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The issue of synchronization for a class of hybrid coupled complex networks with mixed delays (discrete delays and distributed
delays) and unknown nonstochastic external perturbations is studied. The perturbations do not disappear even after all the
dynamical nodes have reached synchronization. To overcome the bad effects of such perturbations, a simple but all-powerful robust
adaptive controller is designed to synchronize the complex networks evenwithout knowing a priori the functions and bounds of the
perturbations. Based on Lyapunov stability theory, integral inequality Barbalat lemma, and Schur Complement lemma, rigorous
proofs are given for synchronization of the complex networks. Numerical simulations verify the effectiveness of the new robust
adaptive controller.

1. Introduction

Over the past decade, complex networks have attractedmuch
attention from authors of many disciplines since the pioneer
works of Watts and Strogatz [1, 2]. In fact, many phenomena
in nature and our daily life can be explained by using complex
networks, such as the Internet, World Wide Web, social
networks, and neural networks. A complex network can be
considered as a graph which consists of a set of nodes and
edges connecting these nodes [3].

In recent years, chaos synchronization [3–7] has been
intensively studied due to its important applications in many
different areas, such as secure communication, biological
systems, and information science [8–11]. Particularly, the
synchronization of all the dynamical nodes in complex
networks has become a hot research topic [3], and several
results have been appeared in the literature. The authors of
[12] studied the synchronization in complex networks with
switching topology. In [13], Wu and Jiao investigated the
synchronization in complex dynamical networks with non-
symmetric coupling. They showed that the synchronizability
of a dynamical network with nonsymmetric coupling is not
always characterized by its second-largest eigenvalue, even

though all the eigenvalues of the nonsymmetric coupling
matrix are real. Liu and Chen [14] gave some criteria for
the global synchronization of complex networks in virtual
of the left eigenvector corresponding to the zero eigenvalue
of the coupling matrix. For a given network with identical
node dynamics, the authors of [15] showed that two key
factors influencing the network synchronizability are the
network inner linking matrix and the eigenvalues of the
network topological matrix. Some synchronization criteria
were given in [16–19] for coupled neural networks with or
without delayed couplings. In [20], the robust impulsive
synchronization of coupled delayed neural networks with
uncertainties is considered; several new criteria are obtained
to guarantee the robust synchronization via impulses.

Complex networks have the properties of robustness and
fragility. A complex network can synchronize itself when
parameter mismatch is within some limit. If parameter mis-
match exceeds this limit, networks cannot realize synchro-
nization themselves. Thus the controlled synchronization of
coupled networks is believed to be a rather significant topic
in both theoretical research and practical applications [21–
29]. Some effective control scheme has been proposed, for
instance, state feedback control with constant control gains,



2 Abstract and Applied Analysis

impulsive control, intermittent control, and adaptive control.
Adaptive control method receives particular attention of
researchers in recently rears. In [3], the authors studied
synchronization in complex networks by using distributed
adaptive control scheme. By designing a simple adaptive
controller, authors of [23] investigated the locally and globally
adaptive synchronization of an uncertain complex dynamical
network. Authors in [24] investigated synchronization of
neural networks with time-varying delays and distributed
delays via adaptive control method. By using the adaptive
feedback control scheme, Chen and Zhou [25] studied
synchronization of complex nondelayed networks and Cao
et al. [26] investigated the complete synchronization in an
array of linearly stochastically coupled identical networks
with delays. By using adaptive pinning control method, Zhou
et al. [27] studied local and global synchronization of complex
networks without delays, authors of [28, 29] considered
the global synchronization of the complex networks with
nondelayed and delayed couplings and the authors of [30]
investigated lag synchronization of complex networks via
state feedback pinning strategy. Outer synchronization of
complex delayed networks with uncertain parameters was
considered by using adaptive coupling in [31]. However,
models in the previous references are special; that is, each
of them does not consider general complex networks in
which every dynamical node has mixed delays (discrete
delay and distributed delay), and the complex networks
have nondelayed, discrete-delayed, and distributed-delayed
couplings.

Complex networks are always affected by some unknown
external perturbations due to environmental causes and
human causes. White noises brought by some random fluc-
tuations in the course of transmission and other probabilities
causes have received extensive attention in the literatures
[21, 24, 32–35]. However, not all the external perturbations
are white noise, and some of them may be nonlinear and
nonstochastic perturbations. When complex networks are
disturbed by nonlinear and nonstochastic perturbations, the
states of the nodes will be changed dramatically, which
will affect the stability and synchronization of the complex
networks. Due to the fragility of complex networks, if some
important nodes are perturbed by such external perturba-
tions, whole states of the network will be affected or even
the network cannot operate normally. Hence, how to realize
synchronization of all nodes for complex networks with
uncertain nonlinear nonstochastic external perturbations is
an urgent practical problem to be solved. Obviously, the
controllers for stability and synchronization of stochastic
perturbations are not applicable to the case of nonlinear
nonstochastic perturbations, especially when the functions
and bounds of the perturbations are unknown. Therefore,
to enhance antiperturbations capability and to realize syn-
chronization of complex networks, more effective controller
should be designed.

Motivated by the previous analysis, in this paper, a class
of more general complex networks is proposed. The new
model has nondelayed, discrete-delayed, and distributed-
delayed couplings, and every dynamical node has mixed
delays. Unknown nonstochastic external perturbations to the

complex networks are also considered. Then we study the
global complete synchronization of the proposed model. A
new simple but robust adaptive controller is designed to
overcome the effects of such perturbations and synchronize
the complex networks even without knowing the exact
functions and bounds of the perturbations. Moreover, the
adaptive controller can also synchronize coupled systems
with stochastic perturbations since it includes existing adap-
tive controller as special case. Two cases are considered:
all nodes or partial nodes are perturbed. All nodes should
be controlled for the former case. Pinning control scheme
can also be used for the latter case. Based on Lyapunov
stability theory, integral inequality, Barbalat lemma, and
Schur Complement lemma, rigorous proofs are given for
synchronization of the complex networks with unknown
perturbations of the previous two cases. It should be noted
that our new adaptive controllers can also prevent external
perturbations. Therefore, the new adaptive controllers are
better than those in [23–29].Numerical simulations verify the
effectiveness of our theoretical results.

Notations. In the sequel, if not explicitly stated, matrices
are assumed to have compatible dimensions. 𝐼

𝑁
denotes the

identity matrix of 𝑁 dimension. The Euclidean norm in R𝑛

is denoted as ‖ ⋅ ‖; accordingly, for vector 𝑥 ∈ R𝑛, ‖𝑥‖ =

√𝑥𝑇𝑥, where 𝑇 denotes transposition. 𝐴 = (𝑎
𝑖𝑗
)
𝑚×𝑚

denotes

a matrix of 𝑚 dimension, ‖𝐴‖ = √𝜆max(𝐴
𝑇𝐴), and 𝐴

𝑠
=

(1/2)(𝐴 + 𝐴
𝑇
). 𝐴 > 0 or 𝐴 < 0 denotes that the matrix 𝐴 is

symmetric and positive or negative definite matrix. 𝜆min(𝐴
𝑠
)

is the minimum eigenvalues of the symmetric matrices 𝐴𝑠,
and 𝐴

𝑙
denotes the matrix of the first 𝑙 row-column pairs of

𝐴. 𝐴𝑐
𝑙
denotes the minor matrix of matrix 𝐴 by removing all

the first 𝑙 row-column elements of 𝐴.
The rest of this paper is organized as follows. In Section 2,

a class of general complex networks with mixed delays
and external perturbations is proposed. Some necessary
assumptions and lemmas are also given in this section. In
Section 3, synchronization of the complex networks with
all nodes perturbed is studied. Synchronization with only
partial nodes perturbed is considered in Section 4. Then,
in Section 5, numerical simulations are given to show the
effectiveness of our results. Finally, in Section 6, conclusions
are given.

2. Preliminaries

The general complex networks consisting of 𝑁 identical
nodeswith external perturbations andmixed-delay couplings
are described as

𝑥̇
𝑖 (𝑡) = 𝐶𝑥

𝑖 (𝑡) + 𝐴𝑓 (𝑥𝑖 (𝑡)) + 𝐵𝑓 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓 (𝑥
𝑖 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗 (𝑡)

+ 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗 (𝑡 − 𝜏 (𝑡)) + 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑗 (𝑠) 𝑑𝑠
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+ 𝜎
𝑖
(𝑡, 𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡)) , ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑖 (𝑠) 𝑑𝑠)

+ 𝑅
𝑖
, 𝑖 = 0, 1, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑡) = [𝑥

𝑖1
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡)]
𝑇
∈ R𝑛 represents the state

vector of the 𝑖th node of the network at time 𝑡, and 𝐶,𝐴, 𝐵,𝐷
are matrices with proper dimension. 𝑓(⋅) is a continuous
vector function. 𝐼(𝑡) is the external input vector. 𝑅

𝑖
∈ R𝑛 is

the control input. 𝜏(𝑡) > 0, 𝜃(𝑡) > 0 are time-varying discrete
delay and distributed delay, respectively. Constants 𝛼 > 0,
𝛽 > 0, 𝛾 > 0 are coupling strengths of the whole network
corresponding to nondelay, discrete delay, and distributed
delay, respectively.Φ,Υ, Λ ∈ R𝑛×𝑛 are inner couplingmatrices
of the networks, which describe the individual coupling
between two subsystems. Matrices 𝑈 = (𝑢

𝑖𝑗
)
𝑁×𝑁

, 𝑉 =

(V
𝑖𝑗
)
𝑁×𝑁

, 𝑊 = (𝑤
𝑖𝑗
)
𝑁×𝑁

are outer couplings of the whole
networks satisfying the following diffusive conditions:

𝑢
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) , 𝑢

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑢
𝑖𝑗
,

V
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) , V

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑢
𝑖𝑗
,

𝑤
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) , 𝑤

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑤
𝑖𝑗
,

(2)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑁. Vector 𝜎
𝑖
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝜏(𝑡)),

∫
𝑡

𝑡−𝜃(𝑡)
𝑥
𝑖
(𝑠)𝑑𝑠) ∈ R𝑛 describes the unknown perturbation to

𝑖th node of the complex networks. In this paper, we always
assume that 𝜏̇ ≤ ℎ

𝜏
< 1 and 𝜃̇ ≤ ℎ

𝜃
< 1. 𝜃(𝑡) is bounded

and we denote 𝜃min > 0 the minimum of 𝜃(𝑡) and 𝜃max the
maximum of 𝜃(𝑡).

We assume that (1) has a unique continuous solution for
any initial condition in the following form:

𝑥
𝑖 (𝑠) = 𝜑𝑖 (𝑠) , −󰜚 ≤ 𝑠 ≤ 0, 𝑖 = 0, 1, 2, . . . , 𝑁, (3)

where 󰜚 = max {𝜏max, 𝜎max} and 𝜏max is the maximum of 𝜏(𝑡).
For convenience of writing, in the sequel, we denote

𝜎
𝑖
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝜏(𝑡)), ∫

𝑡

𝑡−𝜃(𝑡)
𝑥
𝑗
(𝑠)𝑑𝑠) with 𝜎

𝑖
(𝑡).

The system of an isolate node without external perturba-
tion is described as

𝑧̇ (𝑡) = 𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) + 𝐵𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓 (𝑧 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) ,

(4)

and 𝑧(𝑡) can be any desired state: equilibrium point, a
nontrivial periodic orbit, or even a chaotic orbit.

Remark 1. The nonstochastic perturbations 𝜎
𝑖
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 −

𝜏(𝑡)), ∫
𝑡

𝑡−𝜃(𝑡)
𝑥
𝑖
(𝑠)𝑑𝑠) are different from stochastic ones in

the literature [21, 24, 32–35]. The distinct feature of the

such stochastic perturbations is that the stochastic pertur-
bations disappear when the synchronization goal is realized.
However, perturbations of this paper still exist even when
complete synchronization has been achieved. Therefore, the
controllers in most of existing papers including those in
[21, 24, 32–35] are invalid for perturbations of this paper.

When system (4) is perturbed, then (4) turns to the
following system:

𝑧̇ (𝑡) = 𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) + 𝐵𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓 (𝑧 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡)

+ 𝜎
𝑖
(𝑡, 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜏 (𝑡)) , ∫

𝑡

𝑡−𝜃(𝑡)

𝑧 (𝑠) 𝑑𝑠) .

(5)

Generally, the state of a system will be changed when the
system is perturbed. We assume that the state of system (5)
remains to be any one of the previous three states but not
necessarily the original one.

The following assumptions are needed in this paper:

(H
1
) 𝑓(0) ≡ 0, and there exists positive constant ℎ such
that

󵄩󵄩󵄩󵄩𝑓 (𝑢) − 𝑓 (V)
󵄩󵄩󵄩󵄩 ≤ ℎ ‖𝑢 − V‖ , for any 𝑢, V ∈ R

𝑛
, (6)

(H
2
) 𝜎
𝑖𝑘
(𝑡, 0, 0, 0) ≡ 0, and there exist positive constants

𝑀
𝑖𝑘
such that |𝜎

𝑖𝑘
(𝑡, 𝑢, V, 𝑤)| ≤ 𝑀

𝑖𝑘
for any bounded

𝑢, V, 𝑤 ∈ R𝑛, 𝑖 = 1, 2, . . . , 𝑁, 𝑘 = 1, 2, . . . , 𝑛.

Remark 2. Note that (4) unifies many well-known chaotic
systems with or without delays, such as Chua system, Lorenz
system, Rössler system, Chen system, and chaotic neural
networks with mixed delays [12–29]. Hence, results of this
paper are general.

Remark 3. Condition (H
2
) is very mild. We do not impose

the usual conditions such as Lipschitz condition, differen-
tiability on the external perturbation functions. It can be
discontinuous or even impulsive functions. If the state of
(5) is a equilibrium point or a nontrivial periodic orbit, the
condition (H

2
) can be easily satisfied. If the state of (5) is a

chaotic orbit, the condition (H
2
) can also be satisfied. Since

chaotic system has strange attractors, there exists a bounded
region containing all attractors of it such that every orbit of
the system never leaves them. Anyway, condition (H

2
) can

be satisfied for equilibrium point, a nontrivial periodic orbit,
and a chaotic orbit.Moreover, wewill subsequently prove that
the complex networks (1) can be synchronized even without
knowing the exact values of ℎ and 𝑀

𝑖𝑘
, 𝑖 = 1, 2, . . . , 𝑁, 𝑘 =

1, 2, . . . , 𝑛.

The aim of this paper is to synchronize all the states of
complex networks (1) to the following manifold:

𝑥
1 (𝑡) = 𝑥2 (𝑡) = ⋅ ⋅ ⋅ = 𝑥𝑁 (𝑡) = 𝑧 (𝑡) , (7)

where 𝑧(𝑡) is immune to external perturbations.
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Lemma 4 ((Schur Complement) see [36]). The linear matrix
inequality (LMI)

𝑆 = [

[

𝑆
11

𝑆
12

𝑆
𝑇

12
𝑆
22

]

]

< 0 (8)

is equivalent to any one of the following two conditions:

(L
1
) 𝑆
11
< 0, 𝑆

22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12
< 0,

(L
2
) 𝑆
22
< 0, 𝑆

11
− 𝑆
12
𝑆
−1

22
S𝑇
12
< 0,

where 𝑆
11
= 𝑆
𝑇

11
, 𝑆
22
= 𝑆
𝑇

22
.

Lemma 5 (see [37]). For any constant matrix𝐷 ∈ R𝑛×𝑛,𝐷𝑇 =
𝐷 > 0, scalar 𝜎 > 0, and vector function 𝜔: [0, 𝜎] → R𝑛, one
has

𝜎∫

𝜎

0

𝜔
𝑇
(𝑠)𝐷𝜔 (𝑠) d𝑠 ≥ (∫

𝜎

0

𝜔 (𝑠) d𝑠)
𝑇

𝐷∫

𝜎

0

𝜔 (𝑠) d𝑠 (9)

provided that the integrals are all well defined.

Lemma 6 ((Barbalat lemma) see [38]). If 𝑓(𝑡) : R → R+ is
a uniformly continuous function for 𝑡 ≥ 0 and if the limit of the
integral

lim
𝑡→∞

∫

𝑡

0

𝑓 (𝑠) d𝑠 (10)

exists and is finite, then lim
𝑡→∞

𝑓(𝑡) = 0.

3. Synchronization with All
the Nodes Perturbed

In this section, we consider the case when all the nodes are
perturbed. To realize synchronization goal (7), we have to
introduce an isolate node (4).

Let 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡)−𝑧(𝑡). Subtracting (4) from (1), we get the

following error dynamical system:

̇𝑒
𝑖 (𝑡) = 𝐶𝑒

𝑖 (𝑡) + 𝐴𝑔 (𝑒𝑖 (𝑡)) + 𝐵𝑔 (𝑒𝑖 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑔 (𝑒
𝑖 (𝑠)) 𝑑𝑠 + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑒
𝑗 (𝑡)

+ 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑒
𝑗 (𝑡 − 𝜏 (𝑡)) + 𝜎𝑖 (𝑡) + 𝑅𝑖

+ 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑒
𝑗 (𝑠) 𝑑𝑠,

(11)

where 𝑔(𝑒
𝑖
) = 𝑓(𝑥

𝑖
(𝑡)) − 𝑓(𝑧(𝑡)), 𝑖 = 1, 2, . . . , 𝑁.

From (H
1
) and (H

2
) we know that (11) admits a trivial

solution 𝑒
𝑖
(0) ≡ 0, 𝑖 = 1, 2, . . . , 𝑁. Obviously, to reach

the goal (7), we have only to prove that system (11) is
asymptotically stable at the origin.

Theorem 7. Under the assumption conditions (H
1
) and (H

2
),

the networks (1) are synchronized with the following adaptive
controllers:

𝑅
𝑖
= −𝛼𝜀

𝑖
𝑒
𝑖 (𝑡) − 𝜔𝛽𝑖 sign (𝑒𝑖 (𝑡)) ,

̇𝜀
𝑖
= 𝑝
𝑖
𝑒
𝑖(𝑡)
𝑇
𝑒
𝑖 (𝑡) ,

𝛽̇
𝑖
= 𝜉
𝑖

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑒𝑖𝑘 (𝑡)
󵄨󵄨󵄨󵄨 ,

(12)

where 𝜔 > 1, 𝑝
𝑖
> 0, and 𝜉

𝑖
> 0 are arbitrary constants,

respectively, 𝑖 = 1, 2, . . . , 𝑁.

Proof. Define the Lyapunov function as

𝑉 (𝑡) = 𝑉1 (𝑡) + 𝑉2 (𝑡) + 𝑉3 (𝑡) , (13)

where

𝑉
1 (𝑡) =

1

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

+
1

2

𝑁

∑

𝑖=1

𝛼(𝜀
𝑖
− 𝑘
𝑖
)
2

𝑝
𝑖

+
1

2

𝑁

∑

𝑖=1

(𝑀
𝑖
− 𝛽
𝑖
)
2

𝜉
𝑖

,

𝑉
2 (𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

𝜂
𝑇
(𝑠) 𝑄𝜂 (𝑠) 𝑑𝑠,

𝑉
3 (𝑡) = ∫

𝑡

𝑡−𝜃(𝑡)

∫

𝑡

𝜇

𝜂
𝑇
(𝑠) 𝐺𝜂 (𝑠) 𝑑𝑠 𝑑𝜇,

(14)

𝜂(𝑡) = (‖𝑒
1
(𝑡)‖, ‖𝑒

2
(𝑡)‖, . . . , ‖𝑒

𝑁
(𝑡)‖)
𝑇, 𝑀
𝑖
= max

1≤𝑘≤𝑛
{𝑀
𝑖𝑘
},

𝑘
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, are constants, 𝑄 and 𝐺 are symmetric

positive definite matrices, and 𝑘
𝑖
, 𝑄, and 𝐺 are to be

determined.
Differentiating 𝑉

1
(𝑡) along the solution of (11) and from

(H
1
) and (H

2
), we obtain

𝑉̇
1 (𝑡) =

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) ̇𝑒
𝑖 (𝑡) + 𝛼

𝑁

∑

𝑖=1

(𝜀
𝑖
− 𝑘
𝑖
) 𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

−

𝑁

∑

𝑖=1

(𝑀
𝑖
− 𝛽
𝑖
)

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑒𝑖𝑘 (𝑡)
󵄨󵄨󵄨󵄨

≤

𝑁

∑

𝑖=1

[

[

(‖𝐶‖ + ‖𝐴‖ ℎ − 𝛼𝑘𝑖)
󵄩󵄩󵄩󵄩𝑒𝑖(𝑡)

󵄩󵄩󵄩󵄩

2

+ ‖𝐵‖ ℎ
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))
󵄩󵄩󵄩󵄩

+ ‖𝐷‖ ℎ
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 ∫

𝑡

𝑡−𝜃(𝑡)

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠

+ 𝛼

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑢
𝑖𝑗 ‖Φ‖

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑗 (𝑡)

󵄩󵄩󵄩󵄩󵄩

+ 𝛼𝜆min (Φ
𝑠
) 𝑢
𝑖𝑖

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩

2
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+ 𝛽

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
V
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
‖Υ‖

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑗 (𝑡 − 𝜏 (𝑡))

󵄩󵄩󵄩󵄩󵄩

+𝛾

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
‖Λ‖

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩 ∫

𝑡

𝑡−𝜃(𝑡)

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑗 (𝑠)

󵄩󵄩󵄩󵄩󵄩
𝑑𝑠]

]

= 𝜂
𝑇
(𝑡) ((‖𝐶‖ + ‖𝐴‖ ℎ) 𝐼𝑁 + 𝛼 (‖Φ‖ 𝑈̂

𝑠

− 𝐾)) 𝜂 (𝑡)

+ 𝜂
𝑇
(𝑡) (‖𝐵‖ ℎ𝐼𝑁 + 𝛽 ‖Υ‖ |𝑉|) 𝜂 (𝑡 − 𝜏 (𝑡))

+ 𝜂
𝑇
(𝑡) (‖𝐷‖ ℎ𝐼𝑁 + 𝛾 ‖Λ‖ |𝑊|) ∫

𝑡

𝑡−𝜃(𝑡)

𝜂 (𝑠) 𝑑𝑠

≤ 𝜂
𝑇
(𝑡) ( (‖𝐶‖ + ‖𝐴‖ ℎ + 1) 𝐼𝑁

+𝛼 (‖Φ‖ 𝑈̂
𝑠

− 𝐾)) 𝜂 (𝑡)

+ 𝜂
𝑇
(𝑡 − 𝜏 (𝑡)) 𝐵

𝑇

𝐵𝜂 (𝑡 − 𝜏 (𝑡))

+ (∫

𝑡

𝑡−𝜃(𝑡)

𝜂 (𝑠) 𝑑𝑠)

𝑇

𝐷
𝑇

𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝜂 (𝑠) 𝑑𝑠,

(15)

where 𝐾 = diag (𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑁
), 𝑈̂ = (𝑢̂

𝑖𝑗
)
𝑁×𝑁

, 𝑢̂
𝑖𝑗
= 𝑢
𝑖𝑗
,

𝑖 ̸= 𝑗, 𝑢̂
𝑖𝑖
= (𝜆min(Φ

𝑠
)/‖Φ‖)𝑢

𝑖𝑖
, 𝐵 = ‖𝐵‖ℎ𝐼

𝑁
+ 𝛽‖Υ‖|𝑉|, 𝐷 =

‖𝐷‖ℎ𝐼
𝑁
+ 𝛾‖Λ‖|𝑊|, |𝑉| = (|V

𝑖𝑗
|)
𝑁×𝑁

, |𝑊| = (|𝑤
𝑖𝑗
|)
𝑁×𝑁

, and
we have used the following deduction:

𝑁

∑

𝑖=1

[𝑒
𝑇

𝑖
(𝑡) 𝜎𝑖 (𝑡) − 𝜔

𝑛

∑

𝑘=1

𝛽
𝑖

󵄨󵄨󵄨󵄨𝑒𝑖𝑘 (𝑡)
󵄨󵄨󵄨󵄨 −

𝑛

∑

𝑘=1

(𝑀
𝑖
− 𝛽
𝑖
)
󵄨󵄨󵄨󵄨𝑒𝑖𝑘 (𝑡)

󵄨󵄨󵄨󵄨]

≤

𝑁

∑

𝑖=1

𝑛

∑

𝑘=1

[
󵄨󵄨󵄨󵄨𝑒𝑖𝑘 (𝑡)

󵄨󵄨󵄨󵄨𝑀𝑖𝑘 −𝑀𝑖
󵄨󵄨󵄨󵄨𝑒𝑖𝑘

󵄨󵄨󵄨󵄨 − (𝜔 − 1) 𝛽𝑖
󵄨󵄨󵄨󵄨𝑒𝑖𝑘

󵄨󵄨󵄨󵄨]

≤ −

𝑁

∑

𝑖=1

𝑛

∑

𝑘=1

(𝜔 − 1) 𝛽𝑖
󵄨󵄨󵄨󵄨𝑒𝑖𝑘

󵄨󵄨󵄨󵄨 ≤ 0.

(16)

Differentiating 𝑉
2
(𝑡), we get

𝑉̇
2 (𝑡) = 𝜂

𝑇
(𝑡) 𝑄𝜂 (𝑡) − (1 − 𝜏̇ (𝑡)) 𝜂

𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄𝜂 (𝑡 − 𝜏 (𝑡))

≤ 𝜂
𝑇
(𝑡) 𝑄𝜂 (𝑡) − (1 − ℎ𝜏) 𝜂

𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄𝜂 (𝑡 − 𝜏 (𝑡)) .

(17)

Differentiating 𝑉
3
(𝑡) from Lemma 5 we have

𝑉̇
3 (𝑡) = 𝜃 (𝑡) 𝜂

𝑇
(𝑡) 𝐺𝜂 (𝑡) − (1 − 𝜃̇ (𝑡)) ∫

𝑡

𝑡−𝜃(𝑡)

𝜂
𝑇
(𝑠) 𝐺𝜂 (𝑠) 𝑑𝑠

≤ 𝜃max𝜂
𝑇
(𝑡) 𝐺𝜂 (𝑡)

−
1 − ℎ
𝜃

𝜃min
(∫

𝑡

𝑡−𝜃(𝑡)

𝜂 (𝑠) 𝑑𝑠)

𝑇

𝐺∫

𝑡

𝑡−𝜃(𝑡)

𝜂 (𝑠) 𝑑𝑠.

(18)

Take𝑄 = (1/(1−ℎ
𝜏
))𝐵
𝑇

𝐵,𝐺 = (𝜃min/(1−ℎ𝜃))𝐷
𝑇

𝐷. From
the definition of 𝑉(𝑡) we reach the following inequality:

𝑉̇ (𝑡) ≤ 𝛼𝜂
𝑇
(𝑡) [

1

𝛼
(‖𝐶‖ + ‖𝐴‖ ℎ + 1) 𝐼𝑁

+ ‖Φ‖ 𝑈̂
𝑠

+
1

𝛼 (1 − ℎ
𝜏
)
𝐵
𝑇

𝐵

+
𝜃min𝜃max
𝛼 (1 − ℎ

𝜃
)
𝐷
𝑇

𝐷 − 𝐾]𝜂 (𝑡) .

(19)

Let 𝑘
𝑖
= 𝜆max((1/𝛼)(‖𝐶‖ + ‖𝐴‖ℎ + 1)𝐼

𝑁
+ ‖Φ‖𝑈̂

𝑠

+

(1/𝛼(1 − ℎ
𝜏
))𝐵
𝑇

𝐵 + (𝜃min𝜃max/(𝛼(1 − ℎ𝜃)))𝐷
𝑇

𝐷) + 1, where
𝜆max((1/𝛼)(‖𝐶‖ + ‖𝐴‖ℎ+ 1)𝐼𝑁 + ‖Φ‖𝑈̂

𝑠

+ (1/𝛼(1 − ℎ
𝜏
))𝐵
𝑇

𝐵 +

(𝜃min𝜃max/𝛼(1 − ℎ𝜃))𝐷
𝑇

𝐷) denotes the maximum eigenvalue
of (1/𝛼)(‖𝐶‖ + ‖𝐴‖ℎ + 1)𝐼

𝑁
+ ‖Φ‖𝑈̂

𝑠

+ (1/𝛼(1 − ℎ
𝜏
))𝐵
𝑇

𝐵 +

(𝜃min𝜃max/𝛼(1−ℎ𝜃))𝐷
𝑇

𝐷.Then, from the previous inequality,
we get

𝑉̇ (𝑡) ≤ −𝛼𝜂
𝑇
(𝑡) 𝜂 (𝑡) . (20)

Integrating both sides of the previous equation from 0 to
𝑡 yields

𝑉 (0) ≥ 𝑉 (𝑡) + 𝛼

𝑁

∑

𝑖=1

∫

𝑡

0

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑠)
󵄩󵄩󵄩󵄩

2
𝑑𝑠 ≥ 𝛼

𝑁

∑

𝑖=1

∫

𝑡

0

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑠)
󵄩󵄩󵄩󵄩

2
𝑑𝑠. (21)

Therefore,

𝛼 lim
𝑡→∞

𝑁

∑

𝑖=1

∫

𝑡

0

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑠)
󵄩󵄩󵄩󵄩

2
𝑑𝑠 ≤ 𝑉 (0) . (22)

In view of Lemma 6 and the previous inequality, one can
easily get

lim
𝑡→∞

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩

2
= 0, (23)

which in turn means

lim
𝑡→∞

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩 = 0, 𝑖 = 1, 2, . . . , 𝑁. (24)

This completes the proof.

4. Synchronization with Partial
Nodes Perturbed

Usually, only partial nodes of complex networks are per-
turbed. If some important nodes are perturbed, then the
entire network will not work correctly. Theoretically speak-
ing, nodes with larger degree (undirected networks) or
larger outdegree (directed networks) are more vulnerable
to perturbation [39], since the states of these nodes have
more effect on networks than those with smaller degree
(undirected networks) or outdegree (directed networks). On
the other hand, the real-world complex networks normally
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have a large number of nodes; it is usually impractical and
impossible to control a complex networks by adding the
controllers to all nodes. Therefore, from both practical point
of view and the view of reducing control cost, we can use the
scheme of pinning control [27–29, 40–42] to prevent external
perturbations and synchronize complex networks.

In this section, we assume that matrix 𝑈 is irreducible in
the sense that there is no isolate cluster in the network and
there are 𝑙

1
nodes affected by external perturbations.

Without loss of generality, rearrange the order of the
nodes in the network, and take the first 𝑙 (𝑙 ≥ 𝑙

1
) nodes to

be controlled. Thus, the pinning controlled network can be
described as

𝑥̇
𝑖 (𝑡) = 𝐶𝑥𝑖 (𝑡) + 𝐴𝑓 (𝑥𝑖 (𝑡)) + 𝐵𝑓 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓 (𝑥
𝑖 (𝑠)) 𝑑𝑠 + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗 (𝑡)

+ 𝐼 (𝑡) + 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑗 (𝑠) 𝑑𝑠 + 𝜎𝑖 (𝑡)

+ 𝑅
𝑖
, 𝑖 = 1, 2, . . . , 𝑙

1
,

𝑥̇
𝑖 (𝑡) = 𝐶𝑥𝑖 (𝑡) + 𝐴𝑓 (𝑥𝑖 (𝑡)) + 𝐵𝑓 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓 (𝑥
𝑖 (𝑠)) 𝑑𝑠 + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗 (𝑡)

+ 𝐼 (𝑡) + 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑗 (𝑠) 𝑑𝑠 + 𝑅𝑖,

𝑖 = 𝑙
1
+ 1, 𝑙
1
+ 2, . . . , 𝑙,

𝑥̇
𝑖 (𝑡) = 𝐶𝑥𝑖 (𝑡) + 𝐴𝑓 (𝑥𝑖 (𝑡)) + 𝐵𝑓 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓 (𝑥
𝑖 (𝑠)) 𝑑𝑠 + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗 (𝑡)

+ 𝐼 (𝑡) + 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑗 (𝑠) 𝑑𝑠,

𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁,

(25)

where 𝑅
𝑖
, 𝑖 = 1, 2, . . . , 𝑙, are control inputs.
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Figure 1: Chaotic trajectory of (44).

Let 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑧(𝑡). Subtracting (4) from (25) we

obtain the following error dynamical system:

̇𝑒
𝑖 (𝑡) = 𝐶𝑒𝑖 (𝑡) + 𝐴𝑔 (𝑒𝑖 (𝑡)) + 𝐵𝑔 (𝑒𝑖 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑔 (𝑒
𝑖 (𝑠)) 𝑑𝑠 + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑒
𝑗 (𝑡)

+ 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑒
𝑗 (𝑡 − 𝜏 (𝑡)) + 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑒
𝑗 (𝑠) 𝑑𝑠

+ 𝜎
𝑖 (𝑡) + 𝑅𝑖, 𝑖 = 1, 2, . . . , 𝑙

1
,

̇𝑒
𝑖 (𝑡) = 𝐶𝑒𝑖 (𝑡) + 𝐴𝑔 (𝑒𝑖 (𝑡)) + 𝐵𝑔 (𝑒𝑖 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑔 (𝑒
𝑖 (𝑠)) 𝑑𝑠 + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑒
𝑗 (𝑡)

+ 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑒
𝑗 (𝑡 − 𝜏 (𝑡)) + 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑒
𝑗 (𝑠) 𝑑𝑠

+ 𝑅
𝑖
, 𝑖 = 𝑙

1
+ 1, 𝑙
1
+ 2, . . . , 𝑙,

̇𝑒
𝑖 (𝑡) = 𝐶𝑒𝑖 (𝑡) + 𝐴𝑔 (𝑒𝑖 (𝑡)) + 𝐵𝑔 (𝑒𝑖 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑔 (𝑒
𝑖 (𝑠)) 𝑑𝑠 + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑒
𝑗 (𝑡)

+ 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑒
𝑗 (𝑡 − 𝜏 (𝑡)) + 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑒
𝑗 (𝑠) 𝑑𝑠,

𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁.

(26)

Similar to Theorem 7, to reach the goal (7), we have only to
prove that system (26) is asymptotically stable at the origin.
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Figure 2: Chaotic trajectories of (46) with 𝜎
1
(𝑡) (a), 𝜎

2
(𝑡) (b), 𝜎

3
(𝑡) (c).

Theorem 8. Suppose that matrix 𝑈 is irreducible and the
assumptions (H

1
) and (H

2
) hold. If

2𝛼 ‖Φ‖ (𝑈̂
𝑠

)
𝑐

𝑙
+ Σ𝐼
𝑁−𝑙

< 0, (27)

then the complex networks (25) are synchronized with the
adaptive pinning controllers

𝑅
𝑖
= −𝛼𝜀

𝑖
𝑒
𝑖 (𝑡) − 𝜔𝛽𝑖 sign (𝑒𝑖 (𝑡)) ,

̇𝜀
𝑖
= 𝑝
𝑖
𝑒
𝑖(𝑡)
𝑇
𝑒
𝑖 (𝑡) ,

𝛽̇
𝑖
= 𝜉
𝑖

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑒𝑖𝑘 (𝑡)
󵄨󵄨󵄨󵄨 ,

(28)

where 𝑖 = 1, 2, . . . , 𝑙, Σ = 2(‖𝐶‖ + ‖𝐴‖ℎ) + ((𝜃max𝜃min +

1 − ℎ
𝜃
)/(1 − ℎ

𝜃
))‖‖𝐷‖ℎ𝐼

𝑁
+ 𝛾‖Λ‖|𝑊|‖ + ((2 − ℎ

𝜏
)/(1 −

ℎ
𝜏
))‖‖𝐵‖ℎ𝐼

𝑁
+ 𝛽‖Υ‖|𝑉|‖, and the other parameters are the

same as those of Theorem 7.

Proof. We define another Lyapunov function as

𝑉 (𝑡) = 𝑉1 (𝑡) + 𝑉2 (𝑡) + 𝑉3 (𝑡) , (29)

where

𝑉
1 (𝑡) =

1

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

+
1

2

𝑙

∑

𝑖=1

𝛼(𝜀
𝑖
− 𝑘
𝑖
)
2

𝑝
𝑖

+
1

2

𝑙
1

∑

𝑖=1

(𝑀
𝑖
− 𝛽
𝑖
)
2

𝜉
𝑖

,

(30)

𝑘
𝑖
, 𝑖 = 1, 2, . . . , 𝑙, are constants to be determined, and 𝑉

2
(𝑡)

and 𝑉
3
(𝑡) are defined as those in the proof of Theorem 7.

In view of (H
1
) and (H

2
), differentiating 𝑉

1
(𝑡) along the

solution of (26) yields

̇
𝑉
1 (𝑡) =

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) ̇𝑒
𝑖 (𝑡) + 𝛼

𝑙

∑

𝑖=1

(𝜀
𝑖
− 𝑘
𝑖
) 𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

−

𝑙
1

∑

𝑖=1

(𝑀
𝑖
− 𝛽
𝑖
)

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑒𝑖𝑘 (𝑡)
󵄨󵄨󵄨󵄨

≤

𝑁

∑

𝑖=1

[ (‖𝐶‖ + ‖𝐴‖ ℎ)
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩

2

+ ‖𝐵‖ ℎ
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))
󵄩󵄩󵄩󵄩

+ ‖𝐷‖ ℎ
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 ∫

𝑡

𝑡−𝜃(𝑡)

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠]

− 𝛼

𝑙

∑

𝑖=1

𝑘
𝑖

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩

2
+ 𝛼

𝑁

∑

𝑖=1

𝜆
Φ
𝑠

min𝑢𝑖𝑖
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩

2

+ 𝛼

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑢
𝑖𝑗 ‖Φ‖

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑗 (𝑡)

󵄩󵄩󵄩󵄩󵄩

+ 𝛽

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
V
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
‖Υ‖

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑗 (𝑡 − 𝜏 (𝑡))

󵄩󵄩󵄩󵄩󵄩
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Figure 3: Synchronization errors of (47): (a) 𝑒
𝑖1
(𝑡), (b) 𝑒

𝑖2
(𝑡), (c) 𝑒

𝑖3
(𝑡), 𝑖 = 1, 2, 3.
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Figure 4: The adaptive control gains of (47): (a) the adaptive gains 𝜀
𝑖
, 1 ≤ 𝑖 ≤ 3, (b) the adaptive gains 𝛽

𝑖
, 1 ≤ 𝑖 ≤ 3.
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+ 𝛾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
‖Λ‖

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩 ∫

𝑡

𝑡−𝜃(𝑡)

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑗 (𝑠)

󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

= 𝜂
𝑇
(𝑡) ((‖𝐶‖ + ‖𝐴‖ ℎ) 𝐼𝑁 + 𝛼 (‖Φ‖ 𝑈̂

𝑠

− 𝐾)) 𝜂 (𝑡)

+ 𝜂
𝑇
(𝑡) (‖𝐵‖ ℎ𝐼𝑁 + 𝛽 ‖Υ‖ |𝑉|) 𝜂 (𝑡 − 𝜏 (𝑡))

+ 𝜂
𝑇
(𝑡) (‖𝐷‖ ℎ𝐼𝑁 + 𝛾 ‖Λ‖ |𝑊|) ∫

𝑡

𝑡−𝜃(𝑡)

𝜂 (𝑠) 𝑑𝑠,

(31)

where𝐾 = diag(𝑘
1
, . . . , 𝑘

𝑙
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁−𝑙

), and the following deduc-

tion is used:
𝑙
1

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝜎𝑖 (𝑡) − 𝜔

𝑙
1

∑

𝑖=1

𝑛

∑

𝑘=1

𝛽
𝑖

󵄨󵄨󵄨󵄨𝑒𝑖𝑘 (𝑡)
󵄨󵄨󵄨󵄨

−

𝑙
1

∑

𝑖=1

𝑛

∑

𝑘=1

(𝑀
𝑖
− 𝛽
𝑖
)
󵄨󵄨󵄨󵄨𝑒𝑖𝑘 (𝑡)

󵄨󵄨󵄨󵄨 − 𝜔

𝑙

∑

𝑖=𝑙
1
+1

𝑛

∑

𝑘=1

𝛽
𝑖

󵄨󵄨󵄨󵄨𝑒𝑖𝑘 (𝑡)
󵄨󵄨󵄨󵄨

≤

𝑙
1

∑

𝑖=1

𝑛

∑

𝑘=1

[
󵄨󵄨󵄨󵄨𝑒𝑖𝑘 (𝑡)

󵄨󵄨󵄨󵄨𝑀𝑖𝑘 −𝑀𝑖
󵄨󵄨󵄨󵄨𝑒𝑖𝑘

󵄨󵄨󵄨󵄨 − (𝜔 − 1) 𝛽𝑖
󵄨󵄨󵄨󵄨𝑒𝑖𝑘

󵄨󵄨󵄨󵄨]

− 𝜔

𝑙

∑

𝑖=𝑙
1
+1

𝑛

∑

𝑘=1

𝛽
𝑖

󵄨󵄨󵄨󵄨𝑒𝑖𝑘 (𝑡)
󵄨󵄨󵄨󵄨

≤ −

𝑙
1

∑

𝑖=1

𝑛

∑

𝑘=1

(𝜔−1) 𝛽𝑖
󵄨󵄨󵄨󵄨𝑒𝑖𝑘

󵄨󵄨󵄨󵄨 − 𝜔

𝑙

∑

𝑖=𝑙
1
+1

𝑛

∑

𝑘=1

𝛽
𝑖

󵄨󵄨󵄨󵄨𝑒𝑖𝑘 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 0.

(32)

Combining (31) with (17) and (25), we have

̇
𝑉 (𝑡) ≤

1

2
𝜁
𝑇
(𝑡)Π𝜁 (𝑡) , (33)

where 𝜁(𝑡) = (𝜂𝑇(𝑡), 𝜂𝑇(𝑡 − 𝜏(𝑡)), (∫𝑡
𝑡−𝜃(𝑡)

𝜂(𝑠)𝑑𝑠)
𝑇
)
𝑇 and

Π =

[
[
[
[
[

[

Π
11

Π
12

Π
13

Π
𝑇

12
−2 (1 − ℎ

𝜏
) 𝑄 0

Π
𝑇

13
0 −

2 (1 − ℎ
𝜃
)

𝜃min
𝐺

]
]
]
]
]

]

(34)

withΠ
11
= 2((‖𝐶‖+ ‖𝐴‖ℎ)𝐼

𝑁
+𝛼(‖Φ‖𝑈̂

𝑠

−𝐾) + 𝑄 + 𝜃max𝐺),
Π
12
= ‖𝐵‖ℎ𝐼

𝑁
+ 𝛽‖Υ‖|𝑉|, Π

13
= ‖𝐷‖ℎ𝐼

𝑁
+ 𝛾‖Λ‖|𝑊|.

According to Lemma 4,Π < 0 is equivalent to

Δ = 2 ((‖𝐶‖ + ‖𝐴‖ ℎ) 𝐼𝑁 + 𝛼 (‖Φ‖ 𝑈̂
𝑠

− 𝐾) + 𝑄 + 𝜃max𝐺)

+
1

2 (1 − ℎ
𝜏
)
(‖𝐵‖ ℎ𝐼𝑁 + 𝛽 ‖Υ‖ |𝑉|)𝑄

−1

× (‖𝐵‖ ℎ𝐼𝑁 + 𝛽 ‖Υ‖ |𝑉|
𝑇
)

+
𝜃min

2 (1 − ℎ
𝜃
)
(‖𝐷‖ ℎ𝐼𝑁 + 𝛾 ‖Λ‖ |𝑊|) 𝐺

−1

× (‖𝐷‖ ℎ𝐼𝑁 + 𝛾 ‖Λ‖ |𝑊|
𝑇
) < 0.

(35)
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𝑧1(𝑡)

15

10

5

0

−5

−10

𝑧 2
(𝑡
)

Figure 5: Chaotic trajectory of (49).
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Figure 6: Chaotic trajectory of (51).

Let𝑄 = (1/2(1−ℎ
𝜏
))‖‖𝐵‖ℎ𝐼

𝑁
+𝛽‖Υ‖|𝑉|‖𝐼

𝑁
,𝐺 = (𝜃min/2(1−

ℎ
𝜃
))‖‖𝐷‖ℎ𝐼

𝑁
+ 𝛾‖Λ‖|𝑊|‖𝐼

𝑁
. We have

Δ ≤ 2 (‖𝐶‖ + ‖𝐴‖ ℎ) 𝐼𝑁 + 2𝛼 (‖Φ‖ 𝑈̂
𝑠

− 𝐾)

+
𝜃max𝜃min + 1 − ℎ𝜃

1 − ℎ
𝜃

󵄩󵄩󵄩󵄩‖𝐷‖ ℎ𝐼𝑁 + 𝛾 ‖Λ‖ |𝑊|
󵄩󵄩󵄩󵄩 𝐼𝑁

+
2 − ℎ
𝜏

1 − ℎ
𝜏

󵄩󵄩󵄩󵄩‖𝐵‖ ℎ𝐼𝑁 + 𝛽 ‖Υ‖ |𝑉|
󵄩󵄩󵄩󵄩 𝐼𝑁−1

= [

Δ
11

2𝛼 ‖Φ‖ (𝑈̂
𝑠

)
∗

2𝛼 ‖Φ‖ (𝑈̂
𝑠

)
𝑇

∗
2𝛼 ‖Φ‖ (𝑈̂

𝑠

)
𝑐

𝑙
+ Σ𝐼
𝑁−𝑙

] ,

(36)

where Δ
11
= 2𝛼‖Φ‖(𝑈̂

𝑠

)
𝑙
− 2𝛼𝐾

𝑙
+ Σ𝐼
𝑙
, 2𝛼‖Φ‖(𝑈̂𝑠)

∗
is matrix

with appropriate dimension.
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(a) (b)

Figure 7: WS Small-Worlds with 10 nodes. In (a) each node connects 4 nodes, and the rewire probability is 0.2; in (b) each node connects 2
nodes, and the rewire probability is 0.4.
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Figure 8: Synchronization errors of (52): (a) 𝑒
𝑖1
, (b) 𝑒

𝑖2
, 1 ≤ 𝑖 ≤ 10.

Since 2𝛼‖Φ‖(𝑈̂𝑠)𝑐
𝑙
+ Σ𝐼
𝑁−𝑙

< 0 and there exist positive
constants 𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑙
such that

2𝛼 ‖Φ‖ (𝑈̂
𝑠

)
𝑙
− 2𝛼𝐾

𝑙
+ Σ𝐼
𝑙
− (2𝛼 ‖Φ‖)

2
(𝑈̂
𝑠

)
∗

× (2𝛼 ‖Φ‖ (𝑈̂
𝑠

)
𝑐

𝑙
+ Σ𝐼
𝑁−𝑙

)

−1

(𝑈̂
𝑠

)
𝑇

∗
< 0,

(37)

again, from Lemma 4 we obtainΔ < 0. Hence,Π < 0. Denote
𝜆min to be the minimum eigenvalue of −Π; then

̇
𝑉 (𝑡) ≤ −𝜆min

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩

2
≤ 0. (38)

Integrating both sides of the previous equation from 0 to 𝑡
yields

𝑉 (0) ≥ 𝑉 (𝑡) + 𝜆min

𝑁

∑

𝑖=1

∫

𝑡

0

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑠)
󵄩󵄩󵄩󵄩

2
𝑑𝑠

≥ 𝜆min

𝑁

∑

𝑖=1

∫

𝑡

0

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑠)
󵄩󵄩󵄩󵄩

2
𝑑𝑠.

(39)

Therefore,

lim
𝑡→∞

𝜆min

𝑁

∑

𝑖=1

∫

𝑡

0

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑠)
󵄩󵄩󵄩󵄩

2
𝑑𝑠 ≤ 𝑉 (0) . (40)

By Lemma 6 we obtain

lim
𝑡→∞

𝜆min

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩

2
= 0, (41)
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Figure 9:The adaptive pinning control gains of (52): (a) the adaptive pinning control gains 𝜀
𝑖
, 𝑖 = 1, 2. (b)The adaptive pinning control gains

𝛽
𝑖
, 𝑖 = 1, 2.

which in turn means

lim
𝑡→∞

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩 = 0, 𝑖 = 1, 2, . . . , 𝑁. (42)

This completes the proof.

When there is no external perturbation, that is, 𝜎
𝑖
(𝑡) =

0, 𝑖 = 1, 2, . . . , 𝑁, one can easily get the following corollaries
from Theorems 7 and 8, respectively. We omit their proofs
here.

Corollary 9. Suppose that 𝜎
𝑖
(𝑡) = 0, 𝑖 = 1, 2, . . . , 𝑁, and the

assumption condition (H
1
) holds. Then complex networks (1)

are synchronized with the adaptive controllers (12). Moreover,
the scalar 𝜔 can be relaxed to any positive constant.

Corollary 10. Suppose that matrix 𝑈 is irreducible and
the assumption (H

1
) holds. The complex networks (25) are

synchronized with the adaptive pinning controllers (28), if (27)
holds. Moreover, the scalar 𝜔 can be relaxed to any positive
constant.

Remark 11. From the inequalities (16) and (32) one can see
that the designed adaptive controllers (12) and (28) are very
useful. They can overcome the bad effects of the uncertain
nonlinear perturbations without knowing the exact functions
and bounds of the perturbations as long as the perturbed
systems are chaotic. Especially, when there are only partial
nodes perturbed (the first 𝑙

1
nodes in the system (25)), the

designed controllers still are effective to stabilize the error
system by adding them to nodes with and without such
perturbations, (see the inequality (32)). Obviously, in the case
of no perturbation, the parameter 𝜔 can also be taken as 0.
When 𝜔 = 0, the controllers (12) and (28) turn out to be
the usual adaptive controller, which is extensively utilized
to synchronize coupled systems with or without stochastic
perturbations [8, 23–34, 40–42]. However, the controllers
in [8, 23–34, 40–42] cannot synchronize coupled systems

with nonstochastic perturbations. Therefore, the designed
controllers can deal with both stochastic and nonstochastic
perturbations to the systems, and hence they have better
robustness than usual adaptive controllers.

Remark 12. Model (1) can be extended to the following more
general complex networks:

𝑥̇
𝑖 (𝑡) = 𝐶𝑥

𝑖 (𝑡) + 𝐴𝑓 (𝑥𝑖 (𝑡)) + 𝐵𝑓𝜏 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓
𝜃
(𝑥
𝑖 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡)

+ 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗 (𝑡) + 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑗 (𝑠) 𝑑𝑠 + 𝜎𝑖 (𝑡) + 𝑅𝑖,

𝑖 = 0, 1, . . . , 𝑁.

(43)

Moreover, we can also consider stochastic perturbations [21]
and Markovian jump [43, 44] in (43) to get more general
results. For simplicity, we omit the corresponding results and
only consider model (1).

5. Numerical Examples

In this section, we provide two examples to illustrate the gen-
eral model and the advantage of the new adaptive controller.

Example 13. The Lorenz system is described as

𝑧̇ (𝑡) = 𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) , (44)
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where

𝐶 = [

[

−10 10 0

28 −1 0

0 0 8/3

]

]

, 𝐴 = [

[

0 0 0

0 1 0

0 0 1

]

]

, (45)

𝑓(𝑧(𝑡)) = (0, −𝑧
1
(𝑡)𝑧
3
(𝑡), 𝑧
1
(𝑡)𝑧
2
(𝑡))
𝑇. When initial values are

taken as 𝑧
1
(0) = 0.8, 𝑧

2
(0) = 2, 𝑧

3
(0) = 2.5, chaotic trajectory

of (44) can be seen in Figure 1.
The following three perturbedLorenz systems are chaotic:

𝑧̇ (𝑡) = 𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) + 𝜎𝑖 (𝑡) , 𝑖 = 1, 2, 3, (46)

where 𝜎
1
(𝑡) = (0.1𝑧

2

1
(𝑡), 0.2𝑧

2
(𝑡), 0.2𝑧

3
(𝑡))
𝑇, 𝜎
2
(𝑡) =

(0.1𝑧
1
(𝑡), 0.05𝑧

2

2
(𝑡), sin 𝑧

3
(𝑡))
𝑇, 𝜎
3
(𝑡) = (0.1𝑧

1
(𝑡), cos 𝑧

2
(𝑡),

sin 𝑧
3
(𝑡))
𝑇. Chaotic trajectories of the three perturbed Lorenz

systems are showed in Figure 2 with the same initial values
𝑧
1
(0) = 0.8, 𝑧

2
(0) = 2, 𝑧

3
(0) = 2.5.

Now consider the following complex networks with each
node as the previous perturbed Lorenz system:

𝑥̇
𝑖 (𝑡) = 𝐶𝑥

𝑖 (𝑡) + 𝐴𝑓 (𝑥𝑖 (𝑡))

+ 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗 (𝑡) + 𝜎𝑖 (𝑡) + 𝑅𝑖, 𝑖 = 0, 1, 3,

(47)

where 𝛼 = 0.5, Φ = 𝐼
3
and

𝑈 = [

[

−1 1 0

1 −1 0

1 1 −2

]

]

. (48)

Obviously, conditions (H
1
) and (H

2
) are satisfied. According

to Theorem 7, the complex networks (47) can be synchro-
nized with adaptive controllers (12).

The initial conditions of the numerical simulations are
as follows: 𝜔 = 4, step = 0.0005, 𝑥

1
(0) = (−2, −1, 0)

𝑇,
𝑥
2
(0) = (1, 2, 3)

𝑇, 𝑥
3
(0) = (4, 5, 6)

𝑇, 𝜀
𝑖
(0) = 1, 𝛽

𝑖
(0) = 2, 𝑝

𝑖
=

𝜉
𝑖
= 0.5, 𝑖 = 1, 2, 3. Figure 3 describes the synchronization

errors 𝑒
𝑖𝑗
(𝑡) = 𝑥

𝑖𝑗
(𝑡) − 𝑧

𝑗
(𝑡), 𝑖, 𝑗 = 1, 2, 3. Figure 4 shows

the adaptive feedback gains. Numerical simulations verify the
effectiveness of Theorem 7.

Example 14. Consider the following chaotic neural networks
with mixed delays:

𝑧̇ (𝑡) = 𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) + 𝐵𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜎(𝑡)

𝑓 (𝑧 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) ,

(49)

where 𝑧(𝑡) = (𝑧
1
(𝑡), 𝑧
2
(𝑡))
𝑇
, 𝜏(𝑡) = 1, 𝜎(𝑡) = 0.3, 𝑓(𝑧(𝑡)) =

(tanh(𝑧
1
(𝑡), tanh(𝑧

2
(𝑡))
𝑇,

𝐶 = [
−1.2 0

0 −1
] , 𝐴 = [

3 −0.3

8 5
] ,

𝐼 = [
0

2
] , 𝐵 = [

−1.4 0.1

0.3 −8
] , 𝐷 = [

−1.2 0.1

−2.8 −1
] .

(50)

In the case that the initial condition is chosen as 𝑧
1
(𝑡) = 0.4,

𝑧
2
(𝑡) = 0.6, for all 𝑡 ∈ [−1, 0], the chaotic attractor can be

seen in Figure 5.
The perturbed system of (49) is

𝑧̇ (𝑡) = 𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) + 𝐵𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜎(𝑡)

𝑓 (𝑧 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) + 𝜎 (𝑡) ,

(51)

where 𝜎(𝑡) = (0.2𝑧
1
(𝑡 − 1), 0.2 ∫

𝑡

𝑡−0.3
𝑧
2
(𝑠)𝑑𝑠)

𝑇. The chaotic
attractor of (51) can be seen in Figure 6 with 𝑧

1
(𝑡) = 0.4,

𝑧
2
(𝑡) = 0.6, for all 𝑡 ∈ [−1, 0].
Now consider the following complex networks with each

node as the previous neural networks withmixed delays (49),
while the second node is disturbed with the previous 𝜎(𝑡).

𝑥̇
𝑖 (𝑡) = 𝐶𝑥

𝑖 (𝑡) + 𝐴𝑓 (𝑥𝑖 (𝑡)) + 𝐵𝑓 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓 (𝑥
𝑖 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) + 𝛼

10

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗 (𝑡)

+ 𝛽

10

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗 (𝑡 − 𝜏 (𝑡)) + 𝛾

10

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑗 (𝑠) 𝑑𝑠

+ 𝜎
𝑖 (𝑡) + 𝑅𝑖, 𝑖 = 0, 1, . . . , 10,

(52)

where 𝛼 = 3, 𝛽 = 𝛾 = 1, 𝜎
2
(𝑡) = 𝜎(𝑡), else 𝜎

𝑖
(𝑡) = 0.

Figure 7 depicts the WS Small-World networks [2] cor-
responding to nondelay (a), discrete delay, and distributed
delay (b). The corresponding Laplacian matrices are shown
as following:

𝑈 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−4 1 1 0 0 0 0 0 1 1

1 −5 1 1 0 0 0 0 1 1

1 1 −4 1 1 0 0 0 0 0

0 1 1 −4 1 1 0 0 0 0

0 0 1 1 −4 1 1 0 0 0

0 0 0 1 1 −4 1 1 0 0

0 0 0 0 1 1 −4 1 1 0

0 0 0 0 0 1 1 −4 1 1

1 1 0 0 0 0 1 1 −4 0

1 1 0 0 0 0 0 1 0 −3

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (53)

𝑉 = 𝑊 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−2 1 0 0 0 1 0 0 0 0

1 −2 1 0 0 0 0 0 0 0

0 1 −2 0 0 0 0 0 1 0

0 0 0 −1 1 0 0 0 0 0

0 0 0 1 −3 0 1 0 0 1

1 0 0 0 0 −1 0 0 0 0

0 0 0 0 1 0 −2 1 0 0

0 0 0 0 0 0 1 −2 1 0

0 0 1 0 0 0 0 1 −3 1

0 0 0 0 1 0 0 0 1 −2

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(54)

Take the first two nodes (corresponding to matrix 𝑈) to
be controlled. According Theorem 8, the complex networks
(52) can be synchronized with adaptive controllers (27).
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The initial conditions of the numerical simulations are as
follows: 𝜔 = 2, step = 0.0005, 𝑥

𝑖
(0) = (−11 + 2𝑖, −10 +

2𝑖)
𝑇
, 𝑖 = 1, 2, . . . , 10. 𝜀

𝑖
(0) = 𝛽

𝑖
(0) = 𝑝

𝑖
= 𝜉
𝑖
= 1, 𝑖 =

1, 2. Figure 8 describes the synchronization errors 𝑒
𝑖𝑗
(𝑡) =

𝑥
𝑖𝑗
(𝑡) − 𝑧

𝑗
(𝑡), 𝑖 = 1, 2, . . . , 10, 𝑗 = 1, 2. Figure 9 depicts the

adaptive feedback gains. Numerical simulations verify the
effectiveness of Theorem 8.

6. Conclusions

External perturbations to networks are unavoidable in prac-
tice. On the other hand, many chaotic models have discrete
delay and distributed delay.Therefore, in this paper, we intro-
duced a class of hybrid coupled complex networkswithmixed
delays and unknown nonstochastic external perturbations. A
simple robust adaptive controller is designed to synchronize
the complex networks even without knowing a priori the
bounds and the exact functions of the perturbations. It should
be emphasized that we do not assume that the coupling
matrix is symmetric or diagonal. The controller can enhance
robustness and reduce fragility of complex networks; hence,
it has great practical significance. Moreover, we also verify
the effectiveness of the theoretical results by numerical
simulations.
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