𝑖=1
𝛼
𝑖
𝛿
(𝑎𝑖 ,𝜆𝑖)

∈ 𝑉(𝑝, 𝜀) such that 𝑎
𝑖
∈ 𝐵(𝑎

𝑖
, 𝜌), 𝑦

𝑙𝑖
∈ K,

for all 𝑖 = 1, . . . , 𝑝. For any index 𝑖, 1 ≤ 𝑖 ≤ 𝑝, we define the
following vector fields:

𝑍
𝑖
(𝑢) = 𝛼

𝑖
𝜆
𝑖

𝜕𝛿
(𝑎𝑖 ,𝜆𝑖)

𝜕𝜆
𝑖

,

𝑋
𝑖
= 𝛼

𝑖

𝑛

∑

𝑘=1

1

𝜆
𝑖

𝜕𝛿
(𝑎𝑖 ,𝜆𝑖)

𝜕(𝑎
𝑖
)
𝑘

∫
R𝑛
𝑏
𝑘

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑘
+ 𝜆

𝑖
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘

󵄨󵄨󵄨󵄨󵄨

𝛽𝑖

(1 + 𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘

󵄨󵄨󵄨󵄨󵄨
)
𝛽𝑖−1

×
𝑥
𝑘

(1 + |𝑥|
2

)
𝑛+1

𝑑𝑥.

(42)

We claim that 𝑋
𝑖
is bounded. Indeed, the claim is trivial if

𝜆
𝑖
|𝑎

𝑖
−𝑦

𝑙𝑖
| ≤ 𝑀

1
. If 𝜆

𝑖
|𝑎

𝑖
−𝑦

𝑙
𝑖

| > 𝑀
1
, for any 𝑘, 1 ≤ 𝑘 ≤ 𝑛, such

that 𝜆
𝑖
|(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘
| > 𝑀

1
/√𝑛, we have the following estimate:

∫
R𝑛

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑘
+ 𝜆

𝑖
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘

󵄨󵄨󵄨󵄨󵄨

𝛽𝑖

𝑥
𝑘

(1 + |𝑥|
2

)
𝑛+1

𝑑𝑥

= 𝑐 (signe 𝜆
𝑖
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘

) (𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘

󵄨󵄨󵄨󵄨󵄨
)
𝛽𝑖−1

× (1 + 𝑜 (1)) .

(43)

Hence our claim follows. Next, we will say that

𝑖 ∈ 𝐿
1

if 𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖
− 𝑦

𝑙𝑖

󵄨󵄨󵄨󵄨󵄨
≤ 𝑀

1
,

𝑖 ∈ 𝐿
2

if 𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖
− 𝑦

𝑙𝑖

󵄨󵄨󵄨󵄨󵄨
> 𝑀

1
,

(44)

and we will denote by 𝑘
𝑖
the index satisfying

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
= max

1≤𝑘≤𝑛

󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘

󵄨󵄨󵄨󵄨󵄨
. (45)

It easy to see that if 𝑖 ∈ 𝐿
2
, then 𝜆

𝑖
|(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘𝑖
| > 𝑀

1
/√𝑛.

Now, we introduce the following two lemmas.

Lemma 12. Let 𝑢 = ∑
𝑝

𝑖=1
𝛼
𝑖
𝛿
(𝑎𝑖 ,𝜆𝑖)

∈ 𝑉(𝑝, 𝜀), such that 𝑎
𝑖
∈

𝐵(𝑦
𝑙𝑖
, 𝜌), 𝑦

𝑙𝑖
∈K, for all 𝑖 = 1, . . . , 𝑝. One then has

⟨𝜕𝐽 (𝑢) , 𝑍
𝑖
(𝑢)⟩ = − 2𝑐

2
𝐽 (𝑢) ∑

𝑗 ̸= 𝑖

𝛼
𝑖
𝛼
𝑗

𝜕𝜀
𝑖𝑗

𝜕𝜆
𝑖

+ 𝑂(
1

𝜆
𝛽𝑖

𝑖

)

+
[
[

[

𝑂(

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘𝑖

󵄨󵄨󵄨󵄨󵄨󵄨

𝛽𝑖−2

𝜆
2

𝑖

), if 𝑖 ∈ 𝐿
2

]
]

]

+ 𝑜(∑

𝑗 ̸= 𝑖

𝜀
𝑖𝑗
) + 𝑜(

𝑝

∑

𝑗=1

1

𝜆
𝛽𝑗

𝑗

) ,

(46)

where 𝑘
𝑖
is defined in (45).

Proof. Using Proposition 7, we have

⟨𝜕𝐽 (𝑢) , 𝑍
𝑖
(𝑢)⟩

=−2𝑐
2
𝐽 (𝑢) ∑

𝑗 ̸= 𝑖

𝛼
𝑖
𝛼
𝑗
𝜆
𝑖

𝜕𝜀
𝑖𝑗

𝜕𝜆
𝑖

+
𝑛 − 4

2𝑛
𝑐
2𝑛/(𝑛−4)

0
𝛽

𝛼
2

𝑖

𝐾(𝑎
𝑖
)

×∫
R𝑛

signe (𝑥
𝑘
+ 𝜆

𝑖
(𝑎

𝑖
− 𝑦

𝑗𝑖
)
𝑘

)
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑘
+ 𝜆

𝑖
(𝑎

𝑖
− 𝑦

𝑗𝑖
)
𝑘

󵄨󵄨󵄨󵄨󵄨

𝛽−1

×
𝑥
𝑘

(1 + |𝑥|
2

)
𝑛
𝑑𝑥 + 𝑜(∑

𝑗 ̸= 𝑖

𝜀
𝑖𝑗
) + 𝑜(

𝑝

∑

𝑗=1

1

𝜆
𝛽𝑗

𝑗

) .

(47)

Observe that for 𝑘 ∈ {1, . . . , 𝑛}, if 𝜆
𝑖
|(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘
| > 𝑀

1
/√𝑛, we

have

∫
R𝑛

signe (𝑥
𝑘
+ 𝜆

𝑖
(𝑎

𝑖
− 𝑦

𝑗𝑖
)
𝑘

)

×

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑘
+ 𝜆

𝑖
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘

󵄨󵄨󵄨󵄨󵄨

𝛽𝑖−1

𝑥
𝑘

(1 + |𝑥|
2

)
𝑛

𝑑𝑥

= 𝑐 signe (𝜆
𝑖
(𝑎

𝑖
− 𝑦

𝑗𝑖
)
𝑘

)

× (𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘

󵄨󵄨󵄨󵄨󵄨
)
𝛽𝑖−2

(1 + 𝑜 (1)) ,

(48)

taking𝑀
1
large enough. If not, we have

∫
R𝑛

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑘
+ 𝜆

𝑖
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘

󵄨󵄨󵄨󵄨󵄨

𝛽𝑖−1 󵄨󵄨󵄨󵄨𝑥𝑘

󵄨󵄨󵄨󵄨

(1 + |𝑥|
2

)
𝑛

𝑑𝑥 = 𝑂 (1) . (49)

Using the fact that 𝑘
𝑖
defined in (45) satisfies 𝜆

𝑖
|(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘𝑖
| >

𝑀
1
/√𝑛, if 𝑖 ∈ 𝐿

2
, Lemma 12 follows.
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Lemma 13. For 𝑢 = ∑
𝑝

𝑖=1
𝛼
𝑖
𝛿
(𝑎𝑖 ,𝜆𝑖)

∈ 𝑉(𝑝, 𝜀), such that 𝑎
𝑖
∈

𝐵(𝑦
𝑙𝑖
, 𝜌), 𝑦

𝑙𝑖
∈K, for all 𝑖 = 1, . . . , 𝑝, one has

⟨𝜕𝐽 (𝑢) , 𝑋
𝑖
(𝑢)⟩

≤ 𝑂(∑

𝑗 ̸= 𝑖

1

𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝜀
𝑖𝑗

𝜕𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) + 𝑂[(
1

𝜆
𝛽𝑖

𝑖

) , if 𝑖 ∈ 𝐿
1
]

+
[
[

[

−𝑐(
1

𝜆
𝛽𝑖

𝑖

+

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘𝑖

󵄨󵄨󵄨󵄨󵄨󵄨

𝛽𝑖−1

𝜆
𝑖

), if 𝑖 ∈ 𝐿
2

]
]

]

+ 𝑜(

𝑝

∑

𝑗=1

1

𝜆
𝛽𝑗

𝑗

) ,

(50)

where 𝑘
𝑖
is defined in (45).

Proof. Using Proposition 8, we have

⟨𝜕𝐽 (𝑢) , 𝑋
𝑖
(𝑢)⟩

=−2 (𝑛 − 4) 𝑐
2𝑛/(𝑛−4)

0
𝛼
2𝑛/(𝑛−4)

𝑖

1

𝜆
𝑖

𝛽𝑖

×

𝑛

∑

𝑘=1

(∫
R𝑛
𝑏
𝑘

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑘
+ 𝜆

𝑖
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘

󵄨󵄨󵄨󵄨󵄨

𝛽𝑖

(1 + 𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘

󵄨󵄨󵄨󵄨󵄨
)
(𝛽𝑖−1)/2

×
𝑥
𝑘

(1 + |𝑥|
2

)
𝑛+1

𝑑𝑥)

2

+ 𝑂(∑

𝑗 ̸= 𝑖

1

𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝜀
𝑖𝑗

𝜕𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) + 𝑜(

𝑝

∑

𝑗=1

1

𝜆
𝛽𝑗

𝑗

)

≤−𝑐
1

𝜆
𝑖

𝛽i
(∫

R𝑛
𝑏
𝑘𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑘
+ 𝜆

𝑖
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘𝑖

󵄨󵄨󵄨󵄨󵄨󵄨

𝛽𝑖

(1 + 𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
)
(𝛽𝑖−1)/2

×
𝑥
𝑘𝑖

(1 + |𝑥|
2

)
𝑛+1

𝑑𝑥)

2

+ 𝑂(∑

𝑗 ̸= 𝑖

1

𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝜀
𝑖𝑗

𝜕𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) + 𝑜(

𝑝

∑

𝑗=1

1

𝜆
𝛽𝑗

𝑗

) .

(51)

Using (43) and the fact that 𝜆
𝑖
|(𝑎

𝑖
−𝑦

𝑙𝑖
)
𝑘𝑖
| > 𝑀

1
/√𝑛, if 𝑖 ∈ 𝐿

2
,

Lemma 13 follows.

Proof of Theorem 9. In order to complete the construction
of the pseudogradient 𝑊 suggested in Theorem 9, it only

remains (using Propositions 10 and 11) to focus attention on
the two following subsets of 𝑉(𝑝, 𝜀).

Subset 1. We consider here the case of 𝑢 = ∑
𝑝

𝑖=1
𝛼
𝑖
𝛿
(𝑎𝑖𝜆𝑖)

=

∑
𝑖∈𝐼1

𝛼
𝑖
𝛿
(𝑎𝑖𝜆𝑖)

+ ∑
𝑖∈𝐼2

𝛼
𝑖
𝛿
(𝑎𝑖𝜆𝑖)

such that

𝐼
1
̸= 0, 𝐼

2
̸= 0, ∑

𝑖∈𝐼1

𝛼
𝑖
𝛿
(𝑎𝑖𝜆𝑖)

∈ 𝑉
1

(♯𝐼
1
, 𝜀) ,

∑

𝑖∈𝐼2

𝛼
𝑖
𝛿
(𝑎𝑖𝜆𝑖)

∈ 𝑉
2

(♯𝐼
2
, 𝜀) .

(52)

Without loss of generality, we can assume that

𝜆
1
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑝
. (53)

We distinguish three cases.

Case 1. 𝑢
1

:= ∑
𝑖∈𝐼1

𝛼
𝑖
𝛿
(𝑎𝑖𝜆𝑖)

∉ 𝑉
1

1
(♯𝐼

1
, 𝜀) = {𝑢 =

∑
♯𝐼1

𝑗=1
𝛼
𝑗
𝛿
(𝑎𝑗 ,𝜆𝑗)

, 𝑎
𝑗
∈ 𝐵(𝑦

𝑙𝑗
, 𝜌), 𝑦

𝑙𝑗
∈ K+ for all 𝑗 = 1, . . . , ♯𝐼

1

and 𝑦
𝑙𝑗
̸= 𝑦

𝑙𝑘
for all 𝑗 ̸= 𝑘}.

Let 𝑊
1
be the pseudogradient on 𝑉(𝑝, 𝜀) defined by

𝑊
1
(𝑢) = 𝑊

1
(𝑢

1
), where 𝑊

1
is the vector filed defined by

Proposition 11 in𝑉
1
(♯𝐼

1
, 𝜀). Note that if 𝑢

1
∉ 𝑉

1

1
(♯𝐼

1
, 𝜀), then

the pseudo-gradient𝑊
1
(𝑢

1
) does not increase the maximum

of the 𝜆
𝑖
’s, 𝑖 ∈ 𝐼

1
. Using Proposition 11, we have

⟨𝜕𝐽 (𝑢) ,𝑊
1
(𝑢)⟩

≤ −𝑐(∑

𝑖∈𝐼1

1

𝜆
𝛽𝑖

𝑖

+ ∑

𝑗 ̸= 𝑖,𝑖,𝑗∈𝐼1

𝜀
𝑖𝑗
+ ∑

𝑖∈𝐼1

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

)

+ 𝑂( ∑

𝑖∈𝐼1 ,𝑗∈𝐼2

𝜀
𝑖𝑗
) .

(54)

An easy calculation yields

𝜀
𝑖𝑗
= 𝑂(

1

(𝜆
𝑖
𝜆
𝑗
)
(𝑛−4)/2

) = 𝑜(
1

𝜆
𝛽𝑖

𝑖

) + 𝑜(
1

𝜆
𝛽𝑗

𝑗

) , (55)

Fix 𝑖
0
∈ 𝐼

1
, we denote by

𝐽
1
= {𝑖 ∈ 𝐼

2
, s.t, 𝜆𝑛−4

𝑖
≥
1

2
𝜆
𝛽𝑖0

𝑖0

} , 𝐽
2
= 𝐼

2
\ 𝐽

1
. (56)

Using (54) and (55), we find that

⟨𝜕𝐽 (𝑢) ,𝑊
1
(𝑢)⟩

≤ −𝑐( ∑

𝑖∈𝐼1∪𝐽1

1

𝜆
𝛽𝑖

𝑖

+ ∑

𝑖∈𝐼1

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

+ ∑

𝑗 ̸= 𝑖∈𝐼1

𝜀
𝑖𝑗
)

+ 𝑜(

𝑝

∑

𝑖=1

1

𝜆
𝛽𝑖

𝑖

) .

(57)
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From another part, by Lemma 12 we have

⟨𝜕𝐽 (𝑢) , ∑

𝑖∈𝐽1

− 2
𝑖

𝑍
𝑖
(𝑢)⟩

≤ 𝑐 ∑

𝑗 ̸= 𝑖,𝑖∈𝐽1

2
𝑖

𝜆
𝑖

𝜕𝜀
𝑖𝑗

𝜕𝜆
𝑖

+ 𝑂(∑

𝑖∈𝐽1

1

𝜆
𝛽𝑖

𝑖

)

+ 𝑂( ∑

𝑖∈𝐽1∩𝐿2

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘𝑖

󵄨󵄨󵄨󵄨󵄨󵄨

𝛽𝑖−2

𝜆
2

𝑖

).

(58)

Observe that using a direct calculation, we have

𝜆
𝑖

𝜕𝜀
𝑖𝑗

𝜕𝜆
𝑖

≤ − 𝑐𝜀
𝑖𝑗
, if 𝜆

𝑖
≥ 𝜆

𝑗
or 𝜆

𝑖
∼ 𝜆

𝑗

or 󵄨󵄨󵄨󵄨󵄨𝑎𝑖 − 𝑎𝑗
󵄨󵄨󵄨󵄨󵄨
≥ 𝛿

0
> 0.

(59)

Since for 𝑖 < 𝑗, we have

2
𝑖

𝜆
𝑖

𝜕𝜀
𝑖𝑗

𝜕𝜆
𝑖

+ 2
𝑗

𝜆
𝑗

𝜕𝜀
𝑖𝑗

𝜕𝜆
𝑗

≤ −𝑐𝜀
𝑖𝑗
, (60)

and for 𝑖 ∈ 𝐽
1
and 𝑗 ∈ 𝐽

2
we have 𝜆

𝑗
≤ 𝜆

𝑖
, we obtain

𝜆
𝑖
(𝜕𝜀

𝑖𝑗
/𝜕𝜆

𝑖
) ≤ −𝑐𝜀

𝑖𝑗
. These estimates yield

⟨𝜕𝐽 (𝑢) , ∑

𝑖∈𝐽1

− 2
𝑖

𝑍
𝑖
(𝑢)⟩

≤ −𝑐 ∑

𝑗 ̸= 𝑖,𝑖∈𝐽1,𝑗∈𝐽1∪𝐽2

𝜀
𝑖𝑗
+ 𝑂(∑

𝑖∈𝐽1

1

𝜆
𝛽𝑖

𝑖

)

+ 𝑂( ∑

𝑖∈𝐽1∩𝐿2

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘𝑖

󵄨󵄨󵄨󵄨󵄨󵄨

𝛽𝑖−2

𝜆
2

𝑖

)

+𝑂( ∑

𝑖∈𝐽1,𝑗∈𝐼1

𝜀
𝑖𝑗
) .

(61)

It is easy to see that for any index 𝑖 ∈ 𝐿
2
, we have

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘𝑖

󵄨󵄨󵄨󵄨󵄨󵄨

𝛽𝑖−2

𝜆
2

𝑖

≤
√𝑛

𝑀
1

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘𝑖

󵄨󵄨󵄨󵄨󵄨󵄨

𝛽𝑖−1

𝜆
𝑖

,
(62)

where 𝑘
𝑖
is defined in (45) and𝑀

1
is large enough. Thus, we

derive that

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘𝑖

󵄨󵄨󵄨󵄨󵄨󵄨

𝛽𝑖−2

𝜆
2

𝑖

= 𝑜(

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑎

𝑖
− 𝑦

𝑙𝑖
)
𝑘𝑖

󵄨󵄨󵄨󵄨󵄨󵄨

𝛽𝑖−1

𝜆
𝑖

),

for any 𝑖 ∈ 𝐿
2
.

(63)

Let 𝑚
1
> 0 be small enough; using Lemma 13, (63), and

(55), we get

⟨𝜕𝐽 (𝑢) , ∑

𝑖∈𝐽1

− 2
𝑖

𝑍
𝑖
(𝑢) + 𝑚

1
∑

𝑖∈𝐽1∩𝐿2

𝑋
𝑖
(𝑢)⟩

≤ −𝑐( ∑

𝑗 ̸= 𝑖,𝑖∈𝐽1,𝑗∈𝐽1∪𝐽2

𝜀
𝑖𝑗
+ ∑

𝑖∈𝐽1

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

)

+ 𝑂(∑

𝑖∈𝐽1

1

𝜆
𝛽𝑖

𝑖

) + 𝑜(

𝑝

∑

𝑖=1

1

𝜆
𝛽𝑖

𝑖

) ,

(64)

and by (57) we obtain

⟨𝜕𝐽 (𝑢) ,𝑊
1
(𝑢) + 𝑚

1
(∑

𝑖∈𝐽1

− 2
𝑖

𝑍
𝑖
(𝑢) + 𝑚

1
∑

𝑖∈𝐽1∩𝐿2

𝑋
𝑖
(𝑢))⟩

≤ −𝑐( ∑

𝑖∈𝐼1∪𝐽1

1

𝜆
𝛽𝑖

𝑖

+ ∑

𝑖 ̸= 𝑗∈𝐼1

𝜀
𝑖𝑗

+ ∑

𝑗 ̸= 𝑖,𝑖∈𝐽1,𝑗∈𝐽1∪𝐽2

𝜀
𝑖𝑗
+ ∑

𝑖∈𝐼1∪𝐽1

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

)

+ 𝑜(

𝑝

∑

𝑖=1

1

𝜆
𝛽𝑖

𝑖

) .

(65)

We need to add the remainder indices 𝑖 ∈ 𝐽
2
. Note that 𝑢̃ :=

∑
𝑗∈𝐽2

𝛼
𝑗
𝛿
𝑗
∈ 𝑉

2
(♯𝐽

2
, 𝜀). Thus using Proposition 10, we apply

the associated vector field which we will denote by 𝑊
2
. We

then have the following estimate:

⟨𝜕𝐽 (𝑢) ,𝑊
2
(𝑢)⟩

≤ −𝑐(∑

𝑗∈𝐽2

1

𝜆
𝛽𝑗

𝑗

+ ∑

𝑖 ̸= 𝑗,𝑖,𝑗∈𝐽2

𝜀
𝑖𝑗
+ ∑

𝑗∈𝐽2

󵄨󵄨󵄨󵄨󵄨
∇𝐾 (𝑎

𝑗
)
󵄨󵄨󵄨󵄨󵄨

𝜆
𝑗

)

+ 𝑂( ∑

𝑗∈𝐽2,𝑖∈𝐽1

𝜀
𝑖𝑗
) + 𝑜(

𝑝

∑

𝑖=1

1

𝜆
𝛽𝑖

𝑖

) ,

(66)

since |𝑎
𝑖
− 𝑎

𝑗
| ≥ 𝜌 for 𝑗 ∈ 𝐽

2
and 𝑖 ∈ 𝐼

1
.

Let in this case 𝑊 = 𝑊
1
+ 𝑚

1
(𝑊

2
+ ∑

𝑖∈𝐽1

−2
𝑖

𝑍
𝑖
+

𝑚
1
∑

𝑖∈𝐽1∩𝐿2

𝑋
𝑖
).

From (65) and (66) we obtain

⟨𝜕𝐽 (𝑢) ,𝑊 (𝑢)⟩ ≤ −𝑐(

𝑝

∑

𝑖=1

1

𝜆
𝛽𝑖

𝑖

+

𝑝

∑

𝑖=1

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

+ ∑

𝑖 ̸= 𝑗

𝜀
𝑖𝑗
) .

(67)

Case 2. 𝑢
1

:= ∑
𝑖∈𝐼1

𝛼
𝑖
𝛿
(𝑎𝑖𝜆𝑖)

∈ 𝑉
1

1
(♯𝐼

1
, 𝜀) and 𝑢

2
:=

∑
𝑖∉𝐼2

𝛼
𝑖
𝛿
(𝑎𝑖𝜆𝑖)

∉ 𝑉
1

2
(♯𝐼

2
, 𝜀) := {𝑢 = ∑

♯𝐼2

𝑗=1
𝛼
𝑗
𝛿
(𝑎𝑗 ,𝜆𝑗)

, 𝑎
𝑗
∈

𝐵(𝑦
𝑙𝑗
, 𝜌), 𝑦

𝑙𝑗
∈K+, for all 𝑗 = 1, . . . , ♯𝐼

2
and 𝜌(𝑦

𝑙1
, . . . , 𝑦

♯𝐼2
) >

0}.
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Since 𝑢
2
∈ 𝑉

2
(♯𝐼

2
, 𝜀), by Proposition 10, we can apply the

associated vector field which we will denote by 𝑉
1
. We get

⟨𝜕𝐽 (𝑢) , 𝑉
1
(𝑢)⟩

≤ −𝑐(∑

𝑖∈𝐼2

1

𝜆
𝛽𝑖

𝑖

+ ∑

𝑖∈𝐼2

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

+ ∑

𝑖 ̸= 𝑗,𝑖,𝑗∈𝐼2

𝜀
𝑖𝑗
)

+ 𝑂( ∑

𝑖∈𝐼2, 𝑗∈𝐼1

𝜀
𝑖𝑗
) .

(68)

Observe that𝑉
1
(𝑢)does not increase themaximumof the𝜆

𝑖
’s,

𝑖 ∈ 𝐼
2
, since 𝑢

2
∉ 𝑉

1

2
(♯𝐼

2
, 𝜀). Fix 𝑖

0
∈ 𝐼

2
and let

𝐽
1
= {𝑖 ∈ 𝐼

1
, s.t, 𝜆𝛽𝑖

𝑖
≥
1

2
𝜆
𝑛−4

𝑖0

} , 𝐽
2
= 𝐼

1
\ 𝐽

1
. (69)

Using (68) and (55), we get

⟨𝜕𝐽 (𝑢) , 𝑉
1
(𝑢)⟩

≤ −𝑐( ∑

𝑖∈𝐼2∪𝐽1

1

𝜆
𝛽𝑖

𝑖

+∑

𝑖∈𝐼2

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

+ ∑

𝑖 ̸= 𝑗,𝑖,𝑗∈𝐼2

𝜀
𝑖𝑗
)

+ 𝑜(

𝑝

∑

𝑖=1

1

𝜆
𝛽𝑖

𝑖

) .

(70)

We need to add the indices 𝑖, 𝑖 ∈ 𝐽
2
. Letting 𝑢̃ :=

∑
𝑗∈𝐽̃2

𝛼
𝑗
𝛿
(𝑎𝑗𝜆𝑗)

, since 𝑢̃ ∈ 𝑉
1
(♯𝐽̃

2
, 𝜀), we can apply the

associated vector field given by Proposition 10. Let 𝑉
2
be this

vector field. By Proposition 11 we have

⟨𝜕𝐽 (𝑢) , 𝑉
2
(𝑢)⟩

≤ −𝑐(∑

𝑗∈𝐽2

1

𝜆
𝛽𝑗

𝑗

+ ∑

𝑗∈𝐽2

󵄨󵄨󵄨󵄨󵄨
∇𝐾 (𝑎

𝑗
)
󵄨󵄨󵄨󵄨󵄨

𝜆
𝑗

+ ∑

𝑖 ̸= 𝑗, 𝑖,𝑗∈𝐽2

𝜀
𝑖𝑗
)

+ 𝑂( ∑

𝑗∈𝐽2,𝑖∉𝐽2

𝜀
𝑖𝑗
) .

(71)

Observe that 𝐼
1
= 𝐽

1
∪ 𝐽

2
and we are in the case where for all

𝑖 ̸= 𝑗 ∈ 𝐼
1
, we have |𝑎

𝑖
− 𝑎

𝑗
| ≥ 𝜌. Thus by (55), we get

𝑂( ∑

𝑗∈𝐽2,𝑖∉𝐽2

𝜀
𝑖𝑗
) = 𝑜(

𝑝

∑

𝑖=1

1

𝜆
𝛽𝑖

𝑖

) , (72)

and hence

⟨𝜕𝐽 (𝑢) , 𝑉
1
(𝑢) + 𝑉

2
(𝑢)⟩

≤ −𝑐(

𝑝

∑

𝑖=1

1

𝜆
𝛽𝑖

𝑖

+ ∑

𝑖∈𝐼2∪𝐽2

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

+ ∑

𝑖 ̸= 𝑗

𝜀
𝑖𝑗
) .

(73)

Let in this case 𝑊 = 𝑉
1
+ 𝑉

2
+ 𝑚

1
∑

𝑖∈𝐽1

𝑋
𝑖
(𝑢), 𝑚

1
small

enough.

Using the previous estimate and Lemma 13, we find that

⟨𝜕𝐽 (𝑢) ,𝑊 (𝑢)⟩ ≤ −𝑐(

𝑝

∑

𝑖=1

1

𝜆
𝛽𝑖

𝑖

+

𝑝

∑

𝑖=1

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

+ ∑

𝑖 ̸= 𝑗

𝜀
𝑖𝑗
) .

(74)

Case 3. 𝑢
1
∈ 𝑉

1

1
(♯𝐼

1
, 𝜀) and 𝑢

2
∈ 𝑉

1

2
(♯𝐼

2
, 𝜀).

Let𝑉
1
(resp.,𝑉

2
) be the pseudo-gradient in𝑉(𝑝, 𝜀)defined

by 𝑉
1
(𝑢) = 𝑊

1
(𝑢

1
) (resp., 𝑉

2
(𝑢) = 𝑊

2
(𝑢

2
)) where 𝑊

1

(resp.,𝑊
2
) is the vector field defined by Proposition 11 (resp.,

Proposition 10) in𝑉1

1
(♯𝐼

1
, 𝜀) (resp.,𝑉1

2
(♯𝐼

2
, 𝜀)) and let in this

case

𝑊 = 𝑉
1
+ 𝑉

2
. (75)

Using Proposition 10, Proposition 11, and (55) we get

⟨𝜕𝐽 (𝑢) ,𝑊 (𝑢)⟩ ≤ −𝑐(

𝑝

∑

𝑖=1

1

𝜆
𝛽𝑖

𝑖

+

𝑝

∑

𝑖=1

󵄨󵄨󵄨󵄨∇𝐾 (𝑎𝑖)
󵄨󵄨󵄨󵄨

𝜆
𝑖

+ ∑

𝑖 ̸= 𝑗

𝜀
𝑖𝑗
) .

(76)

Notice that in the first and second cases, the maximum
of the 𝜆

𝑖
’s, 1 ≤ 𝑖 ≤ 𝑝, is a bounded function and hence the

Palais-Smale condition is satisfied along the flow lines of𝑊.
However in the third case all the 𝜆

𝑖
’s, 1 ≤ 𝑖 ≤ 𝑝, will increase

and go to +∞ along the flow lines generated by𝑊.

Subset 2.We consider the case of 𝑢 = ∑𝑝

𝑖=1
𝛼
𝑖
𝛿
𝑖
∈ 𝑉(𝑝, 𝜀), such

that there exist 𝑎
𝑖
satisfying 𝑎

𝑖
∉ ∪

𝑦∈K𝐵(𝑦, 𝜌).
In this region, the construction of the pseudo-gradient𝑊

proceeds exactly as the proof of Theorem 3.2, of subset 2, of
[11].

Finally, observe that our pseudogradient 𝑊 in 𝑉(𝑝, 𝜀)

satisfies claim (i) of Theorem 9 and it is bounded, since
‖𝜆

𝑖
(𝜕𝛿

(𝑎𝑖,𝜆𝑖
)
/𝜕𝜆

𝑖
)‖ and ‖(1/𝜆

𝑖
)(𝜕𝛿

(𝑎𝑖,𝜆𝑖
)
/𝜕𝑎

𝑖
)‖ are bounded.

From the definition of𝑊, the 𝜆
𝑖
’s, 1 ≤ 𝑖 ≤ 𝑝, decrease along

the flow lines of 𝑊 as long as these flow lines do not enter
in the neighborhood of finite number of critical points 𝑦

𝑙𝑖
,

𝑖 = 1, . . . , 𝑝, ofK such that (𝑦
𝑙1
, . . . , 𝑦

𝑙𝑝
) ∈ C

∞
.

Now, arguing as in Appendix 2 of [16], see also Appendix
B of [18], claim (ii) of Theorem 9 follows from (i) and
Proposition 5. This completes the proof of Theorem 9.

Corollary 14. Let 𝑝 ≥ 1. The critical points at infinity of 𝐽 in
𝑉(𝑝, 𝜀) correspond to

(𝑦
𝑙1
, . . . , 𝑦

𝑙𝑝
)
∞

:=

𝑝

∑

𝑖=1

1

𝐾(𝑦
𝑙𝑖
)
(𝑛−4)/2

𝛿
(𝑦𝑙𝑖

,∞)
, (77)

where (𝑦
𝑙1
, . . . , 𝑦

𝑙𝑝
) ∈ C

∞
. Moreover, such a critical point at

infinity has an index equal to 𝑖(𝑦
𝑙1
, . . . , 𝑦

𝑙𝑝
)
∞
= 𝑝−1+∑

𝑝

𝑖=1
𝑛−

𝑖̃(𝑦).

4. Proof of Theorem 1

We prove the existence result by contradiction. Assume that
𝐽 has no critical point in 𝑉

𝜂
(Σ

+

). It follows from Corollary 14
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that the critical points at infinity of the associated variational
problem are in one to one correspondence with the elements
ofC

∞
defined in (13).

Notice that, just like for usual critical points, it is asso-
ciated with each critical point at infinity 𝑤

∞
of 𝐽 stable and

unstable manifolds 𝑊∞

𝑠
(𝑤

∞
) and 𝑊∞

𝑢
(𝑤

∞
) (see [16, pages

356-357]). These manifolds can be easily described once a
finite-dimensional reduction like the one we performed in
Section 3 is established.

For any 𝑤
∞

= (𝑦
𝑖1
, . . . , 𝑦

𝑖𝑝
) ∈ C

∞
, let 𝑐(𝑤)

∞
=

𝑆
𝑛
(∑

𝑝

𝑗=1
1/𝐾(𝑦

𝑖𝑗
)
(𝑛−4)/2

)
4/𝑛 denote the associated critical

value. Here we choose to consider a simplified situation,
where for any 𝑤

∞
̸= 𝑤

󸀠

∞
, 𝑐(𝑤)

∞
̸= 𝑐(𝑤

󸀠

)
∞
, and thus order the

𝑐(𝑤)
∞
’s, 𝑤

∞
∈ C

∞
as

𝑐(𝑤
1
)
∞
< ⋅ ⋅ ⋅ < 𝑐(𝑤

𝑘0
)
∞

. (78)

By using a deformation lemma (see [22, proposition 7.24 and
Theorem 8.2]), we know that if 𝑐(𝑤

𝑘−1
)
∞
< 𝑎 < 𝑐(𝑤

𝑘
)
∞
<

𝑏 < 𝑐(𝑤
𝑘+1
)
∞
, then

𝐽
𝑏
≃ 𝐽

𝑎
∪𝑊

∞

𝑢
(𝑤

𝑘
)
∞
, (79)

where 𝐽
𝑏
= {𝑢 ∈ 𝑉

𝜂
(Σ

+

), 𝐽(𝑢) ≤ 𝑏} and ≃ denotes retracts by
deformation.

We apply the Euler-Poincaré characteristic of both sides
of (79); we find that

𝜒 (𝐽
𝑏
) = 𝜒 (𝐽

𝑎
) + (−1)

𝑖(𝑤𝑘)∞ , (80)

where 𝑖(𝑤
𝑘
)
∞
denotes the index of the critical point at infinity

(𝑤
𝑘
)
∞
. Let

𝑏
1
< 𝑐(𝑤

1
)
∞
= min

𝑢∈𝑉𝜂(Σ
+)

𝐽 (𝑢) < 𝑏
2
< 𝑐(𝑤

2
)
∞

< ⋅ ⋅ ⋅ < 𝑏
𝑘0
< 𝑐(𝑤

𝑘0
)
∞

< 𝑏
𝑘0+1

.

(81)

Since we have assumed that (4) has no solution, 𝐽
𝑏𝑘0+1

is a
retard by deformation of𝑉

𝜂
(Σ

+

).Therefore𝜒(𝐽
𝑏𝑘0+1

) = 1, since
𝑉
𝜂
(Σ

+

) is a contractible set. Now using (80), we derive after
recalling that 𝜒(𝐽

𝑏1
) = 𝜒(0) = 0

1 =

𝑘0

∑

𝑗=1

(−1)
𝑖(𝑤𝑗)∞ . (82)

Hence if (82) is violated, 𝐽 has a critical point in 𝑉
𝜂
(Σ

+

).
Now, arguing as in the proof of theorem of [18, pages 659-

660], we prove that such a critical point is positive.
To prove themultiplicity part of the statement, we observe

that it follows from Sard-Smale theorem that for generic
𝐾’s, the solutions to (7) are all nondegenerate, in the sense
that the associated linearized operator does not admit zero
as eigenvalue. We need to introduce the following lemma
extracted from [11].

Lemma 15 (see [11, Section 3.2]). Let 𝑤 be a solution to (7).
Assume that the function 𝐾 satisfies condition (𝑓)

𝛽
, with (𝑛 −

4)/2 < 𝛽 ≤ 𝑛 − 4; then for each 𝑝 ∈ N∗, there are neither
critical points nor critical points at infinity in 𝑉(𝑝, 𝜀, 𝑤).

Once the existence of mixed critical points at infinity is
ruled out, it follows from the previous arguments that

𝑉
𝜂
(Σ

+

) ≃

𝑘0

⋃

𝑗=1

𝑊
∞

𝑢
(𝑤

𝑗
)
∞

∪ ⋃

𝑤,𝜕𝐽(𝑤)=0

𝑊
𝑢
(𝑤) . (83)

Now using the Euler-Poincaré theorem, we derive that

1 =

𝑘0

∑

𝑗=1

(−1)
𝑖(𝑤𝑗)∞ + ∑

𝑤,𝜕𝐽(𝑤)=0

(−1)
morse(𝑤)

. (84)

Hence our theorem follows.

5. A General Existence Result

In this last section of this paper, we give a generalization of
Theorem 1. Namely, in view of the result of Theorem 1, one
may think about the situation where the degree 𝑑 given in
Theorem 1 is equal to zero; that is, the total sum in 𝑑 is equal
to 1, but a partial one is not equal to 1. A natural question
arises: is it possible in this case to use such information to
derive an existence result? In the following theorem we give a
partial answer to this question.

Theorem 16. Let 𝐾 be a function satisfying (𝐴
1
) and (𝑓)

𝛽
,

with 1 < 𝛽 ≤ 𝑛 − 4. If there exists 𝑘 ∈ N such that

(1) ∀𝑤
∞
∈ C

∞
, 𝑖(𝑤)

∞
̸= 𝑘 + 1

(2) ∑

𝑤∞∈C∞,𝑖(𝑤∞)≤𝑘

(−1)
𝑖(𝑤∞)

̸= 1,
(85)

then the problem (7) has at least one solution.
Moreover for generic𝐾’s, if (𝑛 − 4)/2 < 𝛽 ≤ 𝑛 − 4, then the

number of solutions is lower bounded by
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − ∑

𝑤∞∈C∞,𝑖(𝑤∞)≤𝑘

(−1)
𝑖(𝑤∞)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (86)

Let 𝑙
♯
be the maximal index over all elements of C

∞
.

Please observe that the integer 𝑘 = 𝑙
♯
satisfies (1) of

Theorem 16; it follows that Theorem 1 is a corollary of
Theorem 16.

Proof of Theorem 16. We set

𝑋
∞

𝑘
= ⋃

𝑥∞∈C∞,𝑖(𝑥)∞≤𝑘

𝑊∞

𝑢
(𝑥

∞
), (87)

where 𝑊∞

𝑢
(𝑥

∞
) is the closure of the unstable manifolds of

𝑥
∞
. Observe that 𝑋∞

𝑘
is a stratified set of top dimension

𝑘, which is contractible set in 𝑉
𝜂
(Σ

+

), since 𝑉
𝜂
(Σ

+

) is a
contractible set. Let 𝑈 denote the image of such a con-
traction. To prove the first part of Theorem 16, arguing by
contradiction, we assume that (7) has no solution. Using the
pseudo-gradient constructed in Theorem 9, we can deform
𝑈. By transversality arguments, we can assume that such
a deformation avoids all critical points at infinity of index
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greater or equal to 𝑘 + 1. Note that, from assumption (1) of
Theorem 16, there is no critical point at infinity with index
𝑘+1. It follows then from a theorem of Bahri and Rabinowitz
[22] that

𝑈 ≃ 𝑋
∞

𝑘
. (88)

Hence from the Euler-Poincaré theorem, we get

1 = 𝜒 (𝑋
∞

𝑘
) = ∑

𝑤∞∈𝐶∞,𝑖(𝑤∞)≤𝑘

(−1)
𝑖(𝑤∞)

, (89)

which is a contradiction with assumption (2) of Theorem 16.
Regarding the multiplicity result, we observe that for

generic 𝐾’s the functional 𝐽 admits only nondegenerate crit-
ical points. Hence by Lemma 15, the set 𝑈 will be deformed
into

𝑈 ≃ 𝑋
∞

𝑘
∪ ⋃

𝑤∈𝐶𝑘

𝑊
𝑢
(𝑤) , (90)

where 𝐶
𝑘
denotes the set of the critical points of 𝐽 of Morse

index less than or equal to 𝑘, which are dominated by 𝑈.
Finally by using the Euler-Poincaré theorem, the proof of
Theorem 16 follows.
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