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This paper investigates dynamical behaviors of stochastic Hopfield neural networks with both time-varying and continuously
distributed delays. By employing the Lyapunov functional theory and linear matrix inequality, some novel criteria on asymptotic
stability, ultimate boundedness, and weak attractor are derived. Finally, an example is given to illustrate the correctness and
effectiveness of our theoretical results.

1. Introduction

Hopfield neural networks [1] have been extensively studied
in the past years and found many applications in differ-
ent areas such as pattern recognition, associative memory,
and combinatorial optimization. Such applications heavily
depend on the dynamical behaviors such as stability, uniform
boundedness, ultimate boundedness, attractor, bifurcation,
and chaos. As it is well known, time delays are unavoidably
encountered in the implementation of neural networks. Since
time delays as a source of instability and bad performance
always appear in many neural networks owing to the finite
speed of information processing, the stability analysis for the
delayed neural networks has received considerable attention.
However, in these recent publications, most research on
delayed neural networks has been restricted to simple cases
of discrete delays. Since a neural network usually has a
spatial nature due to the presence of an amount of parallel
pathways of a variety of axon sizes and lengths, it is desired
to model them by introducing distributed delays. Therefore,
both discrete and distributed delays should be taken into
account when modeling realistic neural networks [2, 3].

On the other hand, it has now been well recognized
that stochastic disturbances are also ubiquitous owing to
thermal noise in electronic implementations. Therefore, it

is important to understand how these disturbances affect
the networks. Many results on stochastic neural networks
have been reported in [4–24]. Some sufficient criteria on the
stability of uncertain stochastic neural networks were derived
in [4–7]. Almost sure exponential stability of stochastic neu-
ral networks was studied in [8–10]. In [11–16], mean square
exponential stability and 𝑝th moment exponential stability
of stochastic neural networks were discussed. The stability
of stochastic impulsive neural networks was discussed in
[17–19]. The stability of stochastic neural networks with the
Markovian jumping parameters was investigated in [20–22].
The passivity analysis for stochastic neural networks was
discussed in [23, 24]. These references mainly considered the
stability of equilibrium point of stochastic delayed neural
networks. What do we study to understand the asymptotic
behaviors when the equilibrium point does not exist?

Except for the stability property, boundedness and attrac-
tor are also foundational concepts of dynamical systems.They
play an important role in investigating the uniqueness of
equilibrium, global asymptotic stability, global exponential
stability, and the existence of periodic solution, its control,
and synchronization [25]. Recently, ultimate boundedness
and attractor of several classes of neural networks with
time delays have been reported in [26–33]. Some sufficient
criteria were derived in [26, 27], but these results hold only



2 Abstract and Applied Analysis

under constant delays. Following, in [28], the globally robust
ultimate boundedness of integrodifferential neural networks
with uncertainties and varying delayswere studied.After that,
some sufficient criteria on the ultimate boundedness of neural
networks with both varying and unbounded delays were
derived in [29], but the concerned systems are deterministic
ones. In [30, 31], a series of criteria on the boundedness,
global exponential stability, and the existence of periodic
solution for nonautonomous recurrent neural networks were
established. In [32, 33], the ultimate boundedness and weak
attractor of stochastic neural networks with time-varying
delays were discussed. To the best of our knowledge, for
stochastic neural networks with mixed time delays, there are
few published results on the ultimate boundedness and weak
attractor. Therefore, the arising questions about the ultimate
boundedness, weak attractor, and asymptotic stability of the
stochastic Hopfield neural networks with mixed time delays
are important and meaningful.

The left paper is organized as follows. Some preliminaries
are in Section 2, main results are presented in Section 3, a
numerical example is given in Section 4, and conclusions are
drawn in Section 5.

2. Preliminaries

Consider the following stochastic Hopfield neural networks
with both time-varying and continuously distributed delays:

𝑑𝑥 (𝑡) = [ − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐽] 𝑑𝑡

+ [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡) ,

(1)

in which 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇 is a state vector associated

with the neurons; 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
), 𝑐
𝑖

> 0 represents
the rate with which the 𝑖th unit will reset its potential to
the resting state in isolation when being disconnected from
the network and the external stochastic perturbation; 𝐴 =

(𝑎
𝑖𝑗
)
𝑛×𝑛

, 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

, and 𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

represent the
connection weight matrix, the delayed connection weight
matrix, and the distributively delayed connection weight
matrix, respectively; 𝐽 = (𝐽

1
, . . . , 𝐽

𝑛
)
𝑇, 𝐽
𝑖
denotes the external

bias on the ith unit; 𝑓(𝑥(𝑡)) = (𝑓
1
(𝑥
1
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡)))
𝑇,

𝑔(𝑥(𝑡)) = (𝑔
1
(𝑥
1
(𝑡)), . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑡)))
𝑇, 𝑓
𝑗
and 𝑔

𝑗
denote

activation functions, 𝐾(𝑡) = diag(𝑘
1
(𝑡), . . . , 𝑘

𝑛
(𝑡)), and the

delay kernel 𝑘
𝑗
(𝑡) is a real-valued nonnegative continuous

function defined on [0,∞); 𝜎
1
and 𝜎
2
are diffusion coefficient

matrices; 𝑤(𝑡) is a one-dimensional Brownian motion or
Winner process, which is defined on a complete probability
space (Ω,F, 𝑃) with a natural filtration {F

𝑡
}
𝑡≥0

generated
by {𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡}; 𝜏(𝑡) is the transmission delay,
and the initial conditions associated with system (1) are of
the following forms: 𝑥(𝑡) = 𝜉(𝑡), −∞ < 𝑡 ≤ 0, where
𝜉(⋅) is aF

0
-measurable, bounded, and continuous 𝑅𝑛-valued

random variable defined on (−∞, 0].
Throughout this paper, one always supposes that the

following condition holds.

(A1) For 𝑓(𝑥(𝑡)) and 𝑔(𝑥(𝑡)) in (1), there are always con-
stants 𝑙−

𝑖
, 𝑙+
𝑖
,𝑚−
𝑖
, and𝑚

+

𝑖
such that

𝑙
−

𝑖
≤

𝑓
𝑖
(𝑥) − 𝑓

𝑖
(𝑦)

𝑥 − 𝑦
≤ 𝑙
+

𝑖
,

𝑚
−

𝑖
≤

𝑔
𝑖
(𝑥) − 𝑔

𝑖
(𝑦)

𝑥 − 𝑦
≤ 𝑚
+

𝑖
, ∀𝑥, 𝑦 ∈ 𝑅.

(2)

Moreover, there exist constant ] > 0 and matrix
𝐾(]) = diag(𝑘

1
(]), . . . , 𝑘

𝑛
(])) > 0 such that

∫

∞

0

𝑘
𝑗
(𝜃) 𝑑𝜃 = 1, ∫

∞

0

𝑘
𝑗
(𝜃) 𝑒

]𝜃
𝑑𝜃 = 𝑘

𝑗
(]) < ∞. (3)

Following, 𝐴 > 0 (resp., 𝐴 ≥ 0) means that matrix 𝐴 is
a symmetric positive definite (resp., positive semi-definite).
𝐴
𝑇 and𝐴

−1 denote the transpose and inverse of thematrix𝐴.
𝜆max(𝐴) and 𝜆min(𝐴) represent the maximum and minimum
eigenvalues of matrix 𝐴, respectively.

Definition 1. System (1) is said to be stochastically ultimately
bounded if, for any 𝜀 ∈ (0, 1), there is a positive constant 𝐶 =

𝐶(𝜀) such that the solution 𝑥(𝑡) of system (1) satisfies

lim sup
𝑡→∞

𝑃 {‖𝑥 (𝑡)‖ ≤ 𝐶} ≥ 1 − 𝜀. (4)

Lemma 2 (see [34]). Let 𝑄(𝑥) = 𝑄
𝑇
(𝑥), 𝑅(𝑥) = 𝑅

𝑇
(𝑥) and

𝑆(𝑥) depends affinely on 𝑥. Then, linear matrix inequality

(
𝑄 (𝑥) 𝑆 (𝑥)

𝑆
𝑇
(𝑥) 𝑅 (𝑥)

) > 0 (5)

is equivalent to

(1) 𝑅(𝑥) > 0, 𝑄(𝑥) − 𝑆(𝑥)𝑅
−1
(𝑥)𝑆
𝑇
(𝑥) > 0,

(2) 𝑄(𝑥) > 0, 𝑅(𝑥) − 𝑆
𝑇
(𝑥)𝑄
−1
(𝑥)𝑆(𝑥) > 0.

3. Main Results

Theorem 3. System (1) is stochastically ultimately bounded
provided that 𝜏(𝑡) satisfies 0 ≤ 𝜏(𝑡) ≤ 𝜏, ̇𝜏(𝑡) ≤ 𝜇 ≤ 1, and there
exist some matrices 𝑃 > 0, 𝑄

𝑖
≥ 0, 𝑈

𝑖
= diag(𝑢

𝑖1
, . . . , 𝑢

𝑖𝑛
) ≥ 0

(𝑖 = 1, 2, 3, 4) such that the following linear matrix inequality
holds:

Σ =

(
(
(
(

(

Σ
11

0 𝑃𝐴 + 𝐿
2
𝑈
1

𝑃𝐵 𝑀
2
𝑈
4

𝑃𝐷 𝜎
𝑇

1
𝑃

∗ Σ
22

0 𝐿
2
𝑈
2

0 0 𝜎
𝑇

2
𝑃

∗ ∗ Σ
33

0 0 0 0

∗ ∗ ∗ Σ
44

0 0 0

∗ ∗ ∗ ∗ Σ
55

0 0

∗ ∗ ∗ ∗ ∗ −𝑈
3

0

∗ ∗ ∗ ∗ ∗ −𝑃

)
)
)
)

)

< 0,

(6)
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where ∗ denotes the corresponding symmetric terms,
Σ
11

= 𝑄
1
+ 𝜏𝑄
2
− 𝑃𝐶 − 𝐶𝑃 − 2𝐿

1
𝑈
1
− 2𝑀
1
𝑈
4
,

Σ
22

= − (1 − 𝜇)𝑄
1
− 2𝐿
1
𝑈
2
, Σ
33

= 𝑄
3
+ 𝜏𝑄
4
− 2𝑈
1
,

Σ
44

= − (1 − 𝜇)𝑄
3
− 2𝑈
2
, Σ
55

= 𝑈
3
𝐾 (]) − 2𝑈

4
,

𝐿
1
= diag (𝑙−

1
𝑙
+

1
, . . . , 𝑙

−

𝑛
𝑙
+

𝑛
) ,

𝐿
2
= diag (𝑙−

1
+ 𝑙
+

1
, . . . , 𝑙

−

𝑛
+ 𝑙
+

𝑛
) ,

𝑀
1
= diag (𝑚−

1
𝑚
+

1
, . . . , 𝑚

−

𝑛
𝑚
+

𝑛
) ,

𝑀
2
= diag (𝑚−

1
+ 𝑚
+

1
, . . . , 𝑚

−

𝑛
+ 𝑚
+

𝑛
) .

(7)

Proof. The key of the proof is to prove that there exists a
positive constant𝐶

∗
, which is independent of the initial data,

such that

lim sup
𝑡→∞

𝐸‖𝑥(𝑡)‖
2
≤ 𝐶
∗
. (8)

If (8) holds, then it follows from Chebyshev’s inequality that
for any 𝜀 > 0 and 𝐶 = √𝐶

∗
/𝜀,

lim sup
𝑡→∞

𝑃 {‖𝑥 (𝑡)‖ > 𝐶} ≤
lim sup

𝑡→∞
𝐸‖𝑥 (𝑡)‖

2

𝐶2
= 𝜀, (9)

which implies that (4) holds. Now, we begin to prove that (8)
holds.

From Σ < 0 and Lemma 2, one may obtain

(

(

Σ
11

0 𝑃𝐴 + 𝐿
2
𝑈
1

𝑃𝐵 𝑀
2
𝑈
4

𝑃𝐷

∗ Σ
22

0 𝐿
2
𝑈
2

0 0

∗ ∗ Σ
33

0 0 0

∗ ∗ ∗ Σ
44

0 0

∗ ∗ ∗ ∗ Σ
55

0

∗ ∗ ∗ ∗ ∗ −𝑈
3

)

)

+(

(

𝜎
𝑇

1
𝑃

𝜎
𝑇

2
𝑃

0

0

0

0

)

)

𝑃
−1(

(

𝜎
𝑇

1
𝑃

𝜎
𝑇

2
𝑃

0

0

0

0

)

)

𝑇

< 0.

(10)

Hence, there exists a sufficiently small 𝜆 ∈ (0, ]) such that

Γ = (

(

Γ
11

0 𝑃𝐴 + 𝐿
2
𝑈
1

𝑃𝐵 𝑀
2
𝑈
4

𝑃𝐷

∗ Γ
22

0 𝐿
2
𝑈
2

0 0

∗ ∗ Γ
33

0 0 0

∗ ∗ ∗ Γ
44

0 0

∗ ∗ ∗ ∗ Γ
55

0

∗ ∗ ∗ ∗ ∗ −𝑈
3

)

)

+
(
(

(

𝜎
𝑇

1
𝑃

𝜎
𝑇

2
𝑃

0

0

0

0

)
)

)

𝑃
−1(
(

(

𝜎
𝑇

1
𝑃

𝜎
𝑇

2
𝑃

0

0

0

0

)
)

)

𝑇

< 0,

(11)

where 𝐼 is identity matrix,

Γ
11

= 𝑒
𝜆𝜏
𝑄
1
+ 𝜏𝑄
2
− 𝑃𝐶 − 𝐶𝑃 − 2𝐿

1
𝑈
1

− 2𝑀
1
𝑈
4
+ 2𝜆𝑃 + 2𝜆𝐼,

Γ
22

= Σ
22

+ 𝜆𝐼, Γ
33

= 𝜆𝐼 + 𝑒
𝜆𝜏
𝑄
3
+ 𝜏𝑄
4
− 2𝑈
1
,

Γ
44

= Σ
44

+ 𝜆𝐼, Γ
55

= Σ
55

+ 𝜆𝐼.

(12)

Consider the Lyapunov-Krasovskii function as follows:

𝑉 (𝑥 (𝑡) , 𝑡) = 𝑉
1
(𝑥 (𝑡) , 𝑡) + 𝑉

2
(𝑥 (𝑡) , 𝑡)

+ 𝑉
3
(𝑥 (𝑡) , 𝑡) + 𝑉

4
(𝑥 (𝑡) , 𝑡) ,

(13)

where

𝑉
1
(𝑥 (𝑡) , 𝑡) = 𝑒

𝜆𝑡
𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑥 (𝑡) , 𝑡) =

𝑛

∑

𝑗=1

𝑢
3𝑗
∫

∞

0

𝑘
𝑗
(𝜃) ∫

𝑡

𝑡−𝜃

𝑒
𝜆(𝑠+𝜃)

𝑔
2

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠 𝑑𝜃,

𝑉
3
(𝑥 (𝑡) , 𝑡)

= ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝜆(𝑠+𝜏)

[𝑥
𝑇
(𝑠) 𝑄
1
𝑥 (𝑠) + 𝑓

𝑇
(𝑥 (𝑠)) 𝑄

3
𝑓 (𝑥 (𝑠))] 𝑑𝑠,

𝑉
4
(𝑥 (𝑡) , 𝑡)

= ∫

𝑡

𝑡−𝜏(𝑡)

∫

𝑡

𝑠

𝑒
𝜆𝜃

[𝑥
𝑇
(𝜃) 𝑄
2
𝑥 (𝜃)

+𝑓
𝑇
(𝑥 (𝜃)) 𝑄

4
𝑓 (𝑥 (𝜃))] 𝑑𝜃 𝑑𝑠.

(14)

Then, it can be obtained by Ito’s formula in [35] that

𝑑𝑉 (𝑥 (𝑡) , 𝑡)

= 𝑒
𝜆𝑡
2𝑥
𝑇
(𝑡) 𝑃 [𝜎

1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡)

+ {L𝑉
1
(𝑥 (𝑡) , 𝑡)

+
𝜕 [𝑉
2
(𝑥 (𝑡) , 𝑡) + 𝑉

3
(𝑥 (𝑡) , 𝑡) + 𝑉

4
(𝑥 (𝑡) , 𝑡)]

𝜕𝑡
} 𝑑𝑡,

(15)

where

𝜕𝑉
2
(𝑥 (𝑡) , 𝑡)

𝜕𝑡

=

𝑛

∑

𝑗=1

𝑢
3𝑗
∫

∞

0

𝑘
𝑗
(𝜃) [𝑒
𝜆(𝑡+𝜃)

𝑔
2

𝑗
(𝑥
𝑗
(𝑡)) − 𝑒

𝜆𝑡
𝑔
2

𝑗
(𝑥
𝑗
(𝑡 − 𝜃))] 𝑑𝜃

≤ 𝑒
𝜆𝑡

𝑛

∑

𝑗=1

𝑢
3𝑗
𝑘
𝑗
(]) 𝑔
2

𝑗
(𝑥
𝑗
(𝑡))
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− 𝑒
𝜆𝑡

𝑛

∑

𝑗=1

𝑢
3𝑗
[∫

∞

0

𝑘
𝑗
(𝜃) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜃)) 𝑑𝜃]

2

= 𝑒
𝜆𝑡
𝑔
𝑇
(𝑥 (𝑡)) 𝑈

3
𝐾 (]) 𝑔 (𝑥 (𝑡))

− 𝑒
𝜆𝑡
(∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

× 𝑈
3
(∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠) ,

𝜕𝑉
3
(𝑥 (𝑡) , 𝑡)

𝜕𝑡

= 𝑒
𝜆(𝑡+𝜏)

[𝑥
𝑇
(𝑡) 𝑄
1
𝑥 (𝑡) + 𝑓

𝑇
(𝑥 (𝑡)) 𝑄

3
𝑓 (𝑥 (𝑡))]

− (1 − ̇𝜏 (𝑡)) 𝑒
𝜆(𝑡−𝜏(𝑡)+𝜏)

× [𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄

1
𝑥 (𝑡 − 𝜏 (𝑡))

+𝑓
𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑄

3
𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))]

≤ 𝑒
𝜆(𝑡+𝜏)

[𝑥
𝑇
(𝑡) 𝑄
1
𝑥 (𝑡) + 𝑓

𝑇
(𝑥 (𝑡)) 𝑄

3
𝑓 (𝑥 (𝑡))]

− (1 − 𝜇) 𝑒
𝜆𝑡

× [𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄

1
𝑥 (𝑡 − 𝜏 (𝑡))

+𝑓
𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑄

3
𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))] ,

𝜕𝑉
4
(𝑥 (𝑡) , 𝑡)

𝜕𝑡

= 𝑒
𝜆𝑡
𝜏 (𝑡) [𝑥

𝑇
(𝑡) 𝑄
2
𝑥 (𝑡) + 𝑓

𝑇
(𝑥 (𝑡)) 𝑄

4
𝑓 (𝑥 (𝑡))]

− (1 − ̇𝜏 (𝑡))

× ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝜆𝑠
[𝑥
𝑇
(𝑠) 𝑄
2
𝑥 (𝑠)+𝑓

𝑇
(𝑥 (𝑠)) 𝑄

4
𝑓 (𝑥 (𝑠))] 𝑑𝑠

≤ 𝑒
𝜆𝑡
𝜏 [𝑥
𝑇
(𝑡) 𝑄
2
𝑥 (𝑡) + 𝑓

𝑇
(𝑥 (𝑡)) 𝑄

4
𝑓 (𝑥 (𝑡))] ,

(16)
L𝑉
1
(𝑥 (𝑡) , 𝑡)

=
𝜕𝑉
1
(𝑥 (𝑡) , 𝑡)

𝜕𝑡
+

𝜕𝑉
1
(𝑥 (𝑡) , 𝑡)

𝜕𝑥

× [ − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐽]

+ trace([𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))]

𝑇 𝜕
2
𝑉
1
(𝑥 (𝑡) , 𝑡)

𝜕𝑥2

× [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] )

= 𝜆𝑒
𝜆𝑡
𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡)

+ 𝑒
𝜆𝑡
2𝑥
𝑇
(𝑡) 𝑃 [ − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡))

+ 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠+𝐽]

+ 𝑒
𝜆𝑡
[𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))]

𝑇

× 𝑃 [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))]

≤ 𝜆𝑒
𝜆𝑡
𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡)

+ 𝑒
𝜆𝑡
2𝑥
𝑇
(𝑡) 𝑃 [ − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡))

+ 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠]

+ 𝑒
𝜆𝑡
[𝜆𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) + 𝜆

−1
𝐽
𝑇
𝑃𝐽]

+ 𝑒
𝜆𝑡
[𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))]

𝑇

× 𝑃 [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] ,

(17)

in which the following inequality is used:

2𝑥
𝑇
𝑃𝐽 ≤ 𝜆𝑥

𝑇
𝑃𝑥 + 𝜆

−1
𝐽
𝑇
𝑃
𝑇
𝑃
−1
𝑃𝐽

= 𝜆𝑥
𝑇
𝑃𝑥 + 𝜆

−1
𝐽
𝑇
𝑃𝐽, for 𝑃 > 0, 𝜆 > 0.

(18)

On the other hand, it follows from (A1) that for 𝑖 =

1, . . . , 𝑛,

[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡)] ≤ 0,

[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑓

𝑖
(0) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑓

𝑖
(0) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))] ≤ 0,

(19)

0 ≤ 𝑒
𝜆𝑡
{−2

𝑛

∑

𝑖=1

𝑢
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝑢
2𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

−𝑓
𝑖
(0) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]
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× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑓

𝑖
(0)

−𝑙
−

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))] }

= 𝑒
𝜆𝑡
{−2

𝑛

∑

𝑖=1

𝑢
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝑢
2𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

− 2

𝑛

∑

𝑖=1

𝑢
1𝑖
𝑓
2

𝑖
(0)

+ 2

𝑛

∑

𝑖=1

𝑢
1𝑖
𝑓
𝑖
(0) [2𝑓

𝑖
(𝑥
𝑖
(𝑡)) − (𝑙

+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝑢
2𝑖
𝑓
2

𝑖
(0)

+ 2

𝑛

∑

𝑖=1

𝑢
2𝑖
𝑓
𝑖
(0) [2𝑓

𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

− (𝑙
+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡 − 𝜏 (𝑡))] }

≤ 𝑒
𝜆𝑡
{−2

𝑛

∑

𝑖=1

𝑢
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝑢
2𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

+

𝑛

∑

𝑖=1

[
󵄨󵄨󵄨󵄨4𝑢1𝑖𝑓𝑖 (0) 𝑓𝑖 (𝑥𝑖 (𝑡))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨2𝑢1𝑖𝑓𝑖 (0) (𝑙

+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡)

󵄨󵄨󵄨󵄨]

+

𝑛

∑

𝑖=1

[
󵄨󵄨󵄨󵄨4𝑢2𝑖𝑓𝑖 (0) 𝑓𝑖 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨2𝑢2𝑖𝑓𝑖 (0) (𝑙

+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡 − 𝜏 (𝑡))

󵄨󵄨󵄨󵄨] }

≤ 𝑒
𝜆𝑡
{−2

𝑛

∑

𝑖=1

𝑢
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝑢
2𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

+

𝑛

∑

𝑖=1

[𝜆𝑓
2

𝑖
(𝑥
𝑖
(𝑡)) + 4𝜆

−1
𝑓
2

𝑖
(0) 𝑢
2

1𝑖

+𝜆𝑥
2

𝑖
(𝑡) + 𝜆

−1
𝑓
2

𝑖
(0) 𝑢
2

1𝑖
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

]

+

𝑛

∑

𝑖=1

[𝜆𝑓
2

𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) + 4𝜆

−1
𝑓
2

𝑖
(0) 𝑢
2

2𝑖

+ 𝜆𝑥
2

𝑖
(𝑡 − 𝜏 (𝑡))

+𝜆
−1
𝑓
2

𝑖
(0) 𝑢
2

2𝑖
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

]} .

(20)

Similarly, one may obtain

0 ≤ 𝑒
𝜆𝑡
{−2

𝑛

∑

𝑖=1

𝑢
4𝑖
[𝑔
𝑖
(𝑥
𝑖
(𝑡)) − 𝑔

𝑖
(0) − 𝑚

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑔
𝑖
(𝑥
𝑖
(𝑡)) − 𝑔

𝑖
(0) − 𝑚

−

𝑖
𝑥
𝑖
(𝑡)] }

≤ 𝑒
𝜆𝑡
{−2

𝑛

∑

𝑖=1

𝑢
4𝑖
[𝑔
𝑖
(𝑥
𝑖
(𝑡)) − 𝑚

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑔
𝑖
(𝑥
𝑖
(𝑡)) − 𝑚

−

𝑖
𝑥
𝑖
(𝑡)]

+

𝑛

∑

𝑖=1

[𝜆𝑔
2

𝑖
(𝑥
𝑖
(𝑡)) + 4𝜆

−1
𝑔
2

𝑖
(0) 𝑢
2

4𝑖

+𝜆𝑥
2

𝑖
(𝑡) + 𝜆

−1
𝑔
2

𝑖
(0) 𝑢
2

4𝑖
(𝑚
+

𝑖
+ 𝑚
−

𝑖
)
2

]} .

(21)

Therefore, from (15)–(21), it follows that

𝑑𝑉 (𝑥 (𝑡) , 𝑡) ≤ 𝑒
𝜆𝑡
2𝑥
𝑇
(𝑡) 𝑃 [𝜎

1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡)

+ 𝑒
𝜆𝑡
𝜂
𝑇
(𝑡) Γ𝜂 (𝑡) 𝑑𝑡 + 𝑒

𝜆𝑡
𝐶
1
𝑑𝑡

≤ 𝑒
𝜆𝑡
2𝑥
𝑇
(𝑡) 𝑃 [𝜎

1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡)

+ 𝑒
𝜆𝑡
𝐶
1
𝑑𝑡,

(22)
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where

𝜂 (𝑡) = (𝑥
𝑇
(𝑡) , 𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) , 𝑓

𝑇
(𝑥 (𝑡)) , 𝑓

𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) ,

𝑔
𝑇
(𝑥 (𝑡)) , (∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

)

𝑇

,

(23)

𝐶
1
= 𝜆
−1
𝐽
𝑇
𝑃𝐽

+

𝑛

∑

𝑖=1

[4𝜆
−1
𝑓
2

𝑖
(0) 𝑢
2

1𝑖
+ 𝜆
−1
𝑓
2

𝑖
(0) 𝑢
2

1𝑖
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

+ 4𝜆
−1
𝑓
2

𝑖
(0) 𝑢
2

2𝑖

+ 𝜆
−1
𝑓
2

𝑖
(0) 𝑢
2

2𝑖
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

+ 4𝜆
−1
𝑔
2

𝑖
(0) 𝑢
2

4𝑖

+𝜆
−1
𝑔
2

𝑖
(0) 𝑢
2

4𝑖
(𝑚
+

𝑖
+ 𝑚
−

𝑖
)
2

] .

(24)

Thus, one may obtain that

𝑉 (𝑥 (𝑡) , 𝑡) ≤ 𝑉 (𝑥 (0) , 0) + 𝑒
𝜆𝑡
𝜆
−1
𝐶
1

+ ∫

𝑡

0

2𝑥
𝑇
(𝑠) 𝑃 [𝜎

1
𝑥 (𝑠) + 𝜎

2
𝑥 (𝑠 − 𝜏 (𝑠))] 𝑑𝑤 (𝑠) ,

(25)

𝐸‖𝑥(𝑡)‖
2
≤

𝑒
−𝜆𝑡

𝐸𝑉 (𝑥 (0) , 0) + 𝜆
−1
𝐶
1

𝜆min (𝑃)

=
𝑒
−𝜆𝑡

𝐸𝑉 (𝑥 (0) , 0)

𝜆min (𝑃)
+ 𝐶
∗
,

(26)

where 𝐶
∗

= 𝜆
−1
𝐶
1
/𝜆min(𝑃). Equation (26) implies that (8)

holds. The proof is completed.

Theorem 3 shows that there exists 𝑡
0
> 0 such that for any

𝑡 ≥ 𝑡
0
, 𝑃{‖ 𝑥(𝑡) ‖≤ 𝐶} ≥ 1 − 𝛿. Let 𝐵

𝐶
be denoted by

𝐵
𝐶
= {𝑥 ∈ 𝑅

𝑛
| ‖𝑥 (𝑡)‖ ≤ 𝐶, 𝑡 ≥ 𝑡

0
} . (27)

Clearly, 𝐵
𝐶
is closed, bounded, and invariant. Moreover,

lim sup
𝑡→∞

inf
𝑦∈𝐵𝐶

󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦
󵄩󵄩󵄩󵄩 = 0 (28)

with no less than probability 1 − 𝛿, which means that 𝐵
𝐶

attracts the solutions infinitely many times with no less than
probability 1−𝛿; so wemay say that 𝐵

𝐶
is a weak attractor for

the solutions.

Theorem 4. Suppose that all conditions of Theorem 3 hold,
then there exists a weak attractor 𝐵

𝐶
for the solutions of system

(1).

Theorem5. Suppose that all conditions ofTheorem 3 hold and
𝑓(0) = 𝑔(0) = 𝐽 = 0; then, zero solution of system (1) is
mean square exponential stability and almost sure exponential
stability.

Proof. If 𝑓(0) = 𝑔(0) = 𝐽 = 0, then 𝐶
1
= 𝐶
∗

= 0. By (25)
and the semimartingale convergence theorem used in [35],
zero solution of system (1) is almost sure exponential stability.
It follows from (26) that zero solution of system (1) is mean
square exponential stability.

Remark 6. If one takes 𝑄
2
= 𝑄
4
= 0 in Theorem 3, then it

is not required that 𝜇 ≤ 1. Furthermore, If one takes 𝑄
1
=

𝑄
2
= 𝑄
3
= 𝑄
4
= 0, then 𝜏(𝑡)may be nondifferentiable or the

boundedness of ̇𝜏(𝑡) is unknown.

Remark 7. Assumption (A1) is less conservative than that in
[32] since the constants 𝑙−

𝑖
, 𝑙
+

𝑖
, 𝑚
−

𝑖
, and 𝑚

+

𝑖
are allowed to be

positive, negative, or zero. System (1) includes mixed time-
delays, which is more complex than that in [33]. The systems
concerned in [26–31] are deterministic, so the stochastic
system studied in this paper is more complex and realistic.

When 𝜎
1

= 𝜎
2

= 0, system (1) becomes the following
determined system:

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐽.

(29)

Definition 8. System (29) is said to be uniformly bounded,
if, for each 𝐻 > 0, there exists a constant 𝑀 = 𝑀(𝐻) > 0

such that [𝑡
0
∈ 𝑅, 𝜙 ∈ 𝐶(−∞, 0], ‖ 𝜙 ‖≤ 𝐻, 𝑡 > 𝑡

0
] imply

‖ 𝑥(𝑡, 𝑡
0
, 𝜙) ‖≤ 𝑀, where ‖ 𝜙 ‖= sup

𝑡≤0
‖ 𝜙(𝑡) ‖.

Theorem 9. System (29) is uniformly bounded provided that
𝜏(𝑡) satisfies 0 ≤ 𝜏(𝑡) ≤ 𝜏, ̇𝜏(𝑡) ≤ 𝜇 ≤ 1, and there exist some
matrices 𝑃 > 0, 𝑄

𝑖
≥ 0, and 𝑈

𝑖
= diag(𝑢

𝑖1
, . . . , 𝑢

𝑖𝑛
) ≥

0(𝑖 = 1, 2, 3, 4) such that the following linear matrix inequality
holds:

Σ = (

(

Σ
11

0 𝑃𝐴 + 𝐿
2
𝑈
1

𝑃𝐵 𝑀
2
𝑈
4

𝑃𝐷

∗ Σ
22

0 𝐿
2
𝑈
2

0 0

∗ ∗ Σ
33

0 0 0

∗ ∗ ∗ Σ
44

0 0

∗ ∗ ∗ ∗ Σ
55

0

∗ ∗ ∗ ∗ ∗ −𝑈
3

)

)

< 0,

(30)

where ∗ denotes the corresponding symmetric terms, Σ
𝑖𝑖
(𝑖 =

1, 2, 3, 4, 5), 𝐿
1
, 𝐿
2
,𝑀
1
,𝑀
2
are the same as in Theorem 3.
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Proof. From Σ < 0, there exists a sufficiently small 𝜆 ∈ (0, ])
such that

Γ = (

(

Γ
11

0 𝑃𝐴 + 𝐿
2
𝑈
1

𝑃𝐵 𝑀
2
𝑈
4

𝑃𝐷

∗ Γ
22

0 𝐿
2
𝑈
2

0 0

∗ ∗ Γ
33

0 0 0

∗ ∗ ∗ Γ
44

0 0

∗ ∗ ∗ ∗ Γ
55

0

∗ ∗ ∗ ∗ ∗ −𝑈
3

)

)

< 0,

(31)

where 𝐼 is identity matrix, Γ
11

= 𝑒
𝜆𝜏
𝑄
1
+ 𝜏𝑄
2
− 𝑃𝐶 − 𝐶𝑃 −

2𝐿
1
𝑈
1
− 2𝑀

1
𝑈
4
+ 2𝜆𝑃 + 2𝜆𝐼, Γ

22
= Σ
22

+ 𝜆𝐼, Γ
33

= 𝜆𝐼 +

𝑒
𝜆𝜏
𝑄
3
+ 𝜏𝑄
4
− 2𝑈
1
, Γ
44

= Σ
44

+ 𝜆𝐼, and Γ
55

= Σ
55

+ 𝜆𝐼.
We still consider the Lyapunov-Krasovskii functional

𝑉(𝑥(𝑡)) in (13). From (16)–(21), one may obtain

‖𝑥(𝑡)‖
2
≤ 𝜆
−1

min (𝑃) (𝑒
−𝜆𝑡

𝑉 (𝑥 (0) , 0) + 𝜆
−1
𝐶
1
)

≤ 𝜆
−1

min (𝑃) (𝑉 (𝑥 (0) , 0) + 𝜆
−1
𝐶
1
)

≤ 𝜆
−1

min (𝑃)
[

[

𝜆max (𝑃)
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

+

𝑛

∑

𝑗=1

𝑢
3𝑗
∫

∞

0

𝑘
𝑗
(𝜃)

× ∫

0

−𝜃

𝑒
𝜆(𝑠+𝜃)

𝑔
2

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠 𝑑𝜃

+ ∫

0

−𝜏

𝑒
𝜆(𝑠+𝜏)

× [𝑥
𝑇
(𝑠) 𝑄
1
𝑥 (𝑠)

+𝑓
𝑇
(𝑥 (𝑠)) 𝑄

3
𝑓 (𝑥 (𝑠))] 𝑑𝑠

+ ∫

0

−𝜏

∫

0

𝑠

𝑒
𝜆𝜃

× [𝑥
𝑇
(𝜃) 𝑄
2
𝑥 (𝜃)

+𝑓
𝑇
(𝑥 (𝜃)) 𝑄

4
𝑓 (𝑥 (𝜃))] 𝑑𝜃 𝑑𝑠

+𝜆
−1
𝐶
1
]

]

,

(32)

where ‖𝜉‖
2
= sup

𝑡≤0
‖𝑥(𝑡)‖

2, 𝐶
1
is the same as in (24). Note

that
𝑛

∑

𝑗=1

𝑢
3𝑗
∫

∞

0

𝑘
𝑗
(𝜃) ∫

0

−𝜃

𝑒
𝜆(𝑠+𝜃)

𝑔
2

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠 𝑑𝜃

≤

𝑛

∑

𝑗=1

2𝑢
3𝑗
∫

∞

0

𝑘
𝑗
(𝜃) ∫

0

−𝜃

𝑒
𝜆(𝑠+𝜃)

[max
1≤𝑗≤𝑛

{(𝑚
−

𝑗
)
2

, (𝑚
+

𝑗
)
2

} 𝑥
2

𝑗
(𝑠)

+𝑔
2

𝑗
(0) ] 𝑑𝑠𝑑𝜃

≤

𝑛

∑

𝑗=1

2𝑢
3𝑗
∫

∞

0

𝑘
𝑗
(𝜃) ∫

0

−𝜃

𝑒
𝜆(𝑠+𝜃)

[max
1≤𝑗≤𝑛

{(𝑚
−

𝑗
)
2

, (𝑚
+

𝑗
)
2

}

×‖𝑥 (𝑠)‖
2
+
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩
2

] 𝑑𝑠 𝑑𝜃

≤ (

𝑛

∑

𝑗=1

2𝑢
3𝑗
𝜆
−1
𝑘
𝑗
(]))

× [max
1≤𝑗≤𝑛

{(𝑚
−

𝑗
)
2

, (𝑚
+

𝑗
)
2

}
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩
2

] ,

∫

0

−𝜏

𝑒
𝜆(𝑠+𝜏)

[𝑥
𝑇
(𝑠) 𝑄
1
𝑥 (𝑠) + 𝑓

𝑇
(𝑥 (𝑠)) 𝑄

3
𝑓 (𝑥 (𝑠))] 𝑑𝑠

≤ ∫

0

−𝜏

𝑒
𝜆(𝑠+𝜏)

[𝜆max (𝑄1) ‖𝑥(𝑠)‖
2

+𝜆max (𝑄3)
󵄩󵄩󵄩󵄩𝑓(𝑥(𝑠))

󵄩󵄩󵄩󵄩
2

] 𝑑𝑠

≤ ∫

0

−𝜏

𝑒
𝜆(𝑠+𝜏)

[𝜆max (𝑄1)
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

+ 2𝜆max (𝑄3)

× (
󵄩󵄩󵄩󵄩𝑓 (0)

󵄩󵄩󵄩󵄩
2

+max
1≤𝑖≤𝑛

{(𝑙
−

𝑖
)
2

, (𝑙
+

𝑖
)
2

}
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

)] 𝑑𝑠

≤ 𝜆
−1

[𝜆max (𝑄1)
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

+ 2𝜆max (𝑄3)

× (
󵄩󵄩󵄩󵄩𝑓 (0)

󵄩󵄩󵄩󵄩
2

+max
1≤𝑖≤𝑛

{(𝑙
−

𝑖
)
2

, (𝑙
+

𝑖
)
2

}
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

)] 𝑑𝑠,

∫

0

−𝜏

∫

0

𝑠

𝑒
𝜆𝜃

[𝑥
𝑇
(𝜃) 𝑄
2
𝑥 (𝜃) + 𝑓

𝑇
(𝑥 (𝜃)) 𝑄

4
𝑓 (𝑥 (𝜃))] 𝑑𝜃 𝑑𝑠

≤ ∫

0

−𝜏

∫

0

𝑠

𝑒
𝜆𝜃

[𝜆max (𝑄2)
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

+ 2𝜆max (𝑄4)

× (
󵄩󵄩󵄩󵄩𝑓 (0)

󵄩󵄩󵄩󵄩
2

+max
1≤𝑖≤𝑛

{(𝑙
−

𝑖
)
2

, (𝑙
+

𝑖
)
2

}
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

)] 𝑑𝜃 𝑑𝑠

≤ 𝜏𝜆
−1

[𝜆max (𝑄2)
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

+ 2𝜆max (𝑄4)

× (
󵄩󵄩󵄩󵄩𝑓 (0)

󵄩󵄩󵄩󵄩
2

+max
1≤𝑖≤𝑛

{(𝑙
−

𝑖
)
2

, (𝑙
+

𝑖
)
2

}
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

)] .

(33)

So, system (29) is uniformly bounded.
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Figure 1: Time trajectories (a) as well as the phase portrait (b) for the system in Example 1.

4. One Example

Example 1. Consider system (1) with 𝐽 = (0, 1)
𝑇, 𝐾(𝑡) = diag

(𝑒
−𝑡
, 2𝑒
−2𝑡

), ] = 0.5, and

𝐴 = (
−0.1 0.4

0.2 −0.5
) , 𝐵 = (

0.1 −1

−1.4 0.4
) ,

𝐶 = (
1.4 0

0 1.65
) ,

𝐷 = (
−0.6 0.7

1 1.15
) , 𝜎

1
= (

0.23 0.1

0.3 0.2
) ,

𝜎
2
= (

0.1 −0.2

0.2 0.3
) .

(34)

The activation functions 𝑓
𝑖
(𝑥
𝑖
) = 𝑥

𝑖
+ sin(𝑥

𝑖
), 𝑔
𝑖
(𝑥
𝑖
) =

tanh(𝑥
𝑖
)(𝑖 = 1, 2) satisfy, 𝑙−

𝑖
= 𝑚
−

𝑖
= 0, 𝑙+
𝑖
= 𝑚
+

𝑖
= 1.Then, one

computes 𝐿
1
= 𝑀
1
= 0, 𝐿

2
= 𝑀
2
= diag(1, 1), and 𝐾(0.5) =

diag(2, 4/3). By using MATLAB’s LMI Control Toolbox [34],
for 𝜇 = 0.0035 and 𝜏 = 1, based on Theorem 3, such system
is stochastically ultimately bounded when 𝑃, 𝑈

𝑖
, and 𝑄

𝑖
(𝑖 =

1, 2, 3, 4) satisfy

𝑃 = (
1.7748 0.2342

0.2342 1.9398
) , 𝑈

1
= (

1.3091 0

0 2.1602
) ,

𝑈
2
= (

218.3215 0

0 274.1607
) , 𝑈

3
= (

1.0825 0

0 1.4021
) ,

𝑈
4
= (

2.1620 0

0 1.8493
) , 𝑄

1
= (

275.3435 104.0781

104.0781 397.1452
) ,

𝑄
2
= (

31.3129 31.4377

31.4377 74.4756
) , 𝑄

3
= (

1.0857 −1.2164

−1.2164 2.9090
) ,

𝑄
4
= (

189.3661 16.3951

16.3951 92.8987
) .

(35)

From Figure 1, it is easy to see that 𝑥(𝑡) is stochastically
ultimately bounded.

5. Conclusions

A proper Lyapunov functional and linear matrix inequalities
are employed to investigate the ultimate boundedness, stabil-
ity, and weak attractor of stochastic Hopfield neural networks
with both time-varying and continuously distributed delays.
New results and sufficient criteria are derived after extensive
deductions. From the proposed sufficient conditions, one can
easily prove that zero solution of such network ismean square
exponentially stable and almost surely exponentially stable by
applying the semimartingale convergence theorem.
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