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This paper investigates a new class of antiperiodic boundary value problems of higher order fractional differential equations. Some
existence and uniqueness results are obtained by applying some standard fixed point principles. Some examples are given to illustrate

the results.

1. Introduction

Boundary value problems of fractional differential equations
involving a variety of boundary conditions have recently been
investigated by several researchers. It has been mainly due
to the occurrence of fractional differential equations in a
number of disciplines such as physics, chemistry, biology,
economics, control theory, signal and image processing,
biophysics, blood flow phenomena, aerodynamics, andfitting
of experimental data. For details and examples, see [1-5]. The
recent development of the subject can be found, for example,
in papers [6-16].

The mathematical modeling of a variety of physical
processes gives rise to a class of antiperiodic boundary
value problems. This class of problems has recently received
considerable attention; for instance, see [17-24] and the
references therein. In [22], the authors studied a Caputo-type
antiperiodic fractional boundary value problem of the form

‘Dix(t)=f(t,x(), te[0,T], T>0, 1<q<2,
x(0) = -x(T), €]
‘DPx(0) = -DPx(T), O0<p<l.

In this paper, we investigate a new class of antiperiodic
fractional boundary value problems given by

‘Dix(t)=f(t,x(t), te[0,T], T>0,2<g<3,
x(0) = —x(T),

‘DPx (0) = —*DPx (T),

‘D% (0) = —DF'x(T), 0<p<1,

2)

where ‘D7 denotes the Caputo fractional derivative of order
g and f is a given continuous function. Some new existence
and uniqueness results are obtained for problem (2) by using
standard fixed point theorems.

2. Preliminaries

Let us recall some basic definitions [1-3].

Definition 1. The Riemann-Liouville fractional integral of
order g for a continuous function g : [0,+c0) — R is
defined as

q _ ; ! g(s)
Fg® I'(q) L (t—s)lfqu)

provided the integral exists.

q>0, 3)

Definition 2. For (n—1) times absolutely continuous function
g :[0,+00) — R, the Caputo derivative of fractional order
q is defined as

ch _ 1 ! _ g1 _(n) d
g() Tnoq) 0(t s)" g (s)ds,

(n- (4)

n-1l<q<n n=|[q|+1,

where [g] denotes the integer part of the real number g.



Notice that the Caputo derivative of a constant is zero.

Lemma 3. For any y € C[0,1], the unique solution of the
linear fractional boundary value problem

Dix(t)=y(t), 0<t<T, 2<q<3,

x(0) = -x(T),
5)
‘DPx (0) = -*DPx (T),
‘DP'x(0) = —DP'x(T), 0<p<l,
is

T
x(t) = J Gr (t,s) y (s)ds, (6)

0

where G (t, s) is Green’s function (depending on q and p) given
by

[ 2(t-s)T — (T -s)T"

2T (q)
T (2 - p) (T =2t)(T —s)TP!

21T (q - p)
(C(2-p))'TP (T - 5)T7P2
+
4ar(g-p-1)T(3-p)

X{(Tz_th)r@—p) _2T2+4tT}’
r(2-q)

Gr(t,s) = 1
T( ) s<t,

(T-5)T' T(2-p)(T-20)(T- §)T P!

2I'(q) 2TPT (g - p)
(C(2-p))’TP (T - 5)T7P2

ar(q-p-1)T(3-p)

X{(Tz_th)r@—p) _2T2+4tT},
r(2-q)

t <s.

7)

Proof. We know that the general solution of equation
‘Dix(t) = y(t), 2 < q < 3 can be written as [3]

t(+_ \a-!
0= | (tr(Z) J()ds—by—bt-bt  (8)

for some constants by, b;, and b, € R. Using the facts “Dfb =
0 (b is a constant),

1- 2-
cppp— L i ’ cpPe? = L’
r(2-p) r(3-p) o
cypt+1,2 2t1_P cP 14 q-p
DIt = Dty (t) =1y (1),
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we get
t _ )ap-1
‘DPx(t) = L —(tl“ (;)_ 2) y(s)ds
P 2b, 7P
- b - 2 > (10)
'T(2-p) T(3-p)

cptl _ Lt - 5)q7P72 _ t'P
D x (t) = Jo —F(q—p—l)y(s)ds sz—r(z—p)'

Applying the boundary conditions for the problem (5), we
find that

2 —LJT(T— Yy () d
O_ZF(q) . )Ty (s)ds
CTPT2-p) (T(T-5)TP!
) Tl O
TP+1F(2—p)1F(2—p) 1}
" 2 r3-p) 2
T (T - 5177
XL Ty @ )

(T - s)TP!

b=T(2-p)T"" Jo T2 y(s)ds

_(T@-p)r JT (=97
TG-p) hT@-p-0" 7%
L2-p) (T (T-5"P7
b, = Tip Jo F(q—p—l)y(s)ds'

Substituting the values of b, b;, and b, in (8), we get the
solution (6). This completes the proof. O

Remark 4. For p = 1, the solution of the antiperiodic prob-
lem

Dix(t)=y(),  x(0)=-x(I),

x' (0) = —x' (T), X" (0) = =x" (), (12)

0<t<T, 2<g<3,

is given by [18]

T

x() = j 9(6,9) y () ds, 13)
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where g(t, s) is

[ (t—9)T" - (1/2)(T - 9)T"
T'(q)

(T - 2t) (T — )12
4T (g - 1)

_ ] =T =97
S TR

(=97 (T-20)(T-5)""
2I'(q) ar'(q-1)

T -0(T - )13
4T (g -2)

, Ss<t, (14)

, E<s.

Ifwelet p — 17 in (7), we obtain

[ (-5 - (1/2)(T - s)T"
I'(q)
(T - 2t) (T - 5)T2
+
2T (g-1)
(=28 = T? + 44T) (T - )17
4T (q-2)

>

Gr(t, s)l

Pl s<t,

(T-9T! (T-20)(T-5)""
2I'(q) 2l (q-1)
(=2 = T? + 44T) (T - 5)17°
4T (g -2)

>

t<s.
(15)

We note that the solutions given by (14) and (15) are different.
As a matter of fact, (15) contains an additional term: (=t —~T%+
3tT)(T - s)17° /4T'(q — 2). Therefore the fractional boundary
conditions introduced in (2) give rise to a new class of
problems.

Remark 5. When the phenomenon of antiperiodicity occurs
at an intermediate point # € (0,T), the parametric-type
antiperiodic fractional boundary value problem takes the
form

‘Dix(t) = f(t,x(1),
x(0) = -x (1),
ch+1 (0) — _ch+1 (17) ,

te[0,T], 2<gq<3,

‘DF (0) = -D” (1), (16)

whose solution is

T
x(0= | 6,09 fsx (s 17)
0
where G,?(t, s) is given by (7). Notice that Gn(t, s) = Gr(t,s)
wheny — T .
3. Existence Results

Let € = C([0, T, R) denotes a Banach space of all continuous
functions defined on [0,T] into R endowed with the usual
supremum norm.

In relation to (2), we define an operator # : € — € as

t _ q—l
(Fx) (t) = jo % Fs,x(s)ds

T A/ !
- % Jo %f(s,x(s))ds
I'(2-p)(T-20)
2T1-p
T(T - s)1 P!
<, T@-7)

+T(2-p)TF!

2 —
X<T2—2t2— 2T°T(2-p)
rG-p)

f(s,x(s))ds

4tTF(2—p))
r(3-p)

x (4)7"

-p-2
XJT (T-s)TF

o T pon! GO

Observe that the problem (2) has a solution if and only if
the operator & has a fixed point.

For the sequel, we need the following known fixed point
theorems.

Theorem 6 (see [25]). Let X be a Banach space. Assume that
T : X — X isa completely continuous operator and the set
V={ueX|u=uTu,0 < yu < 1}is bounded. Then T has a
fixed point in X.

Theorem 7 (see [25]). Let X be a Banach space. Assume that Q)
is an open bounded subset of X with 0 € QandletT : QO — X
be a completely continuous operator such that

ITull < lull, Vu € dQ. (19)

Then T has a fixed point in Q.

Now we are in a position to present the main results of the
paper.

Theorem 8. Assume that there exists a positive constant L,
such that |f(t,x(t))| < L, fort € [0,T], x € . Then the
problem (2) has at least one solution.

Proof. First, we show that the operator & is completely
continuous. Clearly continuity of the operator & follows
from the continuity of f. Let Q ¢ € be bounded. Then, for



all x € Q together with the assumption | f(¢, x(t))| < L,, we

get

[(Fx) (1)l

< J (t- |f(s x(s))|ds
0

+2L(im)

r(z p)IT - 2t|
2T1-P

(T—s)”1
XJO F(

|f (s,x(s))| ds

|f (s, x(s))|ds

+l“(2—p)T1”_1

2T (2-p)T* 4TT(2-p)
rG-p) r(s ‘

(T—s)qu
XJO I(q-p-

fe-o)T 1 T(T-9)T!
SLI{L Q) ds+zjo ) ds

I'(2-p)
2Tt-p

x |T? - 2¢% - )_1

|f (s, x(s))| ds

T (- gt
-2 Fa-7)

+T(2-p)TP"!

ds

2T (2-p)T*> 4TT(2- p)

r(G-p) = T(-p)
T (T -s)1P?
<], r<q—p—1)ds}

L{ 374 . r(2-p)T? +1“(2—p)T‘7
T a2r(g+1) 2r(qg-p+1)  4r(q-p)

ar(2-p) (TC-p)\)]|_
" <1‘ o o) )}M

(20)

x |T? = 2t* — @

which implies that [|[(Fx) ()|l < M,.
Furthermore,

[(Fx) @)

(t-
_JO F( |f(s x(s))lds

+T(2-

(T - s)1 ¢!
XJ I'(q-p)

)T‘H

|f (s, x(s))|ds
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LT p)TP!
4

4TT (2 - p)

TG-p

(T_S)'JPZ
XJO T(g-p-

{ 1 r'(2-p)
r(q) T(g-p+1)

(21)

|f s,x(s))|ds

<L,17"

Hence, for t,t, € [0, T], we have

(Fx) () - (Fx) (1,)] < j @) (5)|ds
g (22)

<M, (t,—t).

This implies that & is equicontinuous on [0,T], by the
Arzela-Ascoli theorem, the operator & : € — € is com-
pletely continuous.

Next, we consider the set

V={xeC|x=puFx,0<pu<l} (23)

and show that the set V is bounded. Let x € V, then x =
pFx,0 < u < 1. Forany t € [0,T], we have

1
x(t) = J(tr(s); £ (s,x(s)) ds

_le(T—S)’“
2)o T(q)

[(2-p)(T-21)
+ _—
2T1-P

(T 577"
xL ﬁf(s ,x(s))ds

p) T

f(s,x(s))ds

+T(2-

2 , 2T°T(2-p) 4TT(2-p) -1
(T ey )

(T —s)TP7?
XJ ﬁf(s,x(s))ds,
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lx (O] = pl(Fx) ()]

gj“
0

(T
+ = 5 L T)U(s x(s))|ds

lf(s x(s))| ds

L(2-p)IT -2t
+ _—
2T1-p

T(T - 5)17P7!
“, T(q-p)
r2-pr
; 2r2-p)T° +4tTF(2—p)

r3-p) r(3-p)
T (T-sTP?
on T(q-p-1)

2t +T1
2 (g+1)

|f (s,x (s))| ds

T? -2t (4)™

X

|f (s, x(s))l ds
< L, max
te[0,T]

r(2-p)|T-2t| T
2T (g-p+1)
+T(2-p)TT?

ar(2-p)1°

x |T? =2t -
I'(3-p)

4TT (2 -

YT |(4) }

(24)

Thus, ||lx|| < M, for any t € [0,T]. So, the set V is bounded.
Thus, by the conclusion of Theorem 6, the operator F has at
least one fixed point, which implies that (2) has at least one
solution. O

Theorem 9. Let there exists a positive constant r such that
|f(t, x)| < Olx| with 0 < |x| < r, where § is a positive constant

satisfying

r(2-p)T" T -2t

2|1t + T1
max
tefo,r] [ 2I'(q + 1)

2 (g-p+1)
r(2-p)17?
ar(q-p)
= 2 20(2-p)T* 4TI (2-p) §
e Vs R Y s H‘“'

(25)

Then the problem (2) has at least one solution.

Proof. Define Q; = {x € € : | x| < r} and take x € € such
that ||x|| = r; that is, x € 0Q. As before, it can be shown that
F is completely continuous and that

|Fx (1)l

20t + T4
<max { ————~
telo,r] [ 2T (q+ 1)

I(2-p)T7T"|T -2t

2T (g-p+1)
r(2-p)T77°
4r(q-p)
_ 2
y T2_2t2_2r(2 p)T +4tTF p)}
r'(3-p) r(3

x4 Jlx]l < x|
(26)

for x € 0Q, where we have used (25). Therefore, by
Theorem 7, the operator &% has at least one fixed point
which in turn implies that the problem (2) has at least one
solution. O

Theorem10. Assumethat f: [0, TIXR — R isa continuous
function satisfying the condition

|f(t,x)- f(ty)|<L|x-y|, Vte[0,T], x,y€ R,
(27)
with Lk < 1, where
S T 5 MY,
2T (q+1) 2C(q-p+1) 4L(q-p)

2
y {1_ 2 (2-p) +2(F(Z—p)> H _
rG-p) \r@G-p
Then the problem (2) has a unique solution.

Proof. Let us fix sup,¢ (7| f(£,0)] = M < 0o and select

Mx

> — 29
1-1Lxk 29)

where x is given by (28). Then we show that #B, C B,, where
B, ={x € € : ||x|| < r}. For x € B,, we have

I(Fx) (1)l

g-1
< L (tr(s)) If (5x(8) = £(5,0) + £ (5,0)|ds



ql
+2L T=9"" 5) 1f (5,2 (s)) = £ (5,0) + f (5,0)| ds
I‘(2—p)(T—2t)
+—
2P

(T -7 P!
. T(q-p)

+T(2-p)T7"

2 oo 2I°T(2-p) 4TT(2-p) -1
(T ey )

|f (s,x(s) = f(5,0) + f (5,0)| ds

2
XJT( 9T |fsx(s - f(s0)

o T(q-p-1)
< (Lr+ M)

+f (s 0)| ds

r(2-p)T" T -2t
2l (g-p+1)
r(2-p)T7?
+—
4r(q-p)
, 2I(2-p)1°

I'(3-p)

2|1t + T1
X
2l (g+1)

x |T? - 2t

4tTI‘(2—p)H
+
r(3-p)
<(Lr+ M)

XTq[ 3, Te-p  IC-p)
h(q+1) 2I(q-p+1) 4I(q-p)

2r (2- p) 2-p)\
X{l TG-p) 2( TG- p))H

=(Lr+M)x<r.

(30)

Thus we get Fx € B,. Now, for x,y € € and for each t €
[0, T], we obtain

|(Fx) () - (Fy) )]

t q-1
: U T ) If 5 - £ (5 7 5] ds

(T—9)T" 5!
+2L T W exO - sy ©)ds

T(2-p)(T-2t)
Ty

(T - )77
XL r(q-p)

p) T

|f (s x() = f (s, y )] ds

+T(2-
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2 o 2TT(2-p) 4TT(2-p)\,

X(“”‘ o T )
NP2

xj %"f(sx(s)) f(sy(s) ||ds]»

<Llx-y]

XTq[ 3 _T@-p  IC-p
T(q+1) 2l(q-p+1) 4I(g-p)

2ar2-p) (T2-p)\
g {1‘ TG-p) ”(r(s—p)) H

=«L|x -y,

(31)

which, in view of the condition kL < 1 (x is given by
(28)), implies that the operator & is a contraction. Hence, by
Banach’s contraction mapping principle, the problem (2) has
a unique solution. O

Example 11. Consider the following antiperiodic fractional
boundary value problem:

‘Dix(t) = (tz + 1) e 01 (4 + 3sin’x (t)) ,
0<t<l1, 2<gq<3,

x(0) =-x(1),
‘DPx (0) = —=Dfx (1),

ch+1x (0) — _ch+1x (1) ,

0<p<l
(32)

Clearly |f(t,x(t))] < (3In7). So, the hypothesis of
Theorem 8 holds. Therefore, the conclusion of Theorem 8

applies to antiperiodic fractional boundary value problem
(32).

Example 12. Consider the following antiperiodic fractional
boundary value problem:

]5 (x ) + tan"'x (t)) + V1 +sin’t,

L>0, te]0,2],

‘DPx (1) =

x(0) = -x(2)

‘DFx(0)=-D'*x(2),  D"x(0)=-D"x(2),

(33)

where g = 5/2, p = 3/4, p+1 = 7/4 f(t,x) =
tan"'x)/2 + V1 + sin®t, and T = 2. Clearly,

L(x +

|f (t, x) - f(t,§)| < Ié (|x - x|+ |tan‘1x - tan—1§|) (34)

< L(lx—X[),
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where we have used the fact that I(tanfly)’| =1/1+ yz) <1
Further,

B 3 r2-p T-p)
"‘Tq[zr(w)*zr(q—pﬁ) - p)
Jiomeon reeayl)
r(3-p) I'(3-p)
_ 16 §+526r(1/4)
5 \m 5250(3/4)

With L < 1/x, all the assumptions of Theorem 10 are satisfied.
Hence, the fractional boundary value problem (33) has a
unique solution on [0, 2].
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