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We establish the existence of triple positive solutions of an m-point boundary value problem for the nonlinear singular second-
order differential equations of mixed type with a p-Laplacian operator by Leggett-William fixed point theorem. At last, we give an
example to demonstrate the use of the main result of this paper. The conclusions in this paper essentially extend and improve the
known results.

1. Introduction

The existence and multiplicity of positive solutions for differ-
ential equations boundary value problems (BVPs) with the p-
Laplacian operator subject to Dirichlet, Sturm-Liouville, or
nonlinear boundary value conditions have been extensively
investigated in recent years; see [1–10] and the references
therein. Particularly, the following differential equations with
one-dimensional p-Laplacian

(𝜙𝑝 (𝑢
󸀠))
󸀠

+ 𝑞 (𝑡) 𝑓 (𝑡, 𝑢) = 0, 0 ≤ 𝑡 ≤ 1 (1)

have been studied subject to different kinds of boundary
conditions; see [1–4] and the references therein.Themethods
mainly depend on Kransnosel’skii fixed point theorem, upper
and lower solution technique, Leggett-Williams fixed point
theorem, and some new fixed point theorems in cones, and
so forth.

Recently, in [9], Kong et al. have studied the existence of
triple positive solutions for the following BVP:

(𝜙𝑝 (𝑢
󸀠))
󸀠

(𝑡) + 𝑞 (𝑡) 𝑓

× (𝑢 (𝑡) , 𝑢󸀠 (𝑡) , (𝑇𝑢) (𝑡) , (𝑆𝑢) (𝑡)) = 0, 0 ≤ 𝑡 ≤ 1,

𝑢󸀠 (0) = 0, 𝑢 (1) = 𝑔 (𝑢󸀠 (1)) .

(2)

More recently, in [10], Hu and Ma have pointed out that
the equivalent integral equation of BVP (2) is wrong in [9]

and studied the existence of triple positive solutions for the
following BVP:

(𝜙𝑝 (𝑢
󸀠))
󸀠

(𝑡) + 𝑞 (𝑡) 𝑓

× (𝑢 (𝑡) , 𝑢󸀠 (𝑡) , (𝑇𝑢) (𝑡) , (𝑆𝑢) (𝑡)) = 0, 0 ≤ 𝑡 ≤ 1,

𝑢󸀠 (0) = 𝛽𝑢󸀠 (𝜂) , 𝑢 (1) = 𝑔 (𝑢󸀠 (1)) .

(3)

Firstly, we confirm that the mistakes which have been
pointed out in [10] exist. At the same time, we think that the
value of 𝑀 designed in Theorem 3.1 in [10] is not suitable,
since the proof needs the condition 𝜙𝑞(𝑀) ≤ 𝑀, but in fact
this condition does not always hold.

Motivated by the work above, in this paper, we will study
the following more extensive second-orderm-point BVP:

(𝜙𝑝 (𝑢
󸀠))
󸀠

(𝑡) + 𝑞 (𝑡) 𝑓

× (𝑢 (𝑡) , 𝑢󸀠 (𝑡) , (𝑇𝑢) (𝑡) , (𝑆𝑢) (𝑡)) = 0, 0 ≤ 𝑡 ≤ 1,

𝜙𝑝 (𝑢
󸀠 (0)) =

𝑚−2

∑
𝑖=1

𝛽𝑖𝜙𝑝 (𝑢
󸀠 (𝜂𝑖)) , 𝑢 (1) = 𝑔 (𝑢󸀠 (1)) ,

(4)
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where 𝜙𝑝(𝑠) = |𝑠|𝑝−2𝑠(𝑝 > 1) is an increasing function,
(𝜙𝑝)
−1(𝑠) = 𝜙𝑞(𝑠), 1/𝑝 + 1/𝑞 = 1; 0 ≤ 𝛽𝑖 < 1, 𝑖 = 1, 2, . . . ,

𝑚 − 2,∑𝑚−2
𝑖=1

𝛽𝑖 < 1, and 0 < 𝜂1 < 𝜂2 < ⋅ ⋅ ⋅ < 𝜂𝑚−2; 𝑇 and 𝑆 are
two linear operators defined by

𝑇𝑢 (𝑡) = ∫
𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠,

𝑆𝑢 (𝑡) = ∫
1

0

ℎ (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠,

𝑢 ∈ 𝐶1 [0, 1] ,

(5)

in which 𝑘 ∈ 𝐶[𝐷, 𝑅+], ℎ ∈ 𝐶[𝐷0, 𝑅+], 𝐷 = {(𝑡, 𝑠) ∈ 𝑅2 :
0 ≤ 𝑠 ≤ 𝑡 ≤ 1}, 𝐷0 = {(𝑡, 𝑠) ∈ 𝑅2 : 0 ≤ 𝑠, 𝑡 ≤ 1}, 𝑅+ =
[0, +∞), 𝑅 = (−∞, +∞), 𝑘0 = max{𝑘(𝑡, 𝑠) : (𝑡, 𝑠) ∈ 𝐷}, and
ℎ0 = max{ℎ(𝑡, 𝑠) : (𝑡, 𝑠) ∈ 𝐷0}.

Obviously, when𝑚 = 3, BVP (4) reduces to BVP (3), and
when𝑚 = 3, 𝛽1 = 0, BVP (4) reduces to BVP (2), so BVP (2)
and BVP (3) are special cases of BVPs (4).

Throughout this paper, we always suppose the following
conditions hold:

(C1) 𝑓 ∈ 𝐶(𝑅+ × 𝑅 × 𝑅+ × 𝑅+, (0, +∞));
(C2) 𝑞(𝑡) ∈ 𝐶([0, 1], 𝑅+)may be singular at 𝑡 = 0, 1 and 0 <

∫1
0
𝑞(𝑡)𝑑𝑡 < +∞, so it is easy to see that there exists a

constant𝑀 > 0 such that 0 < ∫1
0
𝑞(𝑡)𝑑𝑡 < 𝜙𝑝(𝑀);

(C3) 𝑔 : 𝑅 → 𝑅+ is nonincreasing and continuous, and
0 ≤ 𝑔(V) ≤ |V| for V ∈ 𝑅.

2. Preliminary Results

In this section, we firstly present some definitions, theorems,
and lemmas, which will be needed in the proof of the main
result.

Definition 1. Let𝐸 be a real Banach space. A nonempty closed
convex set 𝑃 ⊂ 𝐸 is called a cone if it satisfies the following
two conditions:

(i) 𝑥 ∈ 𝑃, 𝜆 ≥ 0 implies 𝜆𝑥 ∈ 𝑃;
(ii) 𝑥 ∈ 𝑃, −𝑥 ∈ 𝑃 implies 𝑥 = 0.

Definition 2. Given a cone 𝑃 in a real Banach space 𝐸,
a continuous map 𝛼 is called a concave (resp., convex)
functional on 𝑃 if and only if, for all 𝑥, 𝑦 ∈ 𝑃 and 0 ≤ 𝑡 ≤ 1,
it holds:

𝛼(𝑡𝑥 + (1 − 𝑡)𝑦) ≥ 𝑡𝛼(𝑥) + (1 − 𝑡)𝛼(𝑦),
(resp., 𝛼(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝛼(𝑥) + (1 − 𝑡)𝛼(𝑦)).

We consider the Banach space 𝐸 = 𝐶1[0, 1] equipped
with norm ‖𝑢‖ = max0≤𝑡≤1{‖𝑢(𝑡)‖0, ‖𝑢󸀠(𝑡)‖0}, where ‖𝑢‖0 =
max0≤𝑡≤1|𝑢(𝑡)|.

We denote, for any fixed constants 𝑎, 𝑏, 𝑟,

𝐶+[0, 1] = {𝑢 ∈ 𝐶[0, 1] : 𝑢(𝑡) ≥ 0, 𝑡 ∈ [0, 1]},
𝑃 = {𝑢 ∈ 𝐸 | 𝑢(𝑡) is concave and nonincreasing
on [0, 1]},

𝑃𝑟 = {𝑢 ∈ 𝑃 : ‖𝑢‖ < 𝑟},
𝑃(𝛼, 𝑎, 𝑏) = {𝑢 ∈ 𝑃 : 𝑎 ≤ 𝛼(𝑢), ‖𝑢‖ < 𝑏}.

It’s easy to see that 𝑃 is a cone in 𝐸.

Theorem 3 (Leggett-William). Let 𝐴 : 𝑃𝑐 → 𝑃𝑐 be
a completely continuous map and let 𝛼 be a nonnegative
continuous concave functional on 𝑃 with 𝛼(𝑢) ≤ ‖𝑢‖ for any
𝑢 ∈ 𝑃𝑐. Suppose there exist constants 𝑎, 𝑏, and 𝑑with 0 < 𝑎 <
𝑏 < 𝑑 ≤ 𝑐 such that

(i) {𝑢 ∈ 𝑃(𝛼, 𝑏, 𝑑) : 𝛼(𝑢) > 𝑏} ̸= 𝜙 and 𝛼(𝐴𝑢) > 𝑏 for all
𝑢 ∈ 𝑃(𝛼, 𝑏, 𝑑);

(ii) ‖𝐴𝑢‖ < 𝑎 for all 𝑢 ∈ 𝑃𝑎;
(iii) 𝛼(𝐴𝑢) > 𝑏 for all 𝑢 ∈ 𝑃(𝛼, 𝑏, 𝑐) with ‖𝐴𝑢‖ > 𝑑.

Then 𝐴 has at least three fixed points 𝑢1, 𝑢2, and 𝑢3 satisfying
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩 < 𝑎, 𝑏 < 𝛼 (𝑢2) ,
󵄩󵄩󵄩󵄩𝑢3

󵄩󵄩󵄩󵄩 > 𝑎, 𝛼 (𝑢3) < 𝑏.
(6)

Lemma 4. Suppose 𝑦 ∈ 𝐶1[0, 1] with (𝜙𝑝(𝑦󸀠))
󸀠 ∈ 𝐿1[0, 1]

satisfies

(𝜙𝑝 (𝑦
󸀠))
󸀠

(𝑡) ≤ 0, 0 ≤ 𝑡 ≤ 1,

𝜙𝑝 (𝑦
󸀠 (0)) =

𝑚−2

∑
𝑖=1

𝛽𝑖𝜙𝑝 (𝑦
󸀠 (𝜂𝑖)) , 𝑦 (1) = 𝑔 (𝑦󸀠 (1)) .

(7)

Then, 𝑦(𝑡) ≥ 0 is concave and nonincreasing on [0, 1], that is,
𝑦 ∈ 𝑃.

Proof. Since (𝜙𝑝(𝑦󸀠))
󸀠(𝑡) ≤ 0, we know that 𝜙𝑝(𝑦󸀠) is

nonincreasing, that is, 𝑦󸀠(𝑡) is nonincreasing, which means
𝑦(𝑡) is concave. At the same time, we have 𝑦󸀠(𝑡) ≤ 𝑦󸀠(0),
so 𝑦󸀠(0) = 𝜙𝑞(∑

𝑚−2

𝑖=1
𝛽𝑖𝜙𝑝(𝑦󸀠(𝜂𝑖))) ≤ 𝜙𝑞(∑

𝑚−2

𝑖=1
𝛽𝑖𝜙𝑝(𝑦󸀠(0))) =

𝜙𝑞(∑
𝑚−2

𝑖=1
𝛽𝑖)𝑦󸀠(0), namely 𝑦󸀠(0) ≤ 0. Then, 𝑦󸀠(𝑡) ≤ 0; that is

to say, 𝑦(𝑡) is nonincreasing. So 𝑦(𝑡) ≥ 𝑦(1) = 𝑔(𝑦󸀠(1)) ≥ 0.
Above all, 𝑦 ∈ 𝑃. This completes the proof.

Lemma 5. Let 𝑦 ∈ 𝐶[0, 1] and (𝜙𝑝(𝑢󸀠))
󸀠 ∈ 𝐿1[0, 1], then, BVP

(𝜙𝑝 (𝑢
󸀠))
󸀠

(𝑡) = −𝑦 (𝑡) , 0 ≤ 𝑡 ≤ 1,

𝜙𝑝 (𝑢
󸀠 (0)) =

𝑚−2

∑
𝑖=1

𝛽𝑖𝜙𝑝 (𝑢
󸀠 (𝜂𝑖)) , 𝑢 (1) = 𝑔 (𝑢󸀠 (1)) ,

(8)

has a unique solution

𝑢 (𝑡) = ∫
1

𝑡

𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑦 (𝑟) 𝑑𝑟 + ∫
𝑠

0

𝑦 (𝑟) 𝑑𝑟)𝑑𝑠

+ 𝑔(−𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑦 (𝑟) 𝑑𝑟 + ∫
1

0

𝑦 (𝑟) 𝑑𝑟)) ,

(9)

where 𝛽 = ∑𝑚−2
𝑖=1

𝛽𝑖.
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Define the operator 𝐴 : 𝑃 → 𝐸 by

(𝐴𝑢) (𝑡) = ∫
1

𝑡

𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
𝑠

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)𝑑𝑠

+𝑔(−𝜙𝑞(
1

1−𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟)

× 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)) .

(10)

Obviously, 𝐴 is well defined and 𝑢 ∈ 𝐸 is a solution of BVP (4)
if and only if 𝑢 is a fixed point of 𝐴.

Lemma 6. 𝐴 : 𝑃 → 𝑃 is completely continuous.

Proof. It is similar to the proof of Lemma 2.2 in [9].

Lemma7. For any𝑢 ∈ 𝑃, one has ‖𝐴𝑢‖0 ≤ 2‖(𝐴𝑢)
󸀠‖0, ‖𝐴𝑢‖ ≤

2‖(𝐴𝑢)󸀠‖0.

Proof. From (10), we obtain

‖(𝐴𝑢)‖0 = ∫
1

0

𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
𝑠

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)𝑑𝑠

+ 𝑔(−𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟)

× 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟))

≤ ∫
1

0

𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
𝑠

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)𝑑𝑠

+ 𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)

= 2𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)

= 2 󵄨󵄨󵄨󵄨󵄨(𝐴𝑢)
󸀠 (1)󵄨󵄨󵄨󵄨󵄨

= 2󵄩󵄩󵄩󵄩󵄩(𝐴𝑢)
󸀠󵄩󵄩󵄩󵄩󵄩0.

(11)

Since ‖𝐴𝑢‖ = max{‖𝐴𝑢‖0, ‖(𝐴𝑢)
󸀠‖0}, so we have ‖𝐴𝑢‖ ≤

2‖(𝐴𝑢)󸀠‖0, which completes the proof.

3. Main Results

For any 𝛿 ∈ (0,min{𝜂1, 1/2}), we define a nonnegative
continuous concave function 𝛼 : 𝑃 → 𝑅+ by 𝛼(𝑢) =
min𝛿≤𝑡≤(1−𝛿)𝑢(𝑡). Obviously, the following two conclusions
hold:

𝛼 (𝑢) = 𝑢 (1 − 𝛿) ≤ ‖𝑢‖0, 𝛼 (𝐴𝑢) = 𝐴𝑢 (1 − 𝛿) ,

∀𝑢 ∈ 𝑃.
(12)

The main result of this paper is following.

Theorem 8. Let 𝑚0 = min0≤𝑡≤1𝑞(𝑡) and 𝛽 = ∑𝑚−2
𝑖=1

𝛽𝑖 < 1.
Suppose (C1), (C2), and (C3) hold. Suppose further that there
exist numbers 𝛿 ∈ (0,min{𝜂1, 1/2}), 𝑎, 𝑏, 𝑐, and 𝑑 such that
0 < 𝑎 < 𝑏 ≤ 𝑚0𝛿𝑑/𝑀 < 𝑑 ≤ 𝑐, and

(H1) 𝑓(𝑢, V, 𝑤, 𝑙) ≤ (1 − 𝛽)𝜙𝑝(𝑎/2𝑀), for (𝑢, V, 𝑤, 𝑙) ∈
[0, 𝑎] × [−𝑎, 0] × [0, 𝑘0𝑎] × [0, ℎ0𝑎];

(H2) 𝑓(𝑢, V, 𝑤, 𝑙) ≤ (1 − 𝛽)𝜙𝑝(𝑐/2𝑀), for (𝑢, V, 𝑤, 𝑙) ∈
[0, 𝑐] × [−𝑐, 0] × [0, 𝑘0𝑐] × [0, ℎ0𝑐];

(H3) 𝑓(𝑢, V, 𝑤, 𝑙) > 𝜙𝑝(𝑏/𝛿𝐿), for (𝑢, V, 𝑤, 𝑙) ∈ [𝑏, 𝑑] ×
[−𝑑, 0] × [0, 𝑘0𝑑] × [0, ℎ0𝑑], where𝐿 = 𝜙𝑞(∫

1−𝛿

0
𝑞(𝑡)𝑑𝑡);

(H4) min(𝑢,V,𝑤,𝑙)∈𝐽𝑓(𝑢, V, 𝑤, 𝑙)𝜙𝑝(𝑀/(2𝑚0)) ∫
1−𝛿

0
𝑞(𝑡)𝑑𝑡 ≥

max(𝑢,V,𝑤,𝑙)∈𝐽𝑓(𝑢, V, 𝑤, 𝑙) ∫
1

0
𝑞(𝑡)𝑑𝑡, where 𝐽 = [0, 𝑐] ×

[−𝑐, 0] × [0, 𝑘0𝑐] × [0, ℎ0𝑐].

Then, BVP (4) has at least three positive solutions 𝑢1, 𝑢2, and
𝑢3 such that

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩 < 𝑎, 𝑏 < min

𝛿≤𝑡<(1−𝛿)
𝑢2 (𝑡) ,

󵄩󵄩󵄩󵄩𝑢3
󵄩󵄩󵄩󵄩 > 𝑎, min

𝛿≤𝑡<(1−𝛿)
𝑢3 (𝑡) < 𝑏.

(13)
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Proof. We divide the proof into three steps.
Step 1. We prove 𝐴𝑃𝑐 ⊂ 𝑃𝑐, 𝐴𝑃𝑎 ⊂ 𝑃𝑎; that is, (ii) of

Theorem 3. By Lemma 6, we have 𝐴𝑃𝑐 ⊂ 𝑃, so ∀𝑢 ∈ 𝑃𝑐,
we get 0 ≤ 𝑢(𝑡) ≤ 𝑐, −𝑐 ≤ 𝑢󸀠(𝑡) ≤ 0, 0 ≤ (𝑇𝑢)(𝑡) ≤ 𝑘0𝑐,
0 ≤ (𝑆𝑢)(𝑡) ≤ ℎ0𝑐. For 𝑡 ∈ [0, 1] and by (H2)

‖(𝐴𝑢)‖0

= ∫
1

0

𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟)

× 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
𝑠

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)𝑑𝑠

+ 𝑔(−𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟)

× 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟))

≤∫
1

0

𝜙𝑞(
1

1−𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
𝑠

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)𝑑𝑠

+ 𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)

=2𝜙𝑞(
1

1−𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)

≤ 2𝜙𝑞 (
1

1 − 𝛽
∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)

≤ 2𝜙𝑞 (𝜙𝑝 (
𝑐
2𝑀

))𝜙𝑞 (∫
1

0

𝑞 (𝑟) 𝑑𝑟)

≤ 𝑐.

󵄩󵄩󵄩󵄩󵄩(𝐴𝑢)
󸀠󵄩󵄩󵄩󵄩󵄩0 = 𝜙𝑞(

1
1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
𝑠

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)

≤ 𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)

≤ 𝜙𝑞 (
1

1 − 𝛽
∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)

≤ 𝜙𝑞 (𝜙𝑝 (
𝑐
2𝑀

))𝜙𝑞 (∫
1

0

𝑞 (𝑟) 𝑑𝑟)

≤ 𝑐.
(14)

Hence, ‖𝐴𝑢‖ < 𝑐 and 𝐴𝑃𝑐 ⊂ 𝑃𝑐. Similarly, we obtain 𝐴𝑃𝑎 ⊂
𝑃𝑎.

Step 2.We show

{𝑢 ∈ 𝑃 (𝛼, 𝑏, 𝑑) : 𝛼 (𝑢) > 𝑏} ̸= 𝜙, (15)

𝛼 (𝐴𝑢) > 𝑏, ∀𝑢 ∈ 𝑃 (𝛼, 𝑏, 𝑑) , (16)

that is, (i) of Theorem 3.
Let 𝑢 = (𝑏 + 𝑑)/2, then 𝑢 ∈ 𝑃(𝛼, 𝑏, 𝑑), 𝛼(𝑢) = (𝑏 +

𝑑)/2 > 𝑏. Hence, (15) holds. For any 𝑢 ∈ 𝑃(𝛼, 𝑏, 𝑑), we have
𝑏 ≤ 𝑢(𝑡) ≤ 𝑑, −𝑑 ≤ 𝑢󸀠(𝑡) ≤ 0, 0 ≤ (𝑇𝑢)(𝑡) ≤ 𝑘0𝑑, 0 ≤
(𝑆𝑢)(𝑡) ≤ ℎ0𝑑, 𝑡 ∈ [0, 1 − 𝛿], so by (H3), we have

𝛼 (𝐴𝑢) = min
𝑡∈[𝛿,1−𝛿]

(𝐴𝑢) (𝑡) = (𝐴𝑢) (1 − 𝛿)

=∫
1

1−𝛿

𝜙𝑞(
1

1−𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
𝑠

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)𝑑𝑠

+𝑔(−𝜙𝑞(
1

1−𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟))

≥ 𝛿𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1−𝛿

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)

+𝑔(−𝜙𝑞(
1

1−𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟))
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≥ 𝛿𝜙𝑞 (∫
1−𝛿

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)

≥ 𝛿𝜙𝑞 (𝜙𝑝 (
𝑏
𝛿𝐿
))𝜙𝑞 (∫

1−𝛿

0

𝑞 (𝑟) 𝑑𝑟)

= 𝑏.
(17)

Hence (16) holds.
Step 3.We show that 𝛼(𝐴𝑢) > 𝑏 for all 𝑢 ∈ 𝑃(𝛼, 𝑏, 𝑐) with

‖𝐴𝑢‖ > 𝑑, that is, (iii) of Theorem 3.
If 𝑢 ∈ 𝑃(𝛼, 𝑏, 𝑐) with ‖𝐴𝑢‖ > 𝑑, we obtain 0 ≤ 𝑢(𝑡) ≤

𝑐, −𝑐 ≤ 𝑢󸀠(𝑡) ≤ 0, 0 ≤ (𝑇𝑢)(𝑡) ≤ 𝑘0𝑐, 0 ≤ (𝑆𝑢)(𝑡) ≤ ℎ0𝑐, for
any 𝑡 ∈ [0, 1], and so by (H4), we have

𝜙𝑝 (
𝑀
2𝑚0

)∫
1−𝛿

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

≥ ∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟.

(18)

Furthermore, we have

𝜙𝑝 (
𝑀
2𝑚0

)∫
1−𝛿

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+ 𝜙𝑝 (
𝑀
2𝑚0

) 1
1 − 𝛽

×
𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

≥ ∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+ 1
1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟.

(19)

Therefore, by Lemma 7, we have

𝛼 (𝐴𝑢) = (𝐴𝑢) (1 − 𝛿)

= ∫
1

1−𝛿

𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟)

× 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
𝑠

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)𝑑𝑠

+ 𝑔(−𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟)

× 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟))

≥ 𝛿𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1−𝛿

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)

≥ 𝛿𝜙𝑞((
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟)

× 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)

× (𝜙𝑝 (
𝑀
2𝑚0

))
−1

)

= 2𝛿𝑚0
𝑀

𝜙𝑞(
1

1 − 𝛽

𝑚−2

∑
𝑖=1

𝛽𝑖 ∫
𝜂𝑖

0

𝑞 (𝑟)

× 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟

+∫
1

0

𝑞 (𝑟) 𝑓 (𝑢, 𝑢󸀠, 𝑇𝑢, 𝑆𝑢) 𝑑𝑟)

= 2𝛿𝑚0
𝑀

󵄨󵄨󵄨󵄨󵄨(𝐴𝑢)
󸀠 (1)󵄨󵄨󵄨󵄨󵄨

= 2𝛿𝑚0
𝑀

󵄩󵄩󵄩󵄩󵄩(𝐴𝑢)
󸀠󵄩󵄩󵄩󵄩󵄩0

≥ 𝛿𝑚0
𝑀

󵄩󵄩󵄩󵄩󵄩(𝐴𝑢)
󸀠󵄩󵄩󵄩󵄩󵄩

> 𝛿𝑚0
𝑀

𝑑

≥ 𝑏.
(20)

Hence, by Theorem 3, the results of Theorem 8 hold. This
completes the proof of Theorem 8.

4. Example

Consider the following BVP:

(󵄨󵄨󵄨󵄨󵄨𝑢
󸀠󵄨󵄨󵄨󵄨󵄨 𝑢
󸀠)
󸀠

(𝑡) + 𝑞 (𝑡)

× 𝑓 (𝑢 (𝑡) , 𝑢󸀠 (𝑡) , (𝑇𝑢) (𝑡) , (𝑆𝑢) (𝑡)) = 0,

0 ≤ 𝑡 ≤ 1,
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󵄨󵄨󵄨󵄨󵄨𝑢
󸀠 (0)󵄨󵄨󵄨󵄨󵄨 𝑢

󸀠 (0) = 1
4
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢󸀠 (2

5
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢󸀠 (2

5
)

+ 1
4
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢󸀠 (1

2
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢󸀠 (1

2
) ,

𝑢 (1) = 𝑔 (𝑢󸀠 (1)) ,
(21)

where

𝑞 (𝑡) =
{{
{{
{

𝑡−1/2, 0 ≤ 𝑡 ≤ 16
25
,

−187
54

𝑡 + 9359
2700

, 16
25

≤ 𝑡 ≤ 1.

𝑓 (𝑢, V, 𝑤, 𝑙) =

{{{{{{{
{{{{{{{
{

10𝑢10 + 2 + sin V
1000

+
3√𝑤
1000

+
√𝑙
1000

,
0 ≤ 𝑢 ≤ 1, V ≤ 0, 𝑤, 𝑙 ≥ 0,

10 10√𝑢 + 2 + sin V
1000

+
3√𝑤
1000

+
√𝑙
1000

,
1 ≤ 𝑢, V ≤ 0, 𝑤, 𝑙 ≥ 0.

𝑔 (V) = {V
1/2, |V| ≥ 1,
V2, |V| < 1.

(22)

Proof. Since 𝑀 = √2 and 𝑚0 = 1/300, 𝛽 = 1/2, 𝛿 =
9/25, 𝑎 = 1/2, 𝑏 = 1, 𝑑 = 1296, 𝑐 = 1600, 𝑘(𝑡, 𝑠) = 1 and
ℎ(𝑡, 𝑠) = 1, then we can obtain 0 < 𝑎 < 𝑏 ≤ (𝑚0𝛿𝑑)/𝑀 < 𝑑 ≤
𝑐, and

𝐿 = √∫
1−9/25

0

𝑞 (𝑡) 𝑑𝑡 = √∫
16/25

0

𝑡−1/2𝑑𝑡 = √8
5
,

𝜙𝑝 (
𝑎
2𝑀

) = 𝜙𝑝 (
1/2
2√2

) = 1
32
,

𝜙𝑝 (
𝑐
2𝑀

) = 𝜙𝑝 (
1600
2√2

) = 320000,

𝜙𝑝 (
𝑏
𝛿𝐿
) = 𝜙𝑝 (

1
(9/25)√8/5

) = 252

92
5
8
= 3125
648

.

(23)

Next, we show that (H1)–(H4) are satisfied.
If 0 ≤ 𝑢 ≤ 1/2, −1/2 ≤ V ≤ 0, 0 ≤ 𝑤, 𝑙 ≤ 1/2, then

𝑓 (𝑢, V, 𝑤, 𝑙) < 101
2

10

+ 3
1000

+ 2
1000

< (1 − 𝛽) 𝜙𝑝 (
𝑎
2𝑀

) = 1
64
.

(24)

So (H1) is satisfied.
If 0 ≤ 𝑢 ≤ 1600, −1600 ≤ V ≤ 0, 0 ≤ 𝑤, 𝑙 ≤ 1600, then

𝑓 (𝑢, V, 𝑤, 𝑙) < 10 10√1600 + 3
1000

+ 40 × 2
1000

< (1 − 𝛽) 𝜙𝑝 (
𝑐
2𝑀

) = 32000.
(25)

So (H2) is satisfied.

If 1 ≤ 𝑢 ≤ 1296, −1296 ≤ V ≤ 0, 0 ≤ 𝑤, 𝑙 ≤ 1296, then

𝑓 (𝑢, V, 𝑤, 𝑙) > 10 10√1 + 1
1000

> 𝜙𝑝 (
𝑏
𝛿𝐿
) = 3125

648
. (26)

So (H3) is satisfied.
For any (𝑢, V, 𝑤, 𝑙) ∈ [0, 1600] × [−1600, 0] × [0, 1600] ×

[0, 1600], we have

min𝑓 (𝑢, V, 𝑤, 𝑙) ≥ 1
1000

,

max𝑓 (𝑢, V, 𝑤, 𝑙) ≤ 10 10√1600 + 3
1000

+ 40 × 2
1000

,

𝜙𝑝 (
𝑀
2𝑚0

) = 2 ⋅ 1502, ∫
1−𝛿

0

𝑞 (𝑡) 𝑑𝑡 = 8
5
,

∫
1

0

𝑞 (𝑡) 𝑑𝑡 = 1141
625

.

(27)

Hence, it’s easy to know that (H4) is satisfied.
So byTheorem 8, we conclude that the BVP (21) has three

positive solutions 𝑢1, 𝑢2, and 𝑢3 satisfying

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩 <

1
2
, 1 < min

𝛿≤𝑡<(1−𝛿)
𝑢2 (𝑡) ,

󵄩󵄩󵄩󵄩𝑢3
󵄩󵄩󵄩󵄩 >

1
2

min
𝛿≤𝑡<(1−𝛿)

𝑢3 (𝑡) < 1.
(28)
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