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We consider boundary regularity for weak solutions of second-order quasilinear elliptic systems under natural growth condition
with super quadratic growth and obtain a general criterion for aweak solution to be regular in the neighborhood of a given boundary
point. Combined with existing results on interior partial regularity, this result yields an upper bound on the Hausdorff dimension
of the singular set at the boundary.

1. Introduction

This paper considers boundary regularity for weak solutions
of quasilinear elliptic systems
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(H4) (Natural growth condition). There exist constants 𝑎
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Further hypothesis (H3) deduces, writing𝜔(⋅) for𝜔(𝑀, ⋅),
the existence of a monotone nondecreasing concave function
𝜔 : [0,∞) → [0,∞) with 𝜔(0) = 0, continuous at 0, such
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𝑁 with |𝑢|, |V| ≤ 𝑀 [1].



2 Abstract and Applied Analysis

(H5) There exist 𝑠 with 𝑠 > 𝑛 and a function 𝑔 ∈ 𝐻
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If the domain we consider is an upper half unit ball 𝐵+,
the boundary condition becomes as follows.
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Definition 1. By a weak solution of (1) one means a vector
valued function 𝑢 ∈ 𝑊
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Under such assumptions, even the boundary data is
smooth, one cannot expect full regularity of (1) at the
boundary [2]. Then, our goal is to establish partial boundary
regularity.

After the partial regularity results of the type in this paper
were proved by Giusti and Miranda in [3], there are some
previous partial regularity results for quasilinear systems.
For example, regularity up to boundary for nonlinear and
quasilinear systems [4–6] has been studied by Arkhipova.
Wiegner [7] established boundary regularity for systems
in diagonal form first, and the proof was generalized and
extended byHildebrandt andWidman [8]. Jost andMeier [9]
deduced full regularity in a neighborhood of the boundary
for minima of functionals with the form ∫

Ω

𝐴(𝑥, 𝑢)|𝐷𝑢|

2

𝑑𝑥.
Furthermore, Duzaar et al. obtained the boundary Hausdorff
dimension on the singular sets of solutions to even more
general systems in [10, 11] recently. Further discussion for
regularity theory can be seen in [12, 13] and their references.

Inspired by [14], in this paper, we would establish bound-
ary regularity for quasilinear systems under natural growth
condition by the method of A-harmonic approximation.

The technique of A-harmonic approximation [15–17] is a
natural extension of the harmonic approximation technique,
which originated from Simon’s proof of Allard’s [18] 𝜀-
regularity theorem. In this context, using the A-harmonic
approximation technique, we obtain the following regularity
results.

Theorem 2. Consider a bounded domain Ω in 𝑅

𝑁, with
boundary of class 𝐶1. Let 𝑢 be a bounded weak solution of (1)
satisfying the boundary condition (H5), and ‖𝑢‖

𝐿
∞ ≤ 𝑀 <

∞ with 2𝑎(𝑀)𝑀 < 𝜆, where the structure conditions (H1)–
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. Consider a fixed
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Combining this result with the analogous interior [19]

and a standard covering argument allows us to obtain the
following bound on the size of the singular set.

Corollary 3. Under the assumptions ofTheorem 2 the singular
set of the weak solution 𝑢 has (𝑛 − 2)-dimensional Hausdorff
measure zero in Ω.

If the domain of the main step in proving Theorem 2 is a
half ball, the result then is the following.

Theorem 4. Consider a bounded weak solution of (1) on the
upper half unit ball 𝐵+ which satisfies the boundary condition
(H5)

󸀠 and ‖𝑢‖

𝐿
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Note that analogous to the above, the boundary condition
(H5)
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0
,𝑅
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2. The A-Harmonic Approximation Technique

In this section we present the A-harmonic approximation
lemma [14] and some standard results due to Companato
[20].
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Lemma 5 (A-harmonic approximation lemma). Consider
fixed positive 𝜆 and 𝐿, and 𝑛,𝑁 ∈ 𝑁 with 𝑛 ≥ 2. Then for
any given 𝜀 > 0 there exists 𝛿 = 𝛿(𝑛,𝑁, 𝜆, 𝐿, 𝜀) ∈ (0, 1] with
the following property: for any 𝐴 ∈ Bil (𝑅𝑛𝑁
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Next we recall a slight modification of a characterization
of Hölder continuous functions originally due to Campanato
[21].

Lemma 6. Consider 𝑛 ∈ 𝑁, 𝑛 ≥ 2, and 𝑥

0
∈ 𝑅

𝑛−1

× {0}.
Suppose that there are positive constants 𝜅 and 𝛼, with 𝛼 ∈
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𝜌
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+

2𝑅
(𝑥
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).
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𝐿
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), and for this representative ] there holds

|] (𝑥) − ] (𝑧)| ≤ 𝐶

𝜅
(

|𝑥 − 𝑧|

𝑅

)

𝛼

,

(17)

for all 𝑥, 𝑧 ∈ 𝐵

+

𝑅
(𝑥

0
), for a constant 𝐶

𝜅
depending only on 𝑛

and 𝛼.

We close this section by a standard estimate for the
solutions to homogeneous second-order elliptic systems with
constant coefficients [20].

Lemma 7. Consider fixed positive 𝜆 and 𝐿, and 𝑛,𝑁 ∈ 𝑁with
𝑛 ≥ 2. Then there exists 𝐶

0
depending only on 𝑛, 𝑁, 𝜆, and

𝐿 (without loss of generality we take 𝐶

0
≥ 1) such that, for

𝐴 ∈ Bil (𝑅𝑛𝑁
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3. The Caccioppoli Inequality

In this sectionwewould prove a suitableCaccioppoli inequal-
ity. First of all we recall two useful inequalities. The first is
the Sobolev embedding theorem which yields the existence
of a constant 𝐶

𝑠
depending only on 𝑠, 𝑛, and 𝑁 such that for

𝑥

0
∈ 𝐷, 𝜌 ≤ 1 − |𝑥

0
| there holds

sup
𝐵
+

𝜌(
𝑥
0)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑔 − 𝑔

󸀠

𝑥
0
,𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶

𝑠
𝜌

1−(𝑛/𝑠)󵄩
󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩𝐻
1,𝑠
(𝐵
+

𝜌
(𝑥
0
),𝑅
𝑁
)
. (19)

Obviously, the inequality remains true if we replace
‖𝑔‖

𝐻
1,𝑠
(𝐵
+

𝜌
(𝑥
0
),𝑅
𝑁
)
by ‖𝑔‖

𝐻
1,𝑠
(𝐵
+
,𝑅
𝑁
)
, which we will henceforth

abbreviate simply as ‖𝑔‖
𝐻
1,𝑠 .

Next we note that the Poincaré inequality in this setting
for 𝑥

0
∈ 𝐷, 𝜌 ≤ 1 − |𝑥

0
| yields

∫

𝐵
+

𝜌
(𝑥
0
)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑔 − 𝑔

𝑥
0
,𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

𝑚

𝑑𝑥 ≤ 𝐶

𝑝
𝜌

𝑚

∫

𝐵
+

𝜌
(𝑥
0
)

󵄨

󵄨

󵄨

󵄨

𝐷𝑔

󵄨

󵄨

󵄨

󵄨

𝑚

𝑑𝑥, (20)

for a constant 𝐶
𝑝
which depends only on 𝑛.

Finally, we fix an exponent 𝜎 ∈ (0, 1) as follows: if 𝑔 ≡ 0,
𝜎 can be chosen arbitrarily (but henceforth fixed); otherwise
we take 𝜎 fixed in (0, 1 − (𝑛/𝑠)).

Then we establish an appropriate inequality for Cacciop-
poli.

Theorem 8 (Caccioppoli’s inequality). Let 𝑢 ∈ 𝑊

1,𝑚

(Ω,

𝑅

𝑁

) ∩ 𝐿

∞

(Ω, 𝑅

𝑁

) with ‖𝑢‖

𝐿
∞ ≤ 𝑀 < ∞ and 2𝑎(𝑀)𝑀 <

𝜆 be aweak solution of systems (1)under assumption conditions
(H1)–(H5). Then there exists 𝜌

0
(𝐿,𝑀, 𝑎(𝑀), 𝑠, ‖𝑔‖

𝐻
1,𝑠) > 0

such that, for all 𝐵+

𝜌
(𝑥

0
) ⊂ 𝐵

+, with 𝑥

0
∈ 𝐷

+, 0 < 𝜌 < 𝑅 < 𝜌

0
,

there holds

∫

𝐵
+

𝜌/2
(

𝑥
0)

|𝐷𝑢|

2

𝑑𝑥 ≤ 𝐶

1
∫

𝐵
+

𝜌(
𝑥
0)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 (𝑥) − 𝑢

󸀠

𝑥
0
,𝑅

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝜌

2
𝑑𝑥 + 𝐶

2
𝛼

𝑛
𝜌

𝑛

+ 𝐶

3
(𝛼

𝑛
𝜌

𝑛

)

1−(2/𝑠)
󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩

2

𝐻
1,𝑠 ,

(21)

where𝐶
1
depends only on 𝜆, 𝐿, and𝑀 and𝐶

3
depends on these

quantities, and in addition to 𝐶

𝑝
, 𝐶

2
depends on 𝜆, 𝐿,𝑀, 𝑎, 𝑏,

and ‖𝑔‖

𝐿
∞
(𝐵,𝑅
𝑁
)
.
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Proof. Consider a cutoff function 𝜂 ∈ 𝐶

∞

0
(𝐵

+

𝜌/2
(𝑥

0
)), satisfy-

ing 0 ≤ 𝜂 ≤ 1, 𝜂 ≡ 0 on 𝐵

+

𝜌/2
(𝑥

0
) and |∇𝜂| < 4/𝜌. Then the

function (𝑢 − 𝑔)𝜂

2 is in 𝑊

1,𝑚

0
(𝐵

+

𝜌/2
(𝑥

0
, 𝑅

𝑁

)) and thus can be
taken as a test-function.

Using (H1), (H4), (H5), andYoung’s inequality and noting
that 2𝑎(𝑀)𝑀 < 𝜆, we can get from (8) with 𝜀 positive but
arbitrary (to be fixed later)

∫

𝐵
+

𝜌
(𝑥
0
)

𝐴

𝛼𝛽

𝑖𝑗
(⋅, 𝑢) (𝐷

𝛽
𝑢

𝑗

, 𝐷

𝛼
𝑢

𝑖

) 𝜂

2

𝑑𝑥

≤ 𝐿∫

𝐵
+

𝜌
(𝑥
0
)

(1 + |𝑢|

2

)

(𝑚−2)/2
󵄨

󵄨

󵄨

󵄨

𝐷𝑔

󵄨

󵄨

󵄨

󵄨

|𝐷𝑢| 𝜂

2

𝑑𝑥

+ 2𝐿∫

𝐵
+

𝜌
(𝑥
0
)

(1 + |𝑢|

2

)

(𝑚−2)/2
󵄨

󵄨

󵄨

󵄨

𝐷𝜂

󵄨

󵄨

󵄨

󵄨

|𝐷𝑢| 𝜂

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑔

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

+ 𝑎∫

𝐵
+

𝜌
(𝑥
0
)

|𝐷𝑢|

𝑚 󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑔

󵄨

󵄨

󵄨

󵄨

𝜂

2

𝑑𝑥 + 𝑏∫

𝐵
+

𝜌
(𝑥
0
)

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑔

󵄨

󵄨

󵄨

󵄨

𝜂

2

𝑑𝑥

≤ 𝜀∫

𝐵
+

𝜌
(𝑥
0
)

(1 + |𝑢|

2

)

(𝑚−2)/2

|𝐷𝑢|

2

𝜂

2

𝑑𝑥

+ 𝑎 sup
𝐵
+

𝜌(
𝑥
0)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

󸀠

𝑥
0
,𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝐵
+

𝜌
(𝑥
0
)

|𝐷𝑢|

𝑚

𝜂

2

𝑑𝑥

+ 𝑎 sup
𝐵
+

𝜌(
𝑥
0)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑔 − 𝑔

󸀠

𝑥
0
,𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝐵
+

𝜌
(𝑥
0
)

|𝐷𝑢|

𝑚

𝜂

2

𝑑𝑥

+

𝐿

2

2𝜀

∫

𝐵
+

𝜌
(𝑥
0
)

(1 + |𝑢|

2

)

(𝑚−2)/2
󵄨

󵄨

󵄨

󵄨

𝐷𝑔

󵄨

󵄨

󵄨

󵄨

2

𝜂

2

𝑑𝑥

+

4𝐿

2

𝜀

∫

𝐵
+

𝜌
(𝑥
0
)

(1 + |𝑢|

2

)

(𝑚−2)/2
󵄨

󵄨

󵄨

󵄨

𝐷𝜂

󵄨

󵄨

󵄨

󵄨

2󵄨
󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

󸀠

𝑥
0
,𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

+

4𝐿

2

𝜀

∫

𝐵
+

𝜌
(𝑥
0
)

(1 + |𝑢|

2

)

(𝑚−2)/2
󵄨

󵄨

󵄨

󵄨

𝐷𝜂

󵄨

󵄨

󵄨

󵄨

2󵄨
󵄨

󵄨

󵄨

󵄨

𝑔 − 𝑔

󸀠

𝑥
0
,𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

+

𝜀

2

𝑏

2

∫

𝐵
+

𝜌
(𝑥
0
)

𝜌

2

𝜂

2

𝑑𝑥 +

1

𝜀𝜌

2
∫

𝐵
+

𝜌
(𝑥
0
)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

󸀠

𝑥
0
,𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

+

1

𝜀𝜌

2
∫

𝐵
+

𝜌
(𝑥
0
)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑔 − 𝑔

󸀠

𝑥
0
,𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

≤ 𝜀∫

𝐵
+

𝜌
(𝑥
0
)

(1 + |𝑢|

2

)

(𝑚−2)/2

|𝐷𝑢|

2

𝜂

2

𝑑𝑥

+ 𝑎 (𝑀 +

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩𝐿
∞
(𝐵
+
,𝑅
𝑁
)
)∫

𝐵
+

𝜌
(𝑥
0
)

|𝐷𝑢|

𝑚

𝜂

2

𝑑𝑥

+

64𝐿

2

+ 1

𝜀

∫

𝐵
+

𝜌
(𝑥
0
)

(1 + |𝑢|

2

)

(𝑚−2)/2
1

𝜌

2

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

󸀠

𝑥
0
,𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

+

𝜀

4

𝑏

2

𝜂

2

𝛼

𝑛
𝜌

𝑛+2

+ (

𝐿

2

2𝜀

+

64𝐿

2

𝐶

𝑝

2𝜀

+

4𝐶

𝑝

𝜀

)

⋅ ∫

𝐵
+

𝜌
(𝑥
0
)

(1 + |𝑢|

2

)

(𝑚−2)/2
󵄨

󵄨

󵄨

󵄨

𝐷𝑔

󵄨

󵄨

󵄨

󵄨

2

𝜂

2

𝑑𝑥

≤ 𝜀∫

𝐵
+

𝜌
(𝑥
0
)

(1 + |𝑢|

2

)

(𝑚−2)/2
󵄨

󵄨

󵄨

󵄨

𝐷𝑔

󵄨

󵄨

󵄨

󵄨

2

𝜂

2

𝑑𝑥

+ 𝑎 (𝑀 +

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩𝐿
∞
(𝐵
+
,𝑅
𝑁
)
) 𝐶 (‖𝑢‖

𝑊
1,𝑚

(𝐵
+

𝜌
(𝑥
0
))
) 𝛼

𝑛
𝜌

𝑛

+

64𝐿

2

+ 1

𝜀

∫

𝐵
+

𝜌
(𝑥
0
)

(1 + |𝑢|

2

)

(𝑚−2)/2

(

𝑢 − 𝑢

󸀠

𝑥
0
,𝜌

𝜌

)

2

𝑑𝑥

+

𝜀

4

𝑏

2

𝜂

2

𝛼

𝑛
𝜌

𝑛+2

+ (1 + 𝑀

2

)

(𝑚−2)/2

(

𝐿

2

2𝜀

+

64𝐿

2

𝐶

𝑝

2𝜀

+

4𝐶

𝑝

𝜀

)

⋅ ∫

𝐵
+

𝜌
(𝑥
0
)

󵄨

󵄨

󵄨

󵄨

𝐷𝑔

󵄨

󵄨

󵄨

󵄨

2

𝜂

2

𝑑𝑥.

(22)

Using (H2), (19), and (20), we thus have

(𝜆 − 𝜀) ∫

𝐵
+

𝜌(
𝑥
0)

|𝐷𝑢|

2

𝜂

2

𝑑𝑥

≤ (𝜆 − 𝜀) ∫

𝐵
+

𝜌(
𝑥
0)

(1 + |𝑢|

2

)

(𝑚−2)/2

|𝐷𝑢|

2

𝜂

2

𝑑𝑥

≤

64𝐿

2

+ 1

𝜀

∫

𝐵
+

𝜌(
𝑥
0)

(1 + |𝑢|

2

)

(𝑚−2)/2
1

𝜌

2

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

󸀠

𝑥
0

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

+ 𝐶(𝑎,𝑀,

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩𝐿
∞
(𝐵
+
,𝑅
𝑁
)
, ‖𝑢‖

𝑊
1,𝑚

(𝐵
+

𝜌
(𝑥
0
))
, 𝑏) 𝛼

𝑛
𝜌

𝑛

+ (𝐿, 𝐶

𝑝
,𝑀)∫

𝐵
+

𝜌(
𝑥
0)

󵄨

󵄨

󵄨

󵄨

𝐷𝑔

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

≤

64𝐿

2

+ 1

𝜀

(1 + 𝑀

2

)

(𝑚−2)/2

∫

𝐵
+

𝜌(
𝑥
0)

1

𝜌

2

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

󸀠

𝑥
0

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

+ 𝐶(𝑎,𝑀,

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩𝐿
∞
(𝐵
+
,𝑅
𝑁
)
, ‖𝑢‖

𝑊
1,𝑚

(𝐵
+

𝜌
(𝑥
0
))
, 𝑏) 𝛼

𝑛
𝜌

𝑛

+ (𝐿, 𝐶

𝑝
,𝑀) (𝛼

𝑛
𝜌

𝑛

)

1−(2/𝑠)
󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩

2

𝐻
1,𝑠 .

(23)

Thus, we fix 𝜀 small enough to yield the desired inequality.

4. The Proof of the Main Theorem

In this sectionwe proceed to the proof of the partial regularity
result.
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Lemma 9. Consider 𝑢 ∈ 𝑊

1,𝑚

(Ω, 𝑅

𝑁

) ∩ 𝐿

∞

(Ω, 𝑅

𝑁

) to be a
weak solution of (1), 𝑥

0
∈ 𝐷 and 𝑦 ∈ 𝐷

𝑅
(𝑥

0
), 𝐷

𝜌
(𝑦) ⊂⊂

𝐷

𝑅
(𝑥

0
), for 𝑅 < 1 − |𝑥

0
|, and 𝜑 ∈ 𝐶

∞

0
(𝐵

+

𝜌/2
(𝑦), 𝑅

𝑁

) with
sup
𝐵
+

𝜌
(𝑦)

|𝐷𝜑| ≤ 1. We have

(

𝜌

2

)

2−𝑛

∫

𝐵
+

𝜌/2
(𝑦)

𝐴

𝛼𝛽

𝑖𝑗
(𝑦, 𝑢

+

𝑦,𝜌
) (𝐷

𝛽
𝑢

𝑗

, 𝐷

𝛼
𝜑

𝑖

) 𝑑𝑥

≤ 𝐶

4

√

𝐼 (

√

𝐼 + 𝜔 (𝐼)) 𝜌 sup
𝐵
+

𝜌/2
(

𝑥
0)

󵄨

󵄨

󵄨

󵄨

𝐷𝜑

󵄨

󵄨

󵄨

󵄨

.

(24)

Here and hereafter, we define

𝐼 (𝑧, 𝑟) = −∫

𝐵
+

𝑟
(𝑧)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

󸀠

𝑧,𝑟

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥 +

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩

2

𝐻
1,𝑠𝑟

2(1−(𝑛/𝑠))

+ 𝑟

2

, (25)

for 𝑧 ∈ 𝐷, 𝑟 ∈ (0, 1 − |𝑧|).

Proof. Using (8) we have

∫

𝐵
+

𝜌/2
(

𝑦
)

𝐴

𝛼𝛽

𝑖𝑗
(𝑦, 𝑢

󸀠

𝑦,𝜌
) (𝐷

𝛽
𝑢

𝑗

, 𝐷

𝛼
𝜑

𝑖

) 𝑑𝑥

≤ [𝑎∫

𝐵
+

𝜌/2
(

𝑦
)

|𝐷𝑢|

𝑚

𝑑𝑥 + 2

−𝑛−1

𝛼

𝑛
𝑏𝜌

𝑛

] ⋅ 𝜌 sup
𝐵
+

𝜌/2
(

𝑦
)

󵄨

󵄨

󵄨

󵄨

𝐷𝜑

󵄨

󵄨

󵄨

󵄨

+ ∫

𝐵
+

𝜌/2
(

𝑦
)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝐴

𝛼𝛽

𝑖𝑗
(𝑦, 𝑢

󸀠

𝑦,𝜌
) − 𝐴

𝛼𝛽

𝑖𝑗
(𝑥, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

⋅ |𝐷𝑢| 𝑑𝑥 sup
𝐵
+

𝜌/2
(

𝑦
)

󵄨

󵄨

󵄨

󵄨

𝐷𝜑

󵄨

󵄨

󵄨

󵄨

.

(26)

Applying in turn Young’s inequality, (H3), the Cac-
cioppoli inequality (Theorem 8), and Jensen’s inequality, we
calculate from (26)

∫

𝐵
+

𝜌/2
(

𝑦
)

𝐴

𝛼𝛽

𝑖𝑗
(𝑦, 𝑢

󸀠

𝑦,𝜌
) (𝐷

𝛽
𝑢

𝑗

, 𝐷

𝛼
𝜑

𝑖

) 𝑑𝑥

≤ [𝑎∫

𝐵
+

𝜌/2
(

𝑦
)

|𝐷𝑢|

𝑚

𝑑𝑥 + 2

−𝑛−1

𝛼

𝑛
𝑏𝜌

𝑛

] ⋅ 𝜌

+ [∫

𝐵
+

𝜌/2
(

𝑦
)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝐴

𝛼𝛽

𝑖𝑗
(𝑦, 𝑢

󸀠

𝑦,𝜌
) − 𝐴

𝛼𝛽

𝑖𝑗
(𝑥, 𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

1/2

𝑑𝑥]

1/2

⋅ [∫

𝐵
+

𝜌/2
(𝑦)

|𝐷𝑢|

2

𝑑𝑥]

1/2

≤

𝛼

𝑛
𝜌

𝑛−1

2

{(𝑎−∫

𝐵
+

𝜌
(𝑦)

|𝐷𝑢|

𝑚

𝑥 + 2

−𝑛

𝑏) 𝜌

2

}

+ 𝛼

𝑛
𝜌

𝑛−1

𝜔(𝜌

𝑚

+ 𝑀

𝑚−2

−∫

𝐵
+

𝜌
(𝑦)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

󸀠

𝑦,𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥)

⋅ {𝐶

1
−∫

𝐵
+

𝜌
(𝑦)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

󸀠

𝑦,𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥 + 𝐶

3

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩

2

𝐻
1,𝑠𝜌

2(1−(𝑛/𝑠))

+𝐶

2
𝜌

2

}

1/2

≤

𝛼

𝑛
𝜌

𝑛−1

2

𝐶

5
𝐼 +

𝛼

𝑛
𝜌

𝑛−1

2

𝐶

6
𝜔 (𝐼)

√

𝐼

≤ 𝐶

7
𝛼

𝑛
𝜌

𝑛−1

(𝐼 + 𝜔 (𝐼)

√

𝐼) ,

(27)

where 𝐶

5
= 𝑎‖𝑢‖

𝑊
1,𝑚 + 𝑏, 𝐶

6
= max{√𝐶

1
, √𝐶

2
, √𝐶

3
}, and

𝐶

7
= (1/2)(𝐶

5
+ 𝐶

6
), for 𝑧 ∈ 𝐷, 𝑟 ∈ (0, 1 − |𝑧|). We introduce

the notation

𝐼 (𝑧, 𝑟) = −∫

𝐵
+

𝑟
(𝑧)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

󸀠

𝑧,𝑟

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑧 +

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩

2

𝐻
1,𝑠𝑟

2(1−(𝑛/𝑠))

+ 𝑟

2 (28)

and further write 𝐼 for 𝐼(𝑦, 𝜌). For arbitrary 𝜑 ∈ 𝐶

∞

0
(Ω, 𝑅

𝑁

)

we thus have, by rescalling,

∫

𝐵
+

𝜌/2
(𝑦)

𝐴

𝛼𝛽

𝑖𝑗
(𝑦, 𝑢

󸀠

𝑦,𝜌
) (𝐷

𝛽
𝑢

𝑗

, 𝐷

𝛼
𝜑

𝑖

) 𝑑𝑥

≤ 𝐶

7
𝛼

𝑛
𝜌

𝑛−1
√

𝐼 (

√

𝐼 + 𝜔 (𝐼)) .

(29)

Multiplying (29) through by (𝜌/2)

2−𝑛 yields

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

(

𝜌

2

)

2−𝑛

∫

𝐵
+

𝜌/2
(𝑦)

𝐴

𝛼𝛽

𝑖𝑗
(𝑦, 𝑢

󸀠

𝑦,𝜌
) (𝐷

𝛽
𝑢

𝑗

, 𝐷

𝛼
𝜑

𝑖

) 𝑑𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶

4

√

𝐼 (

√

𝐼 + 𝜔 (𝐼)) 𝜌 sup
𝐵
+

𝜌/2
(

𝑥
0)

󵄨

󵄨

󵄨

󵄨

𝐷𝜑

󵄨

󵄨

󵄨

󵄨

,

(30)

for 𝐶
4
defined by 𝐶

4
= 2

𝑛−3

𝛼

𝑛
𝐶

7
.

Lemma 10. Consider 𝑢 satisfying the conditions of Theorem 2
and 𝜎 fixed; then we can find 𝛿 and 𝑠

0
together, with positive

constants 𝐶

8
such that the smallness conditions: 0 < 𝜔(𝑠

0
) ≤

𝛿/2 and 𝐼(𝑥

0
, 𝑅) ≤ 𝐶

−1

8
min {𝛿

2

/4, 𝑠

0
} together, imply the

growth condition

𝐼 (𝑦, 𝜃𝜌) ≤ 𝜃

2𝜎

𝐼 (𝑦, 𝜌) .
(31)
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Proof. We now set 𝑤 = 𝑢 − 𝑔, using in turn (H1), Young’s
inequality, and Hölder’s inequality. We have from (30)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

(

𝜌

2

)

2−𝑛

∫

𝐵
+

𝜌/2
(𝑦)

𝐴

𝛼𝛽

𝑖𝑗
(𝑦, 𝑢

󸀠

𝑦,𝜌
) (𝐷

𝛽
𝑤

𝑗

, 𝐷

𝛼
𝜑

𝑖

) 𝑑𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

(

𝜌

2

)

2−𝑛

∫

𝐵
+

𝜌/2
(𝑦)

𝐴

𝛼𝛽

𝑖𝑗
(𝑦, 𝑢

󸀠

𝑦,𝜌
) (𝐷

𝛽
𝑢

𝑗

, 𝐷

𝛼
𝜑

𝑖

) 𝑑𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

(

𝜌

2

)

2−𝑛

∫

𝐵
+

𝜌/2
(𝑦)

𝐴

𝛼𝛽

𝑖𝑗
(𝑦, 𝑢

󸀠

𝑦,𝜌
) (𝐷

𝛽
𝑔

𝑗

, 𝐷

𝛼
𝜑

𝑖

) 𝑑𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶

9

√

𝐼 [

√

𝐼 + 𝜔 (𝐼)] 𝜌 sup
𝐵
+

𝜌/2
(

𝑥
0)

󵄨

󵄨

󵄨

󵄨

𝐷𝜑

󵄨

󵄨

󵄨

󵄨

,

(32)

for 𝐶
9
= max {𝐶

4
, (𝛼

𝑛
/2)

1−(𝑛/𝑠)

}.
We now set V = 𝑤/𝛾, for 𝛾 = 𝐶

9
√

𝐼. From (32) we then
have

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

(

𝜌

2

)

2−𝑛

∫

𝐵
+

𝜌/2
(𝑦)

𝐴

𝛼𝛽

𝑖𝑗
(𝑦, 𝑢

󸀠

𝑦,𝜌
) (𝐷

𝛽
V
𝑗

, 𝐷

𝛼
𝜑

𝑖

) 𝑑𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ (

√

𝐼 + 𝜔 (𝐼)) 𝜌 sup
𝐵
+

𝜌/2
(

𝑥
0)

󵄨

󵄨

󵄨

󵄨

𝐷𝜑

󵄨

󵄨

󵄨

󵄨

,

(33)

and from (32) we observe from the definition of 𝐶
9
(recalling

also the definition of 𝛾)

(

𝜌

2

)

2−𝑛

∫

𝐵
+

𝜌/2
(𝑦)

|𝐷V|
2

𝑑𝑥 < 1. (34)

Further we note

V|
𝐷
𝜌
(𝑦)

=

1

𝛾

𝑤|

𝐷
𝜌
(𝑦)

=

1

𝛾

(𝑢 − 𝑔) |

𝐷
𝜌
(𝑦)

≡ 0. (35)

For 𝜀 > 0 we take 𝛿 = 𝛿(𝑛,𝑁, 𝜆, 𝐿, 𝜀) to be the cor-
responding 𝛿 from the A-harmonic approximation lemma.
Suppose that we could ensure that the smallness condition

√

𝐼 + 𝜔 (𝐼) ≤ 𝛿
(36)

holds. Then in view of (33), (34), and (35) we would be able
to apply Lemma 5 to conclude the existence of a function
ℎ ∈ 𝐻

1,2

(𝐵

+

𝜌/2
(𝑦), 𝑅

𝑁

) which is 𝐴

𝛼𝛽

𝑖𝑗
(𝑦, 𝑢

󸀠

𝑦,𝜌
)-harmonic, with

ℎ|

𝐷
𝜌/2

(𝑦)
≡ 0 such that

(

𝜌

2

)

2−𝑛

∫

𝐵
+

𝜌/2
(𝑦)

|𝐷ℎ|

2

𝑑𝑥 ≤ 1, (37)

(

𝜌

2

)

−𝑛

∫

𝐵
+

𝜌/2
(𝑦)

|V − ℎ|

2

𝑑𝑥 ≤ 𝜀. (38)

For 𝜃 ∈ (0, 1/4] arbitrary (to be fixed later), we have from
the Campanato theorem, noting (37) and recalling also that
ℎ(𝑦) = 0,

sup
𝐵
+

𝜃𝜌
(

𝑦
)

|ℎ|

2

≤ 𝜃

2

𝜌

2 sup
𝐵
+

𝜌/4
(

𝑦
)

|𝐷ℎ|

2

≤ 4𝐶

0
𝜃

2

. (39)

Using (38) and (39) we observe

(𝜃𝜌)

−𝑛

∫

𝐵
+

𝜃𝜌
(

𝑦
)

|V|
2

𝑑𝑥

≤ 2(𝜃𝜌)

−𝑛

[∫

𝐵
+

𝜃𝜌
(

𝑦
)

|V − ℎ|

2

𝑑𝑥 + ∫

𝐵
+

𝜃𝜌
(

𝑦
)

|ℎ|

2

𝑑𝑥]

≤ 2(𝜃𝜌)

−𝑛
[

[

(

𝜌

2

)

𝑛

𝜀 +

1

2

𝛼

𝑛
(𝜃𝜌)

𝑛 sup
B+
𝜃𝜌
(

𝑦
)

|ℎ|

2
]

]

≤ 2

1−𝑛

𝜃

−𝑛

𝜀 + 4𝛼

𝑛
𝐶

0
𝜃

2

,

(40)

and, hence, on multiplying this through by 𝛾

2, we obtain the
estimate

(𝜃𝜌)

−𝑛

∫

𝐵
+

𝜃𝜌
(𝑦)

|𝑤|

2

𝑑𝑥 ≤ 𝐶

2

9
(2

1−𝑛

𝜃

−𝑛

𝜀 + 4𝛼

𝑛
𝐶

0
𝜃

2

) 𝐼. (41)

For the time being, we restrict to the case that 𝑔 does
not vanish identically. Recalling that 𝑤 = 𝑢 − 𝑔, using in
turn Poincaré’s, Sobolev’s, and thenHölder’s inequalities, and
noting also that 𝑢󸀠

𝑦,𝜃𝜌
= 𝑔

󸀠

𝑦,𝜃𝜌
, thus from (41) we get

(𝜃𝜌)

−𝑛

∫

𝐵
+

𝜃𝜌
(

𝑦
)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 − u󸀠
𝑦,𝜃𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

≤ 2(𝜃𝜌)

−𝑛

[∫

𝐵
+

𝜃𝜌
(

𝑦
)

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑔

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥 + ∫

𝐵
+

𝜃𝜌
(

𝑦
)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑔 − 𝑔

󸀠

𝑦,𝜃𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥]

≤ 2𝐶

2

9
(2

1−𝑛

𝜃

−𝑛

𝜀 + 4𝛼

𝑛
𝐶

0
𝜃

2

) 𝐼

+ 2𝐶

𝑝
(𝜃𝜌)

2−𝑛

[

1

2

𝛼

𝑛
(𝜃𝜌)

𝑛

]

1−(2/𝑠)

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩

2

𝐻
1,𝑠

≤ 𝐶

10
(𝜃

−𝑛

𝜀 + 𝜃

2

) 𝐼 + 𝐶

10
𝜃

2(1−(𝑛/𝑠))

𝐼,

(42)

for 𝐶

10
= max {8𝛼

𝑛
𝐶

0
𝐶

2

9
, 2

2/𝑠

𝐶

𝑝
𝛼

1−(2/𝑠)

𝑛
}, and provided 𝜀 =

𝜃

𝑛+2, we have

(𝜃𝜌)

−𝑛

∫

𝐵
+

𝜃𝜌
(𝑦)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

󸀠

𝑦,𝜃𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥 ≤ 3𝐶

10
𝜃

2(1−(𝑛/𝑠))

𝐼. (43)

Note that fix 𝜀 = 𝜃

𝑛+2, which is also fixed 𝛿. Since 𝜌 ≤ 1,
we see from the definition of 𝐼

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩

2

𝐻
1,𝑠(𝜃𝜌)

2(1−(𝑛/𝑠))

≤ 𝜃

2(1−(𝑛/𝑠))

𝐼,

(44)

and further

(𝜃𝜌)

2

≤ 𝜃

2

𝐼.

(45)

Combining these estimates with (43), we can get

𝐼 (𝑦, 𝜃𝜌) ≤ 3 (𝐶

10
+ 1) 𝜃

2(1−(𝑛/𝑠))

𝐼.
(46)

Choose 𝜃 ∈ (0, 1/4] sufficiently small that there holds:
3(𝐶

10
+ 1)𝜃

2(1−(𝑛/𝑠))

≤ 𝜃

2𝜎.
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We can see from (46)

𝐼 (𝑦, 𝜃𝜌) ≤ 𝜃

2𝜎

𝐼.
(47)

We now choose 𝑠

0
> 0 such that 0 < 𝜔(𝑠

0
) < (𝛿/2) and

define 𝐶

8
by

𝐶

8
= max {2

𝑛−1

, 2𝐶

2

9
+ 1, 2𝐶

2

𝑠
+ 1} . (48)

Suppose that we have

𝐼 (𝑥

0
, 𝑅) ≤ 𝐶

−1

8
min{

𝛿

2

4

, 𝑠

0
} , (49)

for some 𝑅 ∈ (0, 𝑅

0
], where 𝑅

0
= min{√2𝑠

0
, 1 − |𝑥

0
|}.

For any 𝑦 ∈ 𝐷

𝑅/2
(𝑥

0
) we use the Sobolev inequality to

calculate

𝛼

𝑛
𝑅

𝑛

2

𝑛+1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

𝑥
0
,𝑅

− 𝑢

󸀠

𝑦,𝑅/2

󵄨

󵄨

󵄨

󵄨

󵄨

2

= ∫

𝐵
+

𝑅/2

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

𝑥
0
,𝑅

− 𝑢

󸀠

𝑦,𝑅/2

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥 = ∫

𝐵
+

𝑅/2

󵄨

󵄨

󵄨

󵄨

󵄨

𝑔

󸀠

𝑥
0
,𝑅

− 𝑔

󸀠

𝑦,𝑅/2

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

≤ 2∫

𝐵
+

𝑅/2

󵄨

󵄨

󵄨

󵄨

󵄨

𝑔 − 𝑔

󸀠

𝑥
0
,𝑅

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥 + 2∫

𝐵
+

𝑅/2

󵄨

󵄨

󵄨

󵄨

󵄨

𝑔 − 𝑔

󸀠

𝑦,𝑅/2

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

≤ 2𝛼

𝑛
𝐶

2

𝑠

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩

2

𝐻
1,𝑠𝑅

𝑛+2(1−(𝑛/𝑠))

.

(50)

Then we can calculate

𝐼 (𝑦,

1

2

𝑅)

≤ 2

𝑛−1

−∫

𝐵
+

𝑅/2
(𝑦)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

󸀠

𝑥
0
,𝑅

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

+ (2𝐶

2

𝑠
+ 1)

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩

2

𝐻
1,𝑠𝑅

2(1−(𝑛/𝑠))

+

1

4

𝑅

2

≤ 𝐶

8
𝐼 (𝑥

0
, 𝑅) .

(51)

Then we have

√

𝐼(𝑦,

1

2

𝑅) + 𝜔(𝐼 (𝑦,

1

2

𝑅))

≤

√

𝐶

8
𝐼 (𝑥

0
, 𝑅) +

√

𝜔 (𝐶

8
𝐼 (𝑥

0
, 𝑅))

≤

1

2

𝛿 + 𝜔 (𝑠

0
) ≤ 𝛿,

(52)

whichmeans that the condition (49) is sufficient to guarantee
the smallness condition (37) for 𝜌 = 𝑅/2, for all 𝑦 ∈ 𝐷

𝑅/2
(𝑥

0
).

We can thus conclude that (46) holds in this situation. From
(46) we thus have

√

𝐼(𝑦,

𝜃𝜌

2

) +

√

𝜔(𝐼(𝑦,

𝜃𝜌

2

))

≤

√

𝐼 (y, 1
2

𝑅) +

√

𝜔(𝐼 (𝑦,

1

2

𝑅)) ≤ 𝛿,

(53)

meaning that we can apply (46) on 𝐵

+

𝜃𝜌/2
(𝑦) as well, yielding

𝐼 (𝑦,

𝜃

2

𝑅

2

) ≤ 𝜃

4𝜎

𝐼 (𝑦,

𝑅

2

) , (54)

and inductively

𝐼 (𝑦,

𝜃

𝑘

𝑅

2

) ≤ 𝜃

2𝑘𝜎

𝐼 (𝑦,

𝑅

2

) .
(55)

The next step is to go from a discrete to a continuous
version of the decay estimate. Given 𝜌 ∈ (0, 𝑅/2], we can find
𝑘 ∈ 𝑁

0
such that 𝜃𝑘+1𝑅/2 < 𝜌 ≤ 𝜃

𝑘

𝑅/2. Firstly we use the
Sobolev inequality, to see

∫

𝐵
+

𝜌
(𝑦)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

𝑦,𝜌
− 𝑢

󸀠

𝑦,𝜃
𝑘
𝑅/2

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

≤ 2𝛼

𝑛
(

1

2𝜃

𝑘
𝑅

)

𝑛

𝐶

2

𝑠

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩

2

𝐻
1,𝑠(

1

2𝜃

𝑘
𝑅

)

2(1−(𝑛/𝑠))

,

(56)

which allows us to deduce

∫

𝐵
+

𝜌
(𝑦)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

󸀠

𝑦,𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

≤ 2∫

𝐵
+

𝜌
(𝑦)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝑢

𝑦,𝜃
𝑘
𝑅/2
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥

+ 4𝛼

𝑛
(

1

2𝜃

𝑘
𝑅

)

𝑛

𝐶

2

𝑠

󵄩

󵄩

󵄩

󵄩

𝑔

󵄩

󵄩

󵄩

󵄩

2

𝐻
1,𝑠(

1

2𝜃

𝑘
𝑅

)

2(1−(𝑛/𝑠))

,

(57)

and, hence,

𝐼 (𝑦, 𝜌) ≤ 𝐶

11
𝐼 (𝑦,

𝜃

𝑘

𝑅

2

) ,
(58)

for 𝐶

11
= 8𝜃

−𝑛

𝐶

2

𝑠
+ 1. Combining this with (55) and (51), we

have
𝐼 (𝑦, 𝜌)

≤ 𝐶

11
𝜃

2𝑘𝜎

𝐼 (𝑦,

𝑅

2

) ≤ 𝐶

8
𝐶

11
𝜃

−2𝜎

(

2𝜌

𝑅

)

2𝜎

𝐼 (𝑥

0
, 𝑅)

≤ 𝐶

8
𝐶

11
(

2

𝜃

) 𝐼 (𝑥

0
, 𝑅) (

𝜌

𝑅

)

2𝜎

,

(59)

and more particularly

inf
𝜇∈𝑅
𝑁

∫

𝐵
+

𝜌
(𝑦)

󵄨

󵄨

󵄨

󵄨

𝑢 − 𝜇

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥 ≤ 𝐶

12
𝐼 (𝑥

0
, 𝑅) (

𝜌

𝑅

)

2𝜎

, (60)

for 𝐶

12
= 𝐶

8
𝐶

11
(2/𝜃)

2𝜎. Recall that this estimate is valid
for all 𝑦 ∈ 𝐷 and 𝜌 with 𝐷

𝜌
(𝑦) ⊂ 𝐷

𝑅/2
(𝑥

0
); assume only

the condition (49) on 𝐼(𝑥

0
, 𝑅). This yields after replacing 𝑅

with 6𝑅 the boundary estimate (15) which requires to apply
Lemma 6.

Combining the boundary and interior estimates [19] we
can derive the desired result. As the argument for combining
the boundary and interior regularity results is relatively
standard, we omit it. Hence we can apply Lemma 6 and
conclude the desired Hölder continuity.
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vol. 3, pp. 185–208, 1986.

[2] M. Giaquinta, “A counter-example to the boundary regularity
of solutions to elliptic quasilinear systems,”Manuscripta Math-
ematica, vol. 24, no. 2, pp. 217–220, 1978.

[3] E. Giusti and M. Miranda, “Sulla regolarità delle soluzioni
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