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The Wu-Huberman clustering is a typical linear algorithm among many clustering algorithms, which illustrates data points
relationship as an artificial “circuit” and then applies the Kirchhoff equations to get the voltage value on the complex circuit.
However, the performance of the algorithm is crucially dependent on the selection of pole points. In this paper, we present a novel
pole point selection strategy for theWu-Huberman algorithm (named as PSWHalgorithm), which aims at preserving themerit and
increasing the robustness of the algorithm.The pole point selection strategy is proposed to filter the pole point by introducing sparse
rate. Experiments results demonstrate that the PSWH algorithm is significantly improved in clustering accuracy and efficiency
compared with the original Wu-Huberman algorithm.

1. Introduction

Traditional data mining approaches can be categorized into
two categories [1]: one is supervised learning, which aims to
predict the labels of any new data points from the observed
data-label pairs. Typical supervised learningmethods include
the support vector machine and the decision trees; the other
one is unsupervised learning. The goal is just to organize the
observed data points with no labels. Typical unsupervised
learning tasks include clustering [2] and dimensionality
reduction [3]. In this paper, we will focus on the clustering
problem, which aims to divide data into groups with similar
objects. From amachine learning perspective, clustering is to
learn the hidden patterns of the dataset in an unsupervised
way. From a practical perspective, clustering plays a vital role
in data mining applications such as information retrieval,
text mining, web analysis, marketing, and computing biology
[4–7].

In the last decades, many methods [8–12] have been
proposed for clustering. Recently, the graph-based clustering
has attracted many interests in the machine learning and
data mining community [13]. The cluster assignments of
the dataset can be achieved by optimizing some criteria

defined on the graph. For example, the spectral clustering is
one kind of the most representative graph-based clustering
approaches, and it aims to optimize some cut values (e.g., [14,
15]) defined on an undirected graph. After some relaxations,
these criteria can usually be optimized via eigen decom-
positions, and the solutions are guaranteed to be globally
optimal. In this way, the spectral clustering efficiently avoids
the problems of the traditional𝐾-means method.

Wu and Huberman proposed a clustering method based
on the notation of voltage drops across the network [16].
The algorithm uses a statistical method to avoid the “poles
problem” instead of solving it. The idea randomly picks two
poles, then applies the algorithm to divide the graph into two
communities, and repeats in this way for many times. The
algorithm uses a majority vote to determine the communities
[16]. However, after making some experiments, we have
found that the choice of the pole points affects the accuracy
of some of the clustering so seriously that the majority voting
result is degraded. The specific details will be presented in
Section 4.1 (Figure 1).

In order to overcome the above disadvantages of theWu-
Huberman algorithm, in this paper, first we construct a graph
in terms of data points. Then we propose a novel strategy
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Figure 1: Clustering results of theWu-Huberman algorithm for the two-moon patternwith different pole point selections. (a)Thedistribution
of the voltage values when 22nd and 86th points have been chosen as the poles. (b) The clustering results corresponding with (a). (c) The
distribution of voltage values when the 45th and 86th points have been chosen as the poles under the same dataset, algorithm, and parameters
with (a). (d) The clustering results corresponding to (c). (e) The graph of determining the pole points. The 𝑥-axis is the data point number,
and the 𝑦-axis is the value of sparse rate 𝛿.
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for pole point selection. After that, we iteratively solve the
Kirchhoff equation to perform clustering. Finally, we get
the clustering result. In this paper, we consider only the 2-
community clustering case and will leave the case of 𝑘 cluster
problem into the future research.

2. Related Works

The Wu-Huberman algorithm exhibits the graph as an
electric circuit. The purpose is to classify points in the graph
into two communities, that is, clusters. We denote a graph by
𝐺 = (𝑋, 𝐸), where 𝑋 is the point set of graph and 𝐸 is the
edge set. The set of voltages of points is 𝑉. Suppose points 𝐴
and 𝐵 have been known to belong to different communities,
𝐺
1
and 𝐺

2
, respectively. By solving Kirchhoff equations the

voltage value of each point can be obtained, which of course
should lie between 0 and 1. A point belongs to𝐺

1
or𝐺
2
, which

can be decided by voltage value of the point [17].The graph is
regarded as an electric circuit by associating a unit resistance
to each of its edges. Two of the nodes, assumed to be node
1 and node 2, without losing the generality, in the graph
are given a fixed potential difference. The Wu-Huberman
method is based on an approximate iterative algorithm that
solves theKirchhoff equations for node voltages in linear time
[16, 18].

The Kirchhoff equations of 𝑛-point circuit can be written
as

𝑉
1
= 1, 𝑉

2
= 0,

𝑉
𝑖
=
1

𝑑
𝑖

∑

(𝑖,𝑗)∈𝐸

𝑉
𝑗
=
1

𝑑
𝑖

∑

𝑗∈𝐺

𝑉
𝑗
𝑎
𝑖𝑗
, for 𝑖 = 3, . . . , 𝑛,

(1)

where 𝑑
𝑖
is the degree of point 𝑥

𝑖
and 𝑎

𝑖𝑗
is the adjacency

matrix of the graph. After the convergence, each community,
that is, cluster, is defined as the nodes with a specific voltage
value within a tolerance. Without loss of generality, the
algorithm has labeled the point in such a way that the battery
is attached to point 1 and 2, which are termed as pole points.

Because of the complexity, the algorithm does not solve
the Kirchhoff equations exactly rather solves it iteratively.The
algorithm initially sets 𝑉

1
= 1, 𝑉

2
= ⋅ ⋅ ⋅ = 𝑉

𝑛
= 0. In

the first round, the algorithm starts updating from point 3
to the 𝑛th point in the following way. When the 𝑖th point,
the voltage of it is substituted by the average value of its
𝑘 neighbors according to (1). The updating process ends
when the algorithm gets to the last point 𝑛, at which a
round is finished. After repeating the updating process for
a finite number of rounds, each point reaches voltage value
that satisfies approximately the Kirchhoff equations within
a certain precision. Then the algorithm finds community
results by a threshold decision.

The Wu-Huberman algorithm inherits the superiority
of the graph-based clustering. The final cluster solutions is
global optimal. Especially, the running time of the algorithm
is linear. However, the algorithm does not always work in
many cases [16]. Besides, there is still one critical problem
which seriously affects the accuracy and efficiency in real
applications. That is, the accuracy and efficiency are greatly

affected by the poles, that is, node 1 and node 2 selected.
Therefore, it is most important to improve the method of
selecting poles. In this paper, we present the PSWHalgorithm
to improve the accuracy and effectiveness of the algorithm by
presenting the pole point selection strategy.

3. The PSWH Algorithm

3.1. Graph Construction. Let 𝐺 = (𝑋, 𝐸) be an undirected
graph with point set𝑋 = {𝑥

1
, . . . , 𝑥

𝑛
} and edge set 𝐸 ⊆ 𝑋×𝑋.

The degree of point 𝑥
𝑖
∈ 𝑋 is defined as 𝑑

𝑖
, which is the edge

number connecting with point 𝑥
𝑖
.

Constructing 𝑘 nearest neighborhood graph is to model
the local neighborhood relationships between the data points.
Given data points 𝑥

1
, . . . , 𝑥

𝑛
, we link 𝑥

𝑖
and 𝑥

𝑗
with an

undirected edge if 𝑥
𝑖
is among the 𝑘 nearest neighbors of 𝑥

𝑗

or if 𝑥
𝑗
is among the 𝑘 nearest neighbors of 𝑥

𝑖
. We define 𝑥

𝑖

and 𝑥
𝑗
to be adjacent if 𝑥

𝑖
∈ 𝑁(𝑥

𝑗
) or 𝑥

𝑗
∈ 𝑁(𝑥

𝑖
), 𝑁(𝑥

𝑖
),

and𝑁(𝑥
𝑗
) is the neighbor of 𝑥

𝑖
and 𝑥

𝑗
, respectively.𝑤

𝑖𝑗
is the

similarity between 𝑥
𝑖
and 𝑥

𝑗
.𝑤
𝑖𝑗
is computed in the following

way: 𝑤
𝑖𝑗
= 𝑒
−(‖𝑥𝑖−𝑥𝑗‖

2
/2𝜎
2
), where 𝜎 is a dataset-dependent

parameter.

3.2. The Pole Point Selection Strategy. The Wu-Huberman
algorithm selects pole point randomly. Based on plenty of
experiments, we find that clustering results are very sensitive
to the choosing of pole points. It may produce wrong clus-
tering results if inappropriate points are chosen as the poles.
Figure 1 gives us an intuitive illustration of such a problem.

For solving this problem, in this paper, we introduce a
concept that is termed as “sparse points.”There is themaximal
diameter between the sparse point and its neighborhoods.
The existence of sparse points will bias the final clustering
results. An important fact of our experimental results is that if
we choose sparse points as the pole points theWu-Huberman
algorithm will become less accurate. For this reason, the
sparse points should not be selected as the pole points.There-
fore, we propose the following sparse rate 𝛿

𝑖
to discriminate

the sparse points from the others. Additionally, in order to
exclude the impact of the distribution in the similarity and
degree, the averaging similarity of the neighbors and the
similarity summation of the neighbors should be taken in the
sparse rate 𝛿

𝑖
. That is,

𝛿
𝑖
=

𝛾
𝑖

(𝜆
𝑖
× 𝜆
𝑖
)

, (2)

where 𝛾
𝑖

is the maximum diameter between the
𝑖th point and its neighborhoods; 𝛾

𝑖
= max arg

√∑
𝑑𝑖

𝑗=1,𝑝=1
∑

number 𝑓
𝑞=1

(𝑥
𝑖𝑗𝑞
− 𝑥
𝑖𝑝𝑞
)
2, 𝑖 = 1 to 𝑛, 𝑥

𝑖𝑗
and 𝑥

𝑖𝑝

are the neighborhoods of the 𝑥
𝑖
, 𝑗 and 𝑝 are from 1 to 𝑑

𝑖
,

number 𝑓 is the feature number of 𝑥
𝑖
, and 𝑥

𝑖𝑗𝑞
is the 𝑞th

attribute feature in the 𝑗th neighborhood of 𝑥
𝑖
. Here 𝜆

𝑖
is

the similarity (weight) summation of 𝑥
𝑖
’s neighborhood,

𝜆
𝑖
= ∑
𝑑𝑖

𝑗=1
𝑤
𝑖𝑗
, 𝑖 = 1 to 𝑛. 𝜆

𝑖
is the average weight of 𝑥

𝑖
’s

neighborhood, 𝜆
𝑖
= 𝜆
𝑖
/𝑑
𝑖
.

Figure 1(e) shows the sparse rate of each point in Figure 1.
A point can be determined as the pole point whose sparse
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rate is significantly larger than those of the most other points.
Sparse points are far from other points between two different
clusters, so they should not be chosen as the pole points.

We define an extent to describe the range of allowed
sparse points’ number. For example, an extent of 5% in
the two-moon example means that the allowed sparse point
number is the number of points ∗ extent = 100 ∗ 5% = 5.That
is to say, we choose top 5 points upon the sparse rate as the
sparse points. The specific experimental details are shown in
Section 4.1.

3.3. Iteratively Solving the Kirchhoff Equations. We will illus-
trate the computation procedure for iteratively solving the
Kirchhoff equations by using an example. According to the
results of (2), we get that the pole points are 1st and 𝑛th points.
That is to say, V

1
= 1, V

2
= ⋅ ⋅ ⋅ = V

𝑛
= 0. Then use (1)

to obtain the voltage value of each point excluding the pole
points, at which the voltage values are fixed.That is, the value
of each point is the similarity average of its neighbor point.
The updating process ends when we go through 2th to 𝑛-1th
points. Repeat this process till voltage value converges within
stable error range. In our experiments, we set 0.001 as the
terminative conditioning of the iteration.

3.4. The Procedure of the PSWH Algorithm

Input. Dataset𝑋 = {𝑥
𝑖
}
𝑛

𝑖=1
and the neighborhood size 𝑘.

Output.The cluster membership of each data point.

Procedure

Step 1: construct the 𝑘 nearest neighborhood.
Step 2: compute sparse rate 𝛿

𝑖
using (2) and apply

the extent to determine the pole points. Then exclude
the sparse points in graph and choose randomly two
other points as the pole points.
Step 3: obtain the voltage value of each data point
based on (1).
Step 4: output the cluster assignments of each data
point.

4. Experimental Results

In this section, we will use the well-known two-moon
example to illustrate the effectiveness of PSWH algorithm.
The original dataset is a standard benchmark for machine
learning algorithms [19] and is generated according to a
pattern of two intertwining crescent moons. This bench-
mark is online available at http://www.ml.uni-saarland.de/
GraphDemo/GraphDemo.html. In the experiments, the
Gaussian noise with mean 0 and variance 0.01 has been
added. The number of data points is set as 100 for the two
moons.

4.1. Pole Points’ Influence on the Clustering Accuracy. In the
Wu-Huberman algorithm, the choice of the pole points

affects significantly the clustering results. Taking the two-
moon dataset as an example, we set 𝜎 as 0.5 and 𝑘 as 5. In
Figure 1(e), the sparse points are the 3rd, 20th, 35th, 45𝑡ℎ, and
83rd points. In order to improve the clustering accuracy, we
do not choose the sparse points as the poles. The clustering
accuracy is 100%. Figure 1(c) illustrates that no matter what
threshold is chosen, the cluster accuracy is low. That is to
say, the choice of the poles has great effect on the clustering
results.

4.2. Pole Points’ Influence on the Iterate Number. In the
experiment, we find that the choice of the pole points has an
impact on the iterate number.The two-moon dataset is taken
as an example. All of the experiments are conducted in the
same parameter conditions: such as 𝜎 = 0.5, the iterate error
is 0.001, and the maximum iterate number is 100.

We first construct the KNN (𝑘 = 5) graph of original
dataset. Then the degree of each point was computed and
displayed in Figure 2(b). Next, we obtain the sparse rate of
each point based on the degree distribution,which is the same
as Figure 1(e). Finally, we choose the poles based on the sparse
rate, compute (1) to obtain the voltage value of each point,
and, respectively, display the iterate number of each point in
Figures 2(c) and 2(d) when different poles are chosen.

In Figure 2, we can draw a conclusion that the greater
degree of the poles corresponds to the more iterate number
for convergence. Therefore, in order to decrease the iterate
number of the algorithm, we should choose the points with
smaller sparse degree as the poles. The clustering accuracy of
Figure 2 is 100%.

4.3. Comparison with Other Algorithms. We compare the
PSWH algorithm with other algorithms on the UCI repos-
itory, which is available at http://archive.ics.uci.edu/ml/.

From Table 1, we can find that the PSWH algorithm does
slightly better than other algorithms in most dataset. How-
ever, in some conditions, the PSWH algorithm is lower than
LCLGR algorithm. Considering the complexity of algorithm
is linear, which is lower than LCLGR algorithm.Therefore, in
general, the PSWH algorithm is an excellent algorithm than
the others.

5. Conclusions and Future Work

In this paper, we propose PSWH algorithm for enhancing
the clustering accuracy and efficiency of the Wu-Huberman
algorithm,which can extend the applicability and increase the
robustness of the algorithm.The concept of sparse points and
selection procedure are presented to obtain the suitable pole
points for the algorithm. The experimental results showed
that the PSWH algorithm is very effective and stable when
applied to clustering problems. In the future, we will give the
theoretical analysis of the new algorithm and employ the new
algorithm to more general and larger datasets. Furthermore,
we will try to extend the new algorithm to textual, image, and
video retrievals.
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Table 1: Comparison with other algorithms on the clustering accuracy.

Data sets K-means Ncut [15] LCLGR [1] Wu-Huberman [16] PSWH
BUPA 0.5623 0.5710 0.6493 0.5304 0.6145
Balance 0.5472 0.5195 0.5664 0.9983 0.9983
Monks 0.5806 0.7097 0.7339 0.6452 0.6690
Iris 0.5533 0.9867 0.9933 1 1
Crx 0.5038 0.6677 0.7871 0.5758 0.6263
Wine 0.5000 0.7416 0.8371 0.6667 0.7536
Hayes-Roth 0.4242 0.4015 0.4394 0.4015 0.4318

0

0

0.5

0.2

0.4

0.6

0.8

1

1 1.5 2

The KNN graph

−1 −0.5

−0.6

−0.4

−0.2

(a)

0
0

10 20 30 40 50 60 70 80 90 100

12

10

8

6

4

2

Degree distribution graph

(b)

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100
Iterate number graph

(c)

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100
Iterate number graph

(d)

Figure 2: Different pole points of theWu-Huberman algorithm were applied, which leads to different iterate number of convergence. (a)The
KNN (𝑘 = 5) graph. (b)The degree distribution graph. (c) The iterate number via vertical axis when the poles are the 2nd point (its degree is
8) and the 77th point (its degree is 11). (d) The iterate number via vertical axis when the poles are the 5th point (its degree is 6) and the 56th
point (its degree is 5), where the 𝑥-axis represents the data points and 𝑦-axis represents the iterate number.
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