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The purpose of the present paper is to study the hierarchical constrained variational inequalities of finding a point 𝑥∗ such that
𝑥
∗

∈ Ω, ⟨(𝐴 − 𝛾𝑓)𝑥
∗

− (𝐼 − 𝐵)𝑆𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ Ω, where Ω is the set of the solutions of the following variational inequality:
𝑥
∗

∈ ϝ, ⟨(𝐴 − 𝑆)𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ ϝ, where 𝐴, 𝐵 are two strongly positive bounded linear operators, 𝑓 is a 𝜌-contraction, 𝑆 is a
nonexpansive mapping, and ϝ is the fixed points set of a nonexpansive semigroup {𝑇(𝑠)}

𝑠≥0
. We present a double-net convergence

hierarchical to some elements in ϝ which solves the above hierarchical constrained variational inequalities.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, respectively. Let 𝐶 be a nonempty closed convex
subset of 𝐻. Recall that a self-mapping 𝑓 of 𝐶 is said to be
contractive if there exists a constant 𝜌 ∈ [0, 1) such that
‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝜌‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐶. A mapping
𝑇 : 𝐶 → 𝐶 is called nonexpansive if
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󵄩
𝑇𝑥 − 𝑇𝑦
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≤
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󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
, ∀𝑥, 𝑦 ∈ 𝐶. (1)

We denote by Fix(𝑇) the set of fixed points of 𝑇; that is,
Fix(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}. A bounded linear operator 𝐵

is called strongly positive on𝐻 if there exists a constant 𝛾̃ > 0

such that

⟨𝐵𝑥, 𝑥⟩ ≥ 𝛾̃‖𝑥‖
2

, ∀𝑥 ∈ 𝐻. (2)

It is well known that the variational inequality for an operator,
𝜑 : 𝐻 → 𝐻, over a nonempty, closed, and convex set,𝐶 ⊂ 𝐻,
is to find a point 𝑥∗ ∈ 𝐶 with the property

⟨𝜑 (𝑥
∗

) , 𝑦 − 𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (3)

The set of the solutions of the variational inequality (3)
is denoted by VI(𝐶, 𝜑). If the mapping 𝜑 is a monotone
operator, then we say that VI(3) is monotone. It is well known

that if𝜑 is Lipschitzian and stronglymonotone, then for small
enough 𝛿 > 0, the mapping 𝑃

𝐶
(𝐼 − 𝛿𝜑) is a contraction

on 𝐶 and so the sequence {𝑥
𝑛
} of Picard iterates, given by

𝑥
𝑛
= 𝑃
𝐶
(𝐼−𝛿𝜑)𝑥

𝑛−1
(𝑛 ≥ 1), converges strongly to the unique

solution of the VI(3). This sort of VI(3) where 𝜑 is strongly
monotone and Lipschitzian is originated from Yamada [1].
However, if 𝜑 is only monotone (not strongly monotone),
then their iterative methods do not apply to VI.

Many practical problems such as signal processing and
network resource allocation are formulated as the variational
inequality over the set of the solutions of some nonlinear
mappings (e.g., the fixed point set of nonexpansive map-
pings), and algorithms to solve these problems have been
proposed. Iterative algorithms have been presented for the
convex optimization problem with a fixed point constraint
along with proof that these algorithms strongly converge to
the unique solution of problems with a strongly monotone
operator. The strong monotonicity condition guarantees the
uniqueness of the solution. For some related works on the
variational inequalities, please see [2–23] and the references
therein. Particulary, the variational inequality problems over
the fixed points of nonexpansive mappings have been con-
sidered. The reader can consult [16, 24]. On the other hand,
we note that in the literature, nonlinear ergodic theorems
for nonexpansive semigroups have been considered by many
authors; see, for example, [25–32]. In this paper, we will
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consider a general variational inequality problem with the
variational inequality constraint is the fixed points of nonex-
pansive semigroups.

The purpose of the present paper is to study the hierar-
chical constrained variational inequalities of finding a point
𝑥
∗ such that

𝑥
∗

∈ Ω, ⟨(𝐴 − 𝛾𝑓) 𝑥
∗

− (𝐼 − 𝐵) 𝑆𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0,

∀𝑥 ∈ Ω,

(4)

whereΩ is the set of the solutions of the following variational
inequality:

𝑥
∗

∈ ϝ, ⟨(𝐴 − 𝑆) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ ϝ, (5)

where 𝐴 and 𝐵 are two strongly positive bounded linear
operators, 𝑓 is a 𝜌-contraction, 𝑆 is a nonexpansive mapping,
and ϝ is the fixed points set of a nonexpansive semigroup
{𝑇(𝑠)}

𝑠≥0
. We present a double-net convergence hierarchical

to some elements in ϝ which solves the above hierarchical
constrained variational inequalities.

2. Preliminaries

Let 𝐶 be a nonempty closed convex subset of a real Hilbert
space𝐻. Themetric (or the nearest point) projection from𝐻

onto 𝐶 is the mapping 𝑃
𝐶

: 𝐻 → 𝐶 which assigns to each
point 𝑥 ∈ 𝐶 the unique point 𝑃

𝐶
𝑥 ∈ 𝐶 satisfying the property
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󵄩
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𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
=: 𝑑 (𝑥, 𝐶) . (6)

It is well known that 𝑃
𝐶
is a nonexpansive mapping and

satisfies

⟨𝑥 − 𝑦, 𝑃
𝐶
𝑥 − 𝑃
𝐶
𝑦⟩ ≥

󵄩
󵄩
󵄩
󵄩
𝑃
𝐶
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𝐶
𝑦
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󵄩
󵄩
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, ∀𝑥, 𝑦 ∈ 𝐻. (7)

Moreover, 𝑃
𝐶
is characterized by the following property:

⟨𝑥 − 𝑃
𝐶
𝑥, 𝑦 − 𝑃

𝐶
𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝐻, 𝑦 ∈ 𝐶. (8)

Recall that a family {𝑇(𝑠)}
𝑠≥0

of mappings of 𝐻 into itself
is called a nonexpansive semigroup if it satisfies the following
conditions:

(S1) 𝑇(0)𝑥 = 𝑥 for all 𝑥 ∈ 𝐻;
(S2) 𝑇(𝑠 + 𝑡) = 𝑇(𝑠)𝑇(𝑡) for all 𝑠, 𝑡 ≥ 0;
(S3) ‖𝑇(𝑠)𝑥 − 𝑇(𝑠)𝑦‖ ≤ ‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐻 and 𝑠 ≥ 0;
(S4) for all 𝑥 ∈ 𝐻, 𝑠 → 𝑇(𝑠)𝑥 is continuous.

We denote by Fix (𝑇(𝑠)) the set of fixed points of 𝑇(𝑠) and
by ϝ the set of all common fixed points of {𝑇(𝑠)}

𝑠≥0
; that is,

ϝ = ⋂
𝑠≥0

Fix (𝑇(𝑠)). It is known that ϝ is closed and convex.
We need the following lemmas for proving our main

results.

Lemma 1 (see [33]). Let 𝐶 be a nonempty bounded closed
convex subset of a Hilbert space 𝐻 and let {𝑇(𝑠)}

𝑠≥0
be a

nonexpansive semigroup on 𝐶. Then, for every ℎ ≥ 0,

lim
𝑡→∞

sup
𝑥∈𝐶
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1

𝑡

∫

𝑡

0

𝑇 (𝑠) 𝑥𝑑𝑠 − 𝑇 (ℎ)

1

𝑡

∫

𝑡

0

𝑇 (𝑠) 𝑥𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

= 0. (9)

Lemma 2 (see [34]). Let 𝐶 be a closed convex subset of a
real Hilbert space 𝐻 and let 𝑆 : 𝐶 → 𝐶 be a nonexpansive
mapping.Then, the mapping 𝐼−𝑆 is demiclosed.That is, if {𝑥

𝑛
}

is a sequence in𝐶 such that 𝑥
𝑛

→ 𝑥
∗ weakly and (𝐼−𝑆)𝑥

𝑛
→

𝑦 strongly, then (𝐼 − 𝑆)𝑥
∗

= 𝑦.

Lemma 3 (see [35]). Let𝐶 be a nonempty closed convex subset
of a real Hilbert space 𝐻. Assume that a mapping 𝐹 : 𝐶 → 𝐻

is monotone and weakly continuous along segments (i.e., 𝐹(𝑥+

𝑡𝑦) → 𝐹(𝑥) weakly, as 𝑡 → 0, whenever 𝑥 + 𝑡𝑦 ∈ 𝐶 for
𝑥, 𝑦 ∈ 𝐶). Then the variational inequality

𝑥
∗

∈ 𝐶, ⟨𝐹𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶, (10)

is equivalent to the dual variational inequality

𝑥
∗

∈ 𝐶, ⟨𝐹𝑥, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (11)

3. Main Results

Now we consider the following hierarchical variational
inequality with the variational inequality constraint over the
fixed points set of nonexpansive semigroups {𝑇(𝑠)}

𝑠≥0
.

Problem 1. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space𝐻. Let 𝑓 : 𝐶 → 𝐻 be a 𝜌-contraction with
coefficient 𝜌 ∈ [0, 1) and let 𝑆 : 𝐶 → 𝐶 be a nonexpansive
mapping. Let {𝑇(𝑠)}

𝑠≥0
be a nonexpansive semigroup on 𝐶

and let 𝐴, 𝐵 : 𝐻 → 𝐻 be two strongly positive bounded
linear operators with coefficients ̃

𝜆 (1 ≤
̃
𝜆 < 2) and 𝛾̃ (0 <

𝛾̃ < 1), respectively. Let 𝛾 be a constant satisfying 0 < 𝛾𝜌 < 𝛾̃.
Now, our objective is to find 𝑥

∗ such that

𝑥
∗

∈ Ω, ⟨(𝐴 − 𝛾𝑓) 𝑥
∗

− (𝐼 − 𝐵) 𝑆𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0,

∀𝑥 ∈ Ω,

(12)

where Ω := VI(ϝ, 𝐴 − 𝑆) is the set of the solutions of the
following variational inequality:

𝑥
∗

∈ ϝ, ⟨(𝐴 − 𝑆) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ ϝ. (13)

We observe that (𝐴 − 𝛾𝑓) − (𝐼 − 𝐵)𝑆 is strongly monotone
and Lipschitz continuous. In fact, we have

⟨(𝐴 − 𝛾𝑓) 𝑥 − (𝐼 − 𝐵) 𝑆𝑥 − [(𝐴 − 𝛾𝑓) 𝑦 − (𝐼 − 𝐵) 𝑆𝑦] , 𝑥 − 𝑦⟩

= ⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ − 𝛾 ⟨𝑓 (𝑥) − 𝑓 (𝑦) , 𝑥 − 𝑦⟩

− (𝐼 − 𝐵) ⟨𝑆𝑥 − 𝑆𝑦, 𝑥 − 𝑦⟩ ≥
̃
𝜆
󵄩
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𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

− 𝛾𝜌
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

− (1 − 𝛾̃)
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

= (
̃
𝜆 − 1 + 𝛾̃ − 𝛾𝜌)

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

,

󵄩
󵄩
󵄩
󵄩
(𝐴 − 𝛾𝑓) 𝑥 − (𝐼 − 𝐵) 𝑆𝑥 − [(𝐴 − 𝛾𝑓) 𝑦 − (𝐼 − 𝐵) 𝑆𝑦]

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝐴𝑥 − 𝐴𝑦

󵄩
󵄩
󵄩
󵄩
+ 𝛾

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥) − 𝑓 (𝑦)

󵄩
󵄩
󵄩
󵄩
+ ‖𝐼 − 𝐵‖

󵄩
󵄩
󵄩
󵄩
𝑆𝑥 − 𝑆𝑦

󵄩
󵄩
󵄩
󵄩

≤ ‖𝐴‖
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
+ 𝛾𝜌

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
+ (1 − 𝛾̃)

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

= (1 + ‖𝐴‖ + 𝛾𝜌 − 𝛾̃)
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
.

(14)
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Hence, the existence and the uniqueness of the solution to
Problem 1 are guaranteed.

In order to solve the above hierarchical constrainted
variational inequality, we present the following double net.

Algorithm 4. Set 𝜅 = 1/(
̃
𝜆+𝛾̃−𝛾𝜌).Then, 0 < 𝜅 ≤ 1. For each

(𝑠, 𝑡) ∈ (0, 𝜅) × (0, 1), we define a double net {𝑥
𝑠,𝑡
} implicitly

by

𝑥
𝑠,𝑡

= 𝑃
𝐶
[𝑠 (𝑡𝛾𝑓 (𝑥

𝑠,𝑡
) + (𝐼 − 𝑡𝐵) 𝑆𝑥

𝑠,𝑡
)

+ (𝐼 − 𝑠𝐴)

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑]] .

(15)

Note that this implicit manner algorithm is well defined.
In fact, we define the mapping

𝑥 󳨃󳨀→ 𝑊
𝑠,𝑡

(𝑥) := 𝑃
𝐶
[𝑠 (𝑡𝛾𝑓 (𝑥) + (𝐼 − 𝑡𝐵) 𝑆𝑥)

+ (𝐼 − 𝑠𝐴)

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥𝑑]] ,

(𝑠, 𝑡) ∈ (0, 𝜅) × (0, 1) .

(16)

Note that this self-mapping is a contraction. As a matter of
fact, we have

󵄩
󵄩
󵄩
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𝑊
𝑠,𝑡

(𝑥) − 𝑊
𝑠,𝑡

(𝑦)
󵄩
󵄩
󵄩
󵄩

=
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󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑃
𝐶
[𝑠 (𝑡𝛾𝑓 (𝑥) + (𝐼 − 𝑡𝐵) 𝑆𝑥)

+ (𝐼 − 𝑠𝐴)

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥𝑑]]

− 𝑃
𝐶
[𝑠 (𝑡𝛾𝑓 (𝑦) + (𝐼 − 𝑡𝐵) 𝑆𝑦)

+ (𝐼 − 𝑠𝐴)

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑦𝑑]]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝑠𝑡𝛾
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥) − 𝑓 (𝑦)
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󵄩
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󵄩

+ 𝑠 ‖𝐼 − 𝑡𝐵‖
󵄩
󵄩
󵄩
󵄩
𝑆𝑥 − 𝑆𝑦

󵄩
󵄩
󵄩
󵄩

+ ‖𝐼 − 𝑠𝐴‖

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥𝑑]

−

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑦𝑑]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ [1 − (
̃
𝜆 − 1) 𝑠 − (𝛾̃ − 𝛾𝜌) 𝑠𝑡]

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
.

(17)

Since (𝑠, 𝑡) ∈ (0, 𝜅) × (0, 1), 0 < 1 − (
̃
𝜆 − 1)𝑠 − (𝛾̃ −

𝛾𝜌)𝑠𝑡 < 1. Hence,𝑊
𝑠,𝑡
is a contraction.Therefore, by Banach’s

Contraction Principle, 𝑊
𝑠,𝑡
has a unique fixed point which is

denoted by 𝑥
𝑠,𝑡

∈ 𝐶.
Next we show the behavior of the net {𝑥

𝑠,𝑡
} as 𝑠 → 0 and

𝑡 → 0 successively.

Theorem 5. Assume that VI (ϝ, 𝐴−𝑆) ̸= 0.Then, for each fixed
𝑡 ∈ (0, 1), the net {𝑥

𝑠,𝑡
} defined by (15) converges in norm, as

𝑠 → 0+, to a solution 𝑥
𝑡
∈ ϝ. Moreover, as 𝑡 → 0+, the net

{𝑥
𝑡
} converges in norm to the unique solution 𝑥

∗ of Problem 1.

Proof. Wefirst show that the sequence {𝑥
𝑠,𝑡
} is bounded. Take

𝑦
∗

∈ ϝ. From (15), we have

󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

− 𝑦
∗󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑃
𝑐
[𝑠 (𝑡𝛾𝑓 (𝑥

𝑠,𝑡
) + (𝐼 − 𝑡𝐵) 𝑆𝑥

𝑠,𝑡
)

+ (𝐼 − 𝑠A)

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥𝑑]] − 𝑦
∗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑠 (𝑡𝛾𝑓 (𝑥
𝑠,𝑡
) + (𝐼 − 𝑡𝐵) 𝑆𝑥

𝑠,𝑡
)

+ (𝐼 − 𝑠𝐴)

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥𝑑] − 𝑦
∗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑠𝑡𝛾 (𝑓 (𝑥
𝑠,𝑡
) − 𝑓 (𝑦

∗

))

+ 𝑠 (𝐼 − 𝑡𝐵) (𝑆𝑥
𝑠,𝑡

− 𝑆𝑦
∗

)

+ 𝑠𝑡𝛾𝑓 (𝑦
∗

) + 𝑠 (𝐼 − 𝑡𝐵) 𝑆𝑦
∗

− 𝑠𝐴𝑦
∗

+ (𝐼 − 𝑠𝐴)(

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥𝑑] − 𝑦
∗

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝑠𝑡𝛾
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥
𝑠,𝑡
) − 𝑓 (𝑦

∗

)
󵄩
󵄩
󵄩
󵄩

+ 𝑠 ‖𝐼 − 𝑡𝐵‖
󵄩
󵄩
󵄩
󵄩
𝑆𝑥
𝑠,𝑡

− 𝑆𝑦
∗󵄩
󵄩
󵄩
󵄩

+ ‖𝐼 − 𝑠𝐴‖ ×

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥𝑑] − 𝑦
∗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+ 𝑠
󵄩
󵄩
󵄩
󵄩
𝑡𝛾𝑓 (𝑦

∗

) + (𝐼 − 𝑡𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗󵄩
󵄩
󵄩
󵄩

≤ 𝑠𝑡𝛾𝜌
󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

− 𝑦
∗󵄩
󵄩
󵄩
󵄩
+ 𝑠 (1 − 𝑡𝛾̃)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

− 𝑦
∗󵄩
󵄩
󵄩
󵄩

+ (1 − 𝑠
̃
𝜆)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

− 𝑦
∗󵄩
󵄩
󵄩
󵄩

+ 𝑠
󵄩
󵄩
󵄩
󵄩
𝑡𝛾𝑓 (𝑦

∗

) + (𝐼 − 𝑡𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗󵄩
󵄩
󵄩
󵄩

= [1 − (
̃
𝜆 − 1) 𝑠 − (𝛾̃ − 𝛾𝜌) 𝑠𝑡]

󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

− 𝑦
∗󵄩
󵄩
󵄩
󵄩

+ 𝑠
󵄩
󵄩
󵄩
󵄩
𝑡𝛾𝑓 (𝑦

∗

) + (𝐼 − 𝑡𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗󵄩
󵄩
󵄩
󵄩
.

(18)

Hence

󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

− 𝑦
∗󵄩
󵄩
󵄩
󵄩
≤

1

(𝛾̃ − 𝛾𝜌) 𝑡 +
̃
𝜆 − 1

×
󵄩
󵄩
󵄩
󵄩
𝑡𝛾𝑓 (𝑦

∗

) + (𝐼 − 𝑡𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗󵄩
󵄩
󵄩
󵄩
.

(19)

It follows that for each fixed 𝑡 ∈ (0, 1), {𝑥
𝑠,𝑡
} is bounded.

Next, we show that lim
𝑠→0

‖𝑇(𝜏)𝑥
𝑠,𝑡

− 𝑥
𝑠,𝑡
‖ = 0 for all

0 ≤ 𝜏 < ∞ and consequently, as 𝑠 → 0+, the entire net
{𝑥
𝑠,𝑡
} converges in norm to 𝑥

𝑡
∈ ϝ.
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For each fixed 𝑡 ∈ (0, 1), we set 𝑅
𝑡
:= (1/((𝛾̃ − 𝛾𝜌)𝑡 +

̃
𝜆 −

1))‖𝑡𝛾𝑓(𝑦
∗

)+ (𝐼− 𝑡𝐵)𝑆𝑦
∗

−𝐴𝑦
∗

‖. It is clear that for each fixed
𝑡 ∈ (0, 1), {𝑥

𝑠,𝑡
} ⊂ 𝐵(𝑦

∗

, 𝑅
𝑡
). Notice that

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑] − 𝑦

∗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

− 𝑦
∗󵄩
󵄩
󵄩
󵄩
≤ 𝑅
𝑡
. (20)

Moreover, we observe that if 𝑥 ∈ 𝐵(𝑦
∗

, 𝑅
𝑡
), then

󵄩
󵄩
󵄩
󵄩
𝑇 (𝑠) 𝑥 − 𝑦

∗󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
𝑇 (𝑠) 𝑥 − 𝑇 (𝑠) 𝑦

∗󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦
∗󵄩
󵄩
󵄩
󵄩
≤ 𝑅
𝑡
, (21)

that is, 𝐵(𝑦
∗

, 𝑅
𝑡
) is 𝑇(𝑠)-invariant for all 𝑠.

From (15), we deduce

󵄩
󵄩
󵄩
󵄩
𝑇 (𝜏) 𝑥

𝑠,𝑡
− 𝑥
𝑠,𝑡

󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑇 (𝜏) 𝑥
𝑠,𝑡

− 𝑇 (𝜏)

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑇 (𝜏)

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑] −

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑] − 𝑥

𝑠,𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑇 (𝜏)

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑] −

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+ 2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥
𝑠,𝑡

−

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 2𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑡𝛾𝑓 (𝑥
𝑠,𝑡
) + (𝐼 − 𝑡𝐵) 𝑆𝑥

𝑠,𝑡

−

𝐴

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑇 (𝜏)

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑] −

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

.

(22)

Since {𝑥
𝑠,𝑡
} is bounded, {𝑓(𝑥

𝑠,𝑡
)} and {𝑆𝑥

𝑠,𝑡
} are also bounded.

Then, from Lemma 1, we deduce for all 0 ≤ 𝜏 < ∞ and fixed
𝑡 ∈ (0, 1) that

lim
𝑠→0

󵄩
󵄩
󵄩
󵄩
𝑇 (𝜏) 𝑥

𝑠,𝑡
− 𝑥
𝑠,𝑡

󵄩
󵄩
󵄩
󵄩
= 0. (23)

Set 𝑦
𝑠,𝑡

= 𝑠(𝑡𝛾𝑓(𝑥
𝑠,𝑡
) + (𝐼 − 𝑡𝐵)𝑆𝑥

𝑠,𝑡
) + (𝐼 − 𝑠𝐴)(1/𝜆

𝑠
)

∫

𝜆
𝑠

0

𝑇(])𝑥
𝑠,𝑡
𝑑] for all (𝑠, 𝑡) ∈ (0, 𝜅) × (0, 1). We then have

𝑥
𝑠,𝑡

= 𝑃
𝐶
𝑦
𝑠,𝑡
, and for any 𝑦

∗

∈ ϝ,

𝑥
𝑠,𝑡

− 𝑦
∗

= 𝑥
𝑠,𝑡

− 𝑦
𝑠,𝑡

+ 𝑦
𝑠,𝑡

− 𝑦
∗

= 𝑥
𝑠,𝑡

− 𝑦
𝑠,𝑡

+ 𝑠 (𝑡𝛾𝑓 (𝑥
𝑠,𝑡
) + (𝐼 − 𝑡𝐵) 𝑆𝑥

𝑠,𝑡
)

+ (𝐼 − 𝑠𝐴)

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑] − 𝑦

∗

= 𝑥
𝑠,𝑡

− 𝑦
𝑠,𝑡

+ 𝑠𝑡𝛾 (𝑓 (𝑥
𝑠,𝑡
) − 𝑓 (𝑦

∗

)) + 𝑠 (𝐼 − 𝑡𝐵) (𝑆𝑥
𝑠,𝑡

− 𝑆𝑦
∗

)

+ 𝑠 (𝑡𝛾𝑓 (𝑦
∗

) + (𝐼 − 𝑡𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗

)

+ (𝐼 − 𝑠𝐴)(

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑] − 𝑦

∗

) .

(24)

Notice that

⟨𝑥
𝑠,𝑡

− 𝑦
𝑠,𝑡
, 𝑥
𝑠,𝑡

− 𝑦
∗

⟩ ≤ 0. (25)

Thus, we have

󵄩
󵄩
󵄩
󵄩
𝑥s,𝑡 − 𝑦

∗󵄩
󵄩
󵄩
󵄩

2

= ⟨𝑥
𝑠,𝑡

− 𝑦
𝑠,𝑡
, 𝑥
𝑠,𝑡

− 𝑦
∗

⟩

+ 𝑠𝑡𝛾 ⟨𝑓 (𝑥
𝑠,𝑡
) − 𝑓 (𝑦

∗

) , 𝑥
𝑠,𝑡

− 𝑦
∗

⟩

+ 𝑠 (𝐼 − 𝑡𝐵) ⟨𝑆𝑥
𝑠,𝑡

− 𝑆𝑦
∗

, 𝑥
𝑠,𝑡

− 𝑦
∗

⟩

+ (𝐼 − 𝑠𝐴)

× ⟨

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑] − 𝑦

∗

, 𝑥
𝑠,𝑡

− 𝑦
∗

⟩

+ 𝑠 ⟨𝑡𝛾𝑓 (𝑦
∗

) + (𝐼 − 𝑡𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗

, 𝑥
𝑠,𝑡

− 𝑦
∗

⟩

≤ 𝑠𝑡𝛾
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥
𝑠,𝑡
) − 𝑓 (𝑦

∗

)
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

− 𝑦
∗󵄩
󵄩
󵄩
󵄩

+ 𝑠 ‖𝐼 − 𝑡𝐵‖
󵄩
󵄩
󵄩
󵄩
𝑆𝑥
𝑠,𝑡

− 𝑆𝑦
∗󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

− 𝑦
∗󵄩
󵄩
󵄩
󵄩

+ 𝑠 ⟨𝑡𝛾𝑓 (𝑦
∗

) + (𝐼 − 𝑡𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗

, 𝑥
𝑠,𝑡

− 𝑦
∗

⟩

+‖𝐼−𝑠𝐴‖

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑]−𝑦

∗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

−𝑦
∗󵄩
󵄩
󵄩
󵄩

≤ 𝑠𝑡𝛾𝜌
󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

− 𝑦
∗󵄩
󵄩
󵄩
󵄩

2

+ 𝑠 (1 − 𝑡𝛾̃)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

− 𝑦
∗󵄩
󵄩
󵄩
󵄩

2

+ 𝑠 ⟨𝑡𝛾𝑓 (𝑦
∗

) + (𝐼 − 𝑡𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗

, 𝑥
𝑠,𝑡

− 𝑦
∗

⟩

+ (1 − 𝑠
̃
𝜆)

󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

− 𝑦
∗󵄩
󵄩
󵄩
󵄩

2

= [1 − (
̃
𝜆 − 1) 𝑠 − (𝛾̃ − 𝛾𝜌) 𝑠𝑡]

󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

− 𝑦
∗󵄩
󵄩
󵄩
󵄩

2

+ 𝑠 ⟨𝑡𝛾𝑓 (𝑦
∗

)+(𝐼 − 𝑡𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗

, 𝑥
𝑠,𝑡

− 𝑦
∗

⟩ .

(26)
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So

󵄩
󵄩
󵄩
󵄩
𝑥
𝑠,𝑡

− 𝑦
∗󵄩
󵄩
󵄩
󵄩

2

≤

1

(𝛾̃ − 𝛾𝜌) 𝑡 +
̃
𝜆 − 1

× ⟨𝑡𝛾𝑓 (𝑦
∗

) + (𝐼 − 𝑡𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗

, 𝑥
𝑠,𝑡

− 𝑦
∗

⟩ ,

𝑦
∗

∈ ϝ.

(27)

Assume {𝑠
𝑛
} ⊂ (0, 1) such that 𝑠

𝑛
→ 0 as 𝑛 → ∞. By (27),

we obtain immediately that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑠
𝑛
,𝑡
− 𝑦
∗
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

1

(𝛾̃ − 𝛾𝜌) 𝑡 +
̃
𝜆 − 1

×⟨𝑡𝛾𝑓 (𝑦
∗

)+(𝐼 − 𝑡𝐵) 𝑆𝑦
∗

−𝐴𝑦
∗

, 𝑥
𝑠
𝑛
,𝑡
−𝑦
∗

⟩ ,

𝑦
∗

∈ ϝ.

(28)

Since {𝑥
𝑠
𝑛
,𝑡
} is bounded, there exists a subsequence {𝑠

𝑛
𝑖

} of {𝑠
𝑛
}

such that {𝑥
𝑠
𝑛
𝑖

,𝑡
} convergesweakly to a point𝑥

𝑡
. From (23) and

Lemma 2, we get 𝑥
𝑡
∈ ϝ. We can substitute 𝑥

𝑡
for 𝑦
∗ in (28)

to get

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑠
𝑛
,𝑡
− 𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

1

(𝛾̃ − 𝛾𝜌) 𝑡 +
̃
𝜆 − 1

× ⟨𝑡𝛾𝑓 (𝑥
𝑡
) + (𝐼 − 𝑡𝐵) 𝑆𝑥

𝑡
− 𝐴𝑥
𝑡
, 𝑥
𝑠
𝑛
,𝑡
− 𝑥
𝑡
⟩ .

(29)

The weak convergence of {𝑥
𝑠
𝑛
,𝑡
} to 𝑥

𝑡
actually implies that

𝑥
𝑠
𝑛
,𝑡

→ 𝑥
𝑡
strongly. This has proved the relative norm-

compactness of the net {𝑥
𝑠,𝑡
} as 𝑠 → 0+ for each fixed

𝑡 ∈ (0, 1).
In (28), we take the limit as 𝑛 → ∞ to get

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡
− 𝑦
∗󵄩
󵄩
󵄩
󵄩

2

≤

1

(𝛾̃ − 𝛾𝜌) 𝑡 +
̃
𝜆 − 1

× ⟨𝑡𝛾𝑓 (𝑦
∗

) + (𝐼 − 𝑡𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗

, 𝑥
𝑡
− 𝑦
∗

⟩ ,

∀𝑦
∗

∈ ϝ.

(30)

In particular, 𝑥
𝑡
solves the following variational inequality:

𝑥
𝑡
∈ ϝ, ⟨𝐴𝑦

∗

− 𝑡𝛾𝑓 (𝑦
∗

)

− (𝐼 − 𝑡𝐵) 𝑆𝑦
∗

, 𝑦
∗

− 𝑥
𝑡
⟩ ≥ 0, ∀𝑦

∗

∈ ϝ.

(31)

Note that the mapping𝐴− 𝑡𝛾𝑓− (𝐼− 𝑡𝐵)𝑆 is monotone for all
𝑡 ∈ (0, 1), since

⟨𝐴𝑥 − 𝑡𝛾𝑓 (𝑥) − (𝐼 − 𝑡𝐵) 𝑆𝑥

− (𝐴𝑦 − 𝑡𝛾𝑓 (𝑦) − (𝐼 − 𝑡𝐵) 𝑆𝑦) , 𝑥 − 𝑦⟩

= ⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ − 𝑡𝛾 ⟨𝑓 (𝑥) − 𝑓 (𝑦) , 𝑥 − 𝑦⟩

− (𝐼 − 𝑡𝐵) ⟨𝑆𝑥 − 𝑆𝑦, 𝑥 − 𝑦⟩ ≥
̃
𝜆
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

− 𝑡𝛾𝜌
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

− (1 − 𝑡𝛾̃)
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

= [
̃
𝜆 − 1 + (𝛾̃ − 𝛾𝜌) 𝑡]

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

≥ 0.

(32)

By Lemma 3, (31) is equivalent to its dual VI:

𝑥
𝑡
∈ ϝ, ⟨𝐴𝑥

𝑡
− 𝑡𝛾𝑓 (𝑥

𝑡
) − (𝐼 − 𝑡𝐵) 𝑆𝑥

𝑡
, 𝑦
∗

− 𝑥
𝑡
⟩ ≥ 0,

∀𝑦
∗

∈ ϝ.

(33)

Next we show that as 𝑠 → 0+, the entire net {𝑥
𝑠,𝑡
} converges

in norm to 𝑥
𝑡
∈ ϝ. We assume 𝑥

𝑠
󸀠

𝑛
,𝑡

→ 𝑥
󸀠

𝑡
, where 𝑠

󸀠

𝑛
→ 0.

Similarly, by the above proof, we deduce 𝑥
󸀠

𝑡
∈ ϝ which solves

the following variational inequality:

𝑥
󸀠

𝑡
∈ ϝ, ⟨𝐴𝑥

󸀠

𝑡
− 𝑡𝛾𝑓 (𝑥

󸀠

𝑡
) − (𝐼 − 𝑡𝐵) 𝑆𝑥

󸀠

𝑡
, 𝑦
∗

− 𝑥
󸀠

𝑡
⟩ ≥ 0,

∀𝑦
∗

∈ ϝ.

(34)

In (33), we take 𝑦
∗

= 𝑥
󸀠

𝑡
to get

⟨𝐴𝑥
𝑡
− 𝑡𝛾𝑓 (𝑥

𝑡
) − (𝐼 − 𝑡𝐵) 𝑆𝑥

𝑡
, 𝑥
󸀠

𝑡
− 𝑥
𝑡
⟩ ≥ 0. (35)

In (34), we take 𝑦
∗

= 𝑥
𝑡
to get

⟨𝐴𝑥
󸀠

𝑡
− 𝑡𝛾𝑓 (𝑥

󸀠

𝑡
) − (𝐼 − 𝑡𝐵) 𝑆𝑥

󸀠

𝑡
, 𝑥
𝑡
− 𝑥
󸀠

𝑡
⟩ ≥ 0. (36)

Adding up (35) and (36) yields

⟨𝐴𝑥
𝑡
− 𝐴𝑥
󸀠

𝑡
, 𝑥
𝑡
− 𝑥
󸀠

𝑡
⟩ − 𝑡𝛾 ⟨𝑓 (𝑥

𝑡
) − 𝑓 (𝑥

󸀠

𝑡
) , 𝑥
𝑡
− 𝑥
󸀠

𝑡
⟩

− (𝐼 − 𝑡𝐵) ⟨𝑆𝑥
𝑡
− 𝑆𝑥
󸀠

𝑡
, 𝑥
𝑡
− 𝑥
󸀠

𝑡
⟩ ≤ 0.

(37)

At the same time we note that

⟨𝐴𝑥
𝑡
− 𝐴𝑥
󸀠

𝑡
, 𝑥
𝑡
− 𝑥
󸀠

𝑡
⟩ − 𝑡𝛾 ⟨𝑓 (𝑥

𝑡
) − 𝑓 (𝑥

󸀠

𝑡
) , 𝑥
𝑡
− 𝑥
󸀠

𝑡
⟩

− (𝐼 − 𝑡𝐵) ⟨𝑆𝑥
𝑡
− 𝑆𝑥
󸀠

𝑡
, 𝑥
𝑡
− 𝑥
󸀠

𝑡
⟩

≥ [
̃
𝜆 − 1 + (𝛾̃ − 𝛾𝜌) 𝑡]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡
− 𝑥
󸀠

𝑡

󵄩
󵄩
󵄩
󵄩
󵄩

2

≥ 0.

(38)

Therefore, by (37) and (38), we deduce

𝑥
󸀠

𝑡
= 𝑥
𝑡
. (39)
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Hence the entire net {𝑥
𝑠,𝑡
} converges in norm to 𝑥

𝑡
∈ ϝ as

𝑠 → 0+.
As 𝑡 → 0+, the net {𝑥

𝑡
} converges to the unique solution

𝑥
∗ of Problem 1.
In (33), we take any 𝑦

∗

∈ Ω to deduce

⟨𝐴𝑥
𝑡
− 𝑡𝛾𝑓 (𝑥

𝑡
) − (𝐼 − 𝑡𝐵) 𝑆𝑥

𝑡
, 𝑦
∗

− 𝑥
𝑡
⟩ ≥ 0. (40)

By virtue of themonotonicity of𝐴−𝑆 and the fact that𝑦∗ ∈ Ω,
we have

⟨𝐴𝑥
𝑡
− 𝑆𝑥
𝑡
, 𝑦
∗

− 𝑥
𝑡
⟩ ≤ ⟨𝐴𝑦

∗

− 𝑆𝑦
∗

, 𝑦
∗

− 𝑥
𝑡
⟩ ≤ 0. (41)

We can rewrite (40) as

⟨𝑡 [𝐴𝑥
𝑡
− 𝛾𝑓 (𝑥

𝑡
) − (𝐼 − 𝐵) 𝑆𝑥

𝑡
]

+ (1 − 𝑡) (𝐴𝑥
𝑡
− 𝑆𝑥
𝑡
) , 𝑦
∗

− 𝑥
𝑡
⟩ ≥ 0.

(42)

It follows from (41) and (42) that

⟨𝐴𝑥
𝑡
− 𝛾𝑓 (𝑥

𝑡
) − (𝐼 − 𝐵) 𝑆𝑥

𝑡
, 𝑦
∗

− 𝑥
𝑡
⟩ ≥ 0, ∀𝑦

∗

∈ Ω.

(43)

Hence
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡
− 𝑦
∗󵄩
󵄩
󵄩
󵄩

2

≤ ⟨𝑥
𝑡
− 𝑦
∗

, 𝑥
𝑡
− 𝑦
∗

⟩

+ ⟨𝛾𝑓 (𝑥
𝑡
) + (𝐼 − 𝐵) 𝑆𝑥

𝑡
− 𝐴𝑥
𝑡
, 𝑥
𝑡
− 𝑦
∗

⟩

= 𝛾 ⟨𝑓 (𝑥
𝑡
) − 𝑓 (𝑦

∗

) , 𝑥
𝑡
− 𝑦
∗

⟩

+ (𝐼 − 𝐵) ⟨𝑆𝑥
𝑡
− 𝑆𝑦
∗

, 𝑥
𝑡
− 𝑦
∗

⟩

+ ⟨𝐴𝑦
∗

− 𝐴𝑥
𝑡
, 𝑥
𝑡
− 𝑦
∗

⟩

+ ⟨𝛾𝑓 (𝑦
∗

) + (𝐼 − 𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗

, 𝑥
𝑡
− 𝑦
∗

⟩

≤ 𝛾𝜌
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡
− 𝑦
∗󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛾̃)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡
− 𝑦
∗󵄩
󵄩
󵄩
󵄩

2

−
̃
𝜆
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡
− 𝑦
∗󵄩
󵄩
󵄩
󵄩

2

+ ⟨𝛾𝑓 (𝑦
∗

) + (𝐼 − 𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗

, 𝑥
𝑡
− 𝑦
∗

⟩

= [1 − (
̃
𝜆 + 𝛾̃ − 𝛾𝜌)]

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡
− 𝑦
∗󵄩
󵄩
󵄩
󵄩

2

+ ⟨𝛾𝑓 (𝑦
∗

) + (𝐼 − 𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗

, 𝑥
𝑡
− 𝑦
∗

⟩ .

(44)

Therefore,

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡
− 𝑦
∗󵄩
󵄩
󵄩
󵄩

2

≤

1

̃
𝜆 + 𝛾̃ − 𝛾𝜌

× ⟨𝛾𝑓 (𝑦
∗

) + (𝐼 − 𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗

, 𝑥
𝑡
− 𝑦
∗

⟩ ,

𝑦
∗

∈ Ω.

(45)

In particular,

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡
− 𝑦
∗󵄩
󵄩
󵄩
󵄩
≤

1

̃
𝜆 + 𝛾̃ − 𝛾𝜌

×
󵄩
󵄩
󵄩
󵄩
𝛾𝑓 (𝑦
∗

) + (𝐼 − 𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗󵄩
󵄩
󵄩
󵄩
,

∀𝑡 ∈ (0, 1) ,

(46)

which implies that {𝑥
𝑡
} is bounded.

We next prove that 𝜔
𝑤
(𝑥
𝑡
) ⊂ Ω; namely, if (𝑡

𝑛
) is a null

sequence in (0, 1) such that 𝑥
𝑡
𝑛

→ 𝑥
󸀠 weakly as 𝑛 → ∞,

then 𝑥
󸀠

∈ Ω. To see this, we use (33) to get

⟨(𝐴 − 𝑆) 𝑥
𝑡
, 𝑦
∗

− 𝑥
𝑡
⟩

≥

𝑡

1 − 𝑡

⟨𝛾𝑓 (𝑥
𝑡
) + (𝐼 − 𝐵) 𝑆𝑥

𝑡

−𝐴𝑥
𝑡
, 𝑦
∗

− 𝑥
𝑡
⟩ , 𝑦

∗

∈ ϝ.

(47)

However, since 𝐴 − 𝑆 is monotone,

⟨(𝐴 − 𝑆) 𝑦
∗

, 𝑦
∗

− 𝑥
𝑡
⟩ ≥ ⟨(𝐴 − 𝑆) 𝑥

𝑡
, 𝑦
∗

− 𝑥
𝑡
⟩ . (48)

Combining the last two relations yields

⟨(𝐴 − 𝑆) 𝑦
∗

, 𝑦
∗

− 𝑥
𝑡
⟩

≥

𝑡

1 − 𝑡

⟨𝛾𝑓 (𝑥
𝑡
) + (𝐼 − 𝐵) 𝑆𝑥

𝑡

−𝐴𝑥
𝑡
, 𝑦
∗

− 𝑥
𝑡
⟩ , 𝑦

∗

∈ ϝ.

(49)

Letting 𝑡 = 𝑡
𝑛

→ 0+ as 𝑛 → ∞ in (49), we get

⟨(𝐴 − 𝑆) 𝑦
∗

, 𝑦
∗

− 𝑥
󸀠

⟩ ≥ 0, 𝑦
∗

∈ ϝ. (50)

The equivalent dual VI of (50) is

⟨(𝐴 − 𝑆) 𝑥
󸀠

, 𝑦
∗

− 𝑥
󸀠

⟩ ≥ 0, 𝑦
∗

∈ ϝ. (51)

Namely, 𝑥󸀠 is a solution of VI(13); hence 𝑥
󸀠

∈ Ω.
We further prove that 𝑥

󸀠

= 𝑥
∗, the unique solution of

VI(12). As a matter of fact, we have by (45)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡
𝑛

− 𝑥
󸀠
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

1

̃
𝜆 + 𝛾̃ − 𝛾𝜌

× ⟨𝛾𝑓 (𝑥
󸀠

) + (𝐼 − 𝐵) 𝑆𝑥
󸀠

− 𝐴𝑥
󸀠

, 𝑥
𝑡
𝑛

− 𝑥
󸀠

⟩ ,

𝑥
󸀠

∈ Ω.

(52)

Therefore, the weak convergence to 𝑥
󸀠 of {𝑥

𝑡
𝑛

} right implies
that 𝑥

𝑡
𝑛

→ 𝑥
󸀠 in norm. Now we can let 𝑡 = 𝑡

𝑛
→ 0 in (45) to

get

⟨𝛾𝑓 (𝑦
∗

) + (𝐼 − 𝐵) 𝑆𝑦
∗

− 𝐴𝑦
∗

, 𝑦
∗

− 𝑥
󸀠

⟩ ≤ 0, ∀𝑦
∗

∈ Ω,

(53)

which is equivalent to its dual VI

⟨𝛾𝑓 (𝑥
󸀠

) + (𝐼 − 𝐵) 𝑆𝑥
󸀠

− 𝐴𝑥
󸀠

, 𝑦
∗

− 𝑥
󸀠

⟩ ≤ 0, ∀𝑦
∗

∈ Ω.

(54)

It turns out that 𝑥󸀠 ∈ Ω solves VI(12). By uniqueness, we have
𝑥
󸀠

= 𝑥
∗.This is sufficient to guarantee that 𝑥

𝑡
→ 𝑥
∗ in norm,

as 𝑡 → 0+. This completes the proof.



Abstract and Applied Analysis 7

Corollary 6. For each (𝑠, 𝑡) ∈ (0, 𝜅) × (0, 1), let {𝑥
𝑠,𝑡
} be a

double net defined by

𝑥
𝑠,𝑡

= 𝑃
𝐶
[𝑠 (𝑡𝛾𝑓 (𝑥

𝑠,𝑡
) + (1 − 𝑡𝐵) 𝑆𝑥

𝑠,𝑡
)

+ (1 − 𝑠)

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑]] ,

(55)

for all (𝑠, 𝑡) ∈ (0, 𝜅) × (0, 1). Then, for each fixed 𝑡 ∈ (0, 1), the
net {𝑥

𝑠,𝑡
} defined by (55) converges in norm, as 𝑠 → 0+, to a

solution 𝑥
𝑡
∈ ϝ. Moreover, as 𝑡 → 0+, the net {𝑥

𝑡
} converges

in norm to 𝑥
∗ which solves the following variational inequality:

𝑥
∗

∈ Ω, ⟨(𝐼 − 𝛾𝑓) 𝑥
∗

− (𝐼 − 𝐵) 𝑆𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0,

∀𝑥 ∈ Ω,

(56)

where Ω is the set of the solutions of the following variational
inequality:

𝑥
∗

∈ ϝ, ⟨(𝐼 − 𝑆) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ ϝ. (57)

Corollary 7. For each (𝑠, 𝑡) ∈ (0, 𝜅) × (0, 1), let {𝑥
𝑠,𝑡
} be a

double net defined by

𝑥
𝑠,𝑡

= 𝑃
𝐶
[𝑠 ((1 − 𝑡) 𝑆𝑥

𝑠,𝑡
) + (1 − 𝑠)

1

𝜆
𝑠

∫

𝜆
𝑠

0

𝑇 (]) 𝑥
𝑠,𝑡
𝑑]] ,

(58)

for all (𝑠, 𝑡) ∈ (0, 𝜅) × (0, 1). Then, for each fixed 𝑡 ∈ (0, 1), the
net {𝑥

𝑠,𝑡
} defined by (58) converges in norm, as 𝑠 → 0+, to a

solution 𝑥
𝑡
∈ ϝ. Moreover, as 𝑡 → 0+, the net {𝑥

𝑡
} converges to

the minimum norm solution 𝑥
∗ of the following variational

inequality:

𝑥
∗

∈ ϝ, ⟨(𝐼 − 𝑆) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ ϝ. (59)

Proof. In (55), we take 𝑓 = 0 and 𝐵 = 𝐼. Then (55) reduces to
(58). Hence, the net {𝑥

𝑡
} defined by (58) converges in norm

to 𝑥
∗

∈ Ω which satisfies

𝑥
∗

∈ Ω, ⟨𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ Ω. (60)

This indicates that
󵄩
󵄩
󵄩
󵄩
𝑥
∗󵄩
󵄩
󵄩
󵄩

2

≤ ⟨𝑥
∗

, 𝑥⟩ ≤
󵄩
󵄩
󵄩
󵄩
𝑥
∗󵄩
󵄩
󵄩
󵄩
‖𝑥‖ , ∀𝑥 ∈ Ω. (61)

Therefore, 𝑥∗ is the minimum norm solution of the VI(59).
This completes the proof.
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