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We discuss the existence of solutions for a periodic boundary value problem and for some polynomials. For this purpose, we present
some fixed point theorems for weakly and generalized weakly contractive mappings in the setting of partially ordered complete
metric spaces.

1. Introduction

Existence of solutions for a periodic boundary value problem
by using upper and lower solution methods has attracted the
attention of many authors (see, e.g., [1–5]).

We consider a special case of the following boundary
value problem:

𝑢
󸀠

(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) if 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇) + 𝜁
0
,

(1)

where 𝑇 > 0, 𝑓 : [0, 𝑇] ×R → R is a continuous map and 𝜁
0

is constant.
Obviously, if 𝜁

0
= 0, then the problem (1) becomes the

following periodic boundary value problem:

𝑢
󸀠

(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) if 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇) .

(2)

Definition 1. A lower solution for (1) is a function 𝛼 ∈

𝐶
1
([0, 𝑇]) such that

𝛼
󸀠

(𝑡) ≤ 𝑓 (𝑡, 𝛼 (𝑡)) if 𝑡 ∈ [0, 𝑇] ,

𝛼 (0) ≤ 𝛼 (𝑇) + 𝜁
0
.

(3)

Let A stand for the class of functions 𝜙 : [0, +∞) →

[0, +∞), which satisfy the following conditions:

(i) 𝜙 is nondecreasing,

(ii) 𝜙(𝑥) < 𝑥, for each 𝑥 > 0,

(iii) 𝛽(𝑥) = 𝜙(𝑥)/𝑥 ∈ S.

Very recently, Amini-Harandi and Emami [1] proved the fol-
lowing existence theorem, which extended the main theorem
of Harjani and Sadarangani [2].

Theorem 2. Consider problem (2), with 𝑓 being continuous.
Suppose that there exists 𝜆 > 0 such that for 𝑥, 𝑦 ∈ R with
𝑦 ≥ 𝑥,

0 ≤ 𝑓 (𝑡, 𝑦) + 𝜆𝑦 − [𝑓 (𝑡, 𝑥) + 𝜆𝑥] ≤ 𝜆𝜙 (𝑦 − 𝑥) , (4)

where 𝜙 ∈ A. Then, the existence of a lower solution for (2)
provides the existence of a unique solution of (2).

In this paper, we solve (2) by extending a fixed point
theorem in the context of partially ordered metric space.
Our results improve/extend/generalize some results in the
literature, in particular, the results of Amini-Harandi and
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Emami [1] and Harjani and Sadarangani [2]. Finally, in the
last section, we prove the existence of a solution for some
polynomials, as applications.

2. Preliminaries

In this section, we state a necessary background on the topic
of fixed point theory, one of the core subjects of nonlinear
analysis, for the sake of completeness of the paper. Fixed
point theory has a wide potential application not only in
the branches of mathematics, but also in several disciplines
such as economics, computer science, and biology (see, e.g.,
[6, 7]). The most beautiful and elementary result in this
direction is the Banach contraction mapping principle [8].
After this substantial result of Banach, several authors have
extended this principle in many different ways (see, e.g., [1–
7, 9–31]). In particular, the authors have introduced new type
of contractions and researched the existence and uniqueness
of the fixed point in various spaces. One of the important
contraction types, a 𝜙-contraction, was introduced by Boyd
and Wong [14]. In 1997, Alber and Duerre-Delabriere [10]
defined the concept of a weak-𝜑-contraction which is a
generalization of the 𝜙-contraction. A self-mapping 𝑓 on a
metric space (𝑋, 𝑑) is said to be weak-𝜑-contractive if there
exists a map 𝜑 : [0, +∞) → [0, +∞) with 𝜑(0) = 0 and
𝜑(𝑡) > 0 for all 𝑡 > 0 such that

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ≤ 𝑑 (𝑥, 𝑦) − 𝜑 (𝑑 (𝑥, 𝑦)) , (5)

for all 𝑥, 𝑦 ∈ 𝑋.
Later, Zhang and Song [31] introduced the notion of a

generalized weak-𝜑-contraction which is a natural extension
of the weak-𝜑-contraction. A self-mapping 𝑓 on a metric
space (𝑋, 𝑑) is said to be generalized weak-𝜑-contractive if
there exists a map 𝜑 : [0, +∞) → [0, +∞)with 𝜑(0) = 0 and
𝜑(𝑡) > 0 for all 𝑡 > 0 such that

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ≤ 𝑁 (𝑥, 𝑦) − 𝜑 (𝑁 (𝑥, 𝑦)) , (6)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝑁(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓 (𝑥)) , 𝑑 (𝑦, 𝑓 (𝑦)) ,

𝑑 (𝑥, 𝑓 (𝑦)) + 𝑑 (𝑦, 𝑓 (𝑥))

2

} .

(7)

For more details on weak 𝜑-contractions, we refer to, for
example, [20, 21, 28].

On the other hand, the existence anduniqueness of a fixed
point in the context of partially ordered metric spaces were
first investigated in 1986 by Turinici [30]. After this pivotal
paper, a number of results were reported in this direction
with applications to matrix equations, ordinary differential
equations, and integral equations (see, e.g., [1, 2, 4, 5, 7, 9, 11–
13, 15–19, 22, 25–27]).

Recently, themain theorem of Geraghty [16,Theorem 2.1]
is reproved by Amini-Harandi and Emami [1] in the context
of partially ordered metric space. On the other hand, the

main theorem of Amini-Harandi and Emami [1, Theorem
2.1] extends the theorem of Harjani and Sadarangani [2]. The
authors in [1, 2] also proved the existence and uniqueness of
a solution for a periodic boundary value problem.

Before stating the main theorem in [1], we recall the
following class of functions introduced by Geraghty [16]. Let
S denote the set of all functions 𝜓 : [0, +∞) → [0, 1) such
that

𝜓 (𝑡
𝑛
) 󳨀→ 1 implies 𝑡

𝑛
󳨀→ 0. (8)

Theorem 3. Let (𝑋, ⪯) be a partially ordered set and suppose
that there exists a metric 𝑑 in 𝑋 such that (𝑋, 𝑑) is a complete
metric space. Let𝑓 : 𝑋 → 𝑋 be a nondecreasingmapping such
that there exists an element 𝑥

0
∈ 𝑋 with 𝑥

0
⪯ 𝑓(𝑥

0
). Suppose

that there exists 𝛽 ∈ S such that

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ≤ 𝛽 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦)

for each 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪰ 𝑦.
(9)

Assume that either

(a) 𝑓 is continuous or
(b) for every nondecreasing sequence {𝑥

𝑛
} if 𝑥
𝑛
→ 𝑥, then

𝑥
𝑛
⪯ 𝑥 for all 𝑛 ∈ N.

Moreover, if for each 𝑥, 𝑦 ∈ 𝑋 there exists 𝑧 ∈ 𝑋 which is
comparable to 𝑥 and 𝑦, then 𝑓 has a unique fixed point.

Let 𝐹(𝑓) denote the set of fixed points of 𝑓.
We give the following classes of functions. Let Φ denote

the set of all mappings 𝜑 : [0, +∞) → [0, +∞) verifying that

𝜑 (𝑡
𝑛
) 󳨀→ 0 implies 𝑡

𝑛
󳨀→ 0. (10)

It is clear that if 𝜑 ∈ Φ, we have that

𝜑 (𝑡) = 0 implies 𝑡 = 0. (11)

3. Some Auxiliary Fixed Point Theorems

In the following theorem, we prove the existence and unique-
ness of a fixed point for generalized weak-𝜑-contractive
mappings in partially ordered complete metric spaces.

Theorem 4. Let (𝑋, ⪯) be a partially ordered set and suppose
that there exists a metric 𝑑 in 𝑋 such that (𝑋, 𝑑) is a complete
metric space. Let𝑓 : 𝑋 → 𝑋 be a nondecreasingmapping such
that there exists an element 𝑥

0
∈ 𝑋 with 𝑥

0
⪯ 𝑓(𝑥

0
). Suppose

that there exists 𝜑 ∈ Φ such that

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ≤ 𝑁 (𝑥, 𝑦) − 𝜑 (𝑁 (𝑥, 𝑦)) , (12)

for each 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦 (i.e., a generalized weak-𝜑-
contraction).

Suppose also that either

(a) 𝑓 is continuous or
(b) for every nondecreasing sequence {𝑥

𝑛
} if 𝑥
𝑛
→ 𝑥, then

𝑥
𝑛
⪯ 𝑥 for all 𝑛 ∈ N.
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Then 𝑓 has a fixed point. Moreover, if every 𝑥, 𝑦 ∈ 𝐹(𝑓) is
comparable, then the fixed point of 𝑓 is unique.

Proof. First, we prove the existence of a fixed point of𝑓. Since
the self-mapping 𝑓 is nondecreasing and 𝑥

0
⪯ 𝑓(𝑥

0
), we get

that

𝑥
0
⪯ 𝑓 (𝑥

0
) ⪯ 𝑓
2
(𝑥
0
) ⪯ ⋅ ⋅ ⋅ ⪯ 𝑓

𝑛
(𝑥
0
) ⪯ ⋅ ⋅ ⋅ . (13)

Define 𝑥
𝑛
= 𝑓
𝑛
(𝑥
0
), 𝑛 = 1, 2, 3, . . .. Then, expression (13)

is equivalent to

𝑥
𝑛
⪯ 𝑥
𝑛+1

∀𝑛 ∈ N. (14)

Assume that 𝑥
𝑛
̸= 𝑥
𝑛+1

for each 𝑛 ∈ N. Otherwise, the proof is
completed. From (12), we derive that

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ 𝑁 (𝑥

𝑛
, 𝑥
𝑛−1

) − 𝜑 (𝑁 (𝑥
𝑛
, 𝑥
𝑛−1

)) , (15)

where

𝑁(𝑥
𝑛
, 𝑥
𝑛−1

) = max{𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) , 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
),

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛
, 𝑥
𝑛
)

2

}

= max {𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) , 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)} .

(16)

If 𝑁(𝑥
𝑛
, 𝑥
𝑛−1

) = 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) for some 𝑛, then from (15) and
(16), we have

0 < 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) − 𝜑 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

))

< 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) .

(17)

This is a contradiction. Hence, 𝑁(𝑥
𝑛
, 𝑥
𝑛−1

) = 𝑑(𝑥
𝑛
, 𝑥
𝑛−1

) for
all 𝑛 ≥ 1. So by (15) and (16), we have for all 𝑛 ≥ 1,

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑛
, 𝑥
𝑛−1

) − 𝜑 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))

< 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) .

(18)

Thus, we conclude that the nonnegative sequence {𝑑(𝑥
𝑛+1

,
𝑥
𝑛
)} is decreasing. Therefore, there exists 𝑟 ≥ 0 such that

lim
𝑛→∞

𝑑(𝑥
𝑛+1

, 𝑥
𝑛
) = 𝑟. By using (18), we find that

0 ≤ 𝜑 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) − 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) .

(19)

Taking 𝑛 → ∞ in (19), we get lim
𝑛→∞

𝜑(𝑑(𝑥
𝑛
, 𝑥
𝑛−1

)) = 0.
Since 𝜑 ∈ Φ, we obtain that lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑥
𝑛−1

) = 0; that is,
𝑟 = 0.

We prove that the iterative sequence {𝑥
𝑛
} is Cauchy. Take

𝑚 > 𝑛, then 𝑥
𝑛
⪯ 𝑥
𝑚
. From (12), we obtain that

𝑑 (𝑥
𝑚+1

, 𝑥
𝑛+1

) ≤ 𝑁 (𝑥
𝑚
, 𝑥
𝑛
) − 𝜑 (𝑁 (𝑥

𝑚
, 𝑥
𝑛
)) , (20)

and thus,

0 ≤ 𝜑 (𝑁 (𝑥
𝑚
, 𝑥
𝑛
)) ≤ 𝑁 (𝑥

𝑚
, 𝑥
𝑛
) − 𝑑 (𝑥

𝑚+1
, 𝑥
𝑛+1

) , (21)

where

𝑁(𝑥
𝑚
, 𝑥
𝑛
) = max{𝑑 (𝑥

𝑚
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑚
, 𝑥
𝑚+1

) , 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ,

𝑑 (𝑥
𝑚
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛
, 𝑥
𝑚+1

)

2

}

≤ 𝑑 (𝑥
𝑚
, 𝑥
𝑚+1

) + 𝑑 (𝑥
𝑚+1

, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) .

(22)

Hence, by (21),

0 ≤ 𝜑 (𝑁 (𝑥
𝑚
, 𝑥
𝑛
)) ≤ 𝑑 (𝑥

𝑚
, 𝑥
𝑚+1

) + 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) . (23)

This shows that lim
𝑚,𝑛→∞

𝜑(𝑁(𝑥
𝑚
, 𝑥
𝑛
)) = 0; that is, {𝑥

𝑛
} is

Cauchy. Since (𝑋, 𝑑) is a complete metric space, then there
exists 𝑥 ∈ 𝑋 such that lim

𝑛→∞
𝑥
𝑛
= 𝑥. Now, we prove that 𝑥

is a fixed point of 𝑓.
If (a) holds, that is, if 𝑓 is continuous, then

𝑥 = lim
𝑛→∞

𝑥
𝑛
= lim
𝑛→∞

𝑓 (𝑥
𝑛−1

) = 𝑓 (𝑥) . (24)

Suppose that (b) holds. By using (12), we derive that

0 ≤ 𝜑 (𝑁 (𝑥
𝑛
, 𝑥)) ≤ 𝑁 (𝑥

𝑛
, 𝑥) − 𝑑 (𝑥

𝑛+1
, 𝑓 (𝑥)) , (25)

where

𝑁(𝑥
𝑛
, 𝑥) = max{𝑑 (𝑥

𝑛
, 𝑥) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥, 𝑓 (𝑥)) ,

𝑑 (𝑥
𝑛
, 𝑓 (𝑥)) + 𝑑 (𝑥, 𝑥

𝑛+1
)

2

} .

(26)

So lim
𝑛→∞

𝑁(𝑥
𝑛
, 𝑥) = 𝑑(𝑥, 𝑓(𝑥)). Taking 𝑛 → ∞ in (25),

we get lim
𝑛→∞

𝜑(𝑁(𝑥
𝑛
, 𝑥)) = 0. Since 𝜑 ∈ Φ, we conclude

that lim
𝑛→∞

𝑁(𝑥
𝑛
, 𝑥) = 0. So 𝑑(𝑥, 𝑓(𝑥)) = 0 and hence 𝑥 =

𝑓(𝑥).
Now, we show that this fixed point 𝑥 of the self-mapping

𝑓 is unique. If for each 𝑥, 𝑦 ∈ 𝐹(𝑓), 𝑥 and 𝑦 are comparable,
then the fixed point is unique. Let 𝑥, 𝑦 be two fixed points of
𝑓. Then 𝑁(𝑥, 𝑦) = 𝑑(𝑥, 𝑦) and from (12), we conclude that
𝜑(𝑑(𝑥, 𝑦)) = 0. Thus, 𝑑(𝑥, 𝑦) = 0 and hence, 𝑥 = 𝑦. This
completes the proof.

The following consequence of Theorem 4 plays a crucial
role in the proof of our main result, Theorem 9.

Theorem 5. Let (𝑋, ⪯) be a partially ordered set and suppose
that there exists a metric 𝑑 in 𝑋 such that (𝑋, 𝑑) is a complete
metric space. Let𝑓 : 𝑋 → 𝑋 be a nondecreasingmapping such
that there exists an element 𝑥

0
∈ 𝑋 with 𝑥

0
⪯ 𝑓(𝑥

0
). Suppose

that there exists 𝜑 ∈ Φ such that

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ≤ 𝑑 (𝑥, 𝑦) − 𝜑 (𝑑 (𝑥, 𝑦)) , (27)
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for each 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦 (i.e., weak-𝜑-contraction).
Suppose also that either

(a) 𝑓 is continuous or
(b) for every nondecreasing sequence {𝑥

𝑛
} if 𝑥
𝑛
→ 𝑥, then

𝑥
𝑛
⪯ 𝑥 for all 𝑛 ∈ N.

Then 𝑓 has a fixed point. Moreover, if for each 𝑥, 𝑦 ∈ 𝐹(𝑓)

there exists 𝑧 ∈ 𝑋 which is comparable to 𝑥 and 𝑦, then the
fixed point of 𝑓 is unique.

Remark 6. In Theorem 4, if the condition “every 𝑥, 𝑦 ∈ 𝐹(𝑓)
is comparable” is replaced by the condition “for each 𝑥, 𝑦 ∈

𝐹(𝑓) there exists 𝑧 ∈ 𝑋 which is comparable to 𝑥 and 𝑦,”
then we cannot conclude that the fixed point is unique. The
following example illustrates our claim.

Example 7. Let𝑋 = {𝑥, 𝑦, 𝑧, 𝑤} be endowed with the relation
⪯ given as follows:

𝑥 ⪯ 𝑧, 𝑥 ⪯ 𝑤, 𝑦 ⪯ 𝑧, 𝑦 ⪯ 𝑤, (28)

and 𝑎 ⪯ 𝑎 for each 𝑎 ∈ 𝑋. Obviously, (𝑋, ⪯) is a partially
ordered set. Also, wemay endow𝑋with the followingmetric:

𝑑 (𝑥, 𝑧) = 𝑑 (𝑥, 𝑤) = 𝑑 (𝑦, 𝑧) = 𝑑 (𝑦, 𝑤) = 𝑑 (𝑥, 𝑦) = 1,

𝑑 (𝑧, 𝑤) = 2,

(29)

and 𝑑(𝑎, 𝑎) = 0 for each 𝑎 ∈ 𝑋. Define 𝑓 : 𝑋 → 𝑋 by
𝑓(𝑥) = 𝑥, 𝑓(𝑦) = 𝑦, 𝑓(𝑧) = 𝑤, and 𝑓(𝑤) = 𝑧. Obviously, the
mapping 𝑓 is nondecreasing and

𝑑 (𝑓 (𝑎) , 𝑓 (𝑏)) ≤ 𝑑 (𝑎, 𝑏) − 𝜑 (𝑑 (𝑎, 𝑏)) , (30)

for all 𝑎, 𝑏 ∈ 𝑋 with 𝑎 ⪯ 𝑏, where 𝜑(𝑡) = (1/3)𝑡. Also 𝐹(𝑓) =
{𝑥, 𝑦}, but 𝑥 ⪯ 𝑧 and 𝑦 ⪯ 𝑧.

Remark 8. If 𝛽 ∈ S, then 𝜑(𝑡) = 𝑡 − 𝛽(𝑡)𝑡 ∈ Φ. But if 𝜑 ∈ Φ,
then we can not conclude that the function

𝛽 (𝑡) =

{
{

{
{

{

1 −

𝜑 (𝑡)

𝑡

, 𝑡 > 0

0, 𝑡 = 0

(31)

belongs to S. Consider, for example,

𝜑 (𝑡) =

{
{
{

{
{
{

{

1

2

𝑡, 0 ≤ 𝑡 < 1

1

2

, 1 ≤ 𝑡.

(32)

which illustrates our claim. As a result,Theorem 5 is a proper
extension of Theorem 3.

4. Applications

4.1. Solving a Boundary Value Problem. In this paragraph, we
prove the existence of a solution of the problem (1).

Theorem 9. Consider problem (1) with 𝑓 being continuous.
Suppose that there exists 𝜆 > 0 such that for 𝑥, 𝑦 ∈ R with
𝑦 ≥ 𝑥

0 ≤ 𝑓 (𝑡, 𝑦) + 𝜆𝑦 − [𝑓 (𝑡, 𝑥) + 𝜆𝑥]

≤ 𝜆 [(𝑦 − 𝑥) − 𝜑 (𝑦 − 𝑥)] ,

(33)

where 𝜑 ∈ Φ and 𝑡 󳨃→ 𝑡 − 𝜑(𝑡) is nondecreasing. Then the
existence of a lower solution for (1) provides the existence of a
unique solution for (1).

Proof. Define 𝜁 = 𝜁
0
/𝑇.Then, problem (1) becomes as follows

𝑢
󸀠

(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) if 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇) + 𝜁𝑇.

(34)

Suppose 𝑦(𝑡) = 𝑢(𝑡) + 𝜁𝑡. So 𝑦󸀠(𝑡) = 𝑢
󸀠
(𝑡) + 𝜁 and hence

problem (34) can be rewritten as

𝑦
󸀠

(𝑡) = ℎ (𝑡, 𝑦 (𝑡)) if 𝑡 ∈ [0, 𝑇] ,

𝑦 (0) = 𝑦 (𝑇) ,

(35)

where ℎ : 𝐼×R → R is defined by ℎ(𝑡, 𝑧) = 𝑓(𝑡, 𝑧−𝜁𝑡)+𝜁 and
𝐼 = [0, 𝑇]. Obviously, ℎ is continuous. Also the lower solution
of (34) is replaced by the lower solution of (35). Now we
prove that the problem (35) has a unique solution. Obviously,
if 𝑥, 𝑦 ∈ R and 𝑦 ≥ 𝑥, then for every 𝑡 ∈ 𝐼, 𝑦−𝜁𝑡 ≥ 𝑥−𝜁𝑡 and
hence from (33),

0 ≤ 𝑓 (𝑡, 𝑦 − 𝜁𝑡) + 𝜆 (𝑦 − 𝜁𝑡) − [𝑓 (𝑡, 𝑥 − 𝜁𝑡) + 𝜆 (𝑥 − 𝜁𝑡)]

≤ 𝜆 [((𝑦 − 𝜁𝑡) − (𝑥 − 𝜁𝑡)) − 𝜑 ((𝑦 − 𝜁𝑡) − (𝑥 − 𝜁𝑡))] .

(36)

Inequality (36) implies that if 𝑥, 𝑦 ∈ R,

0 ≤ ℎ (𝑡, 𝑦) + 𝜆𝑦 − [ℎ (𝑡, 𝑥) + 𝜆𝑥] ≤ 𝜆 [(𝑦 − 𝑥) − 𝜑 (𝑦 − 𝑥)] .

(37)

Problem (35) is equivalent to the following integral equation:

𝑦 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) [ℎ (𝑠, 𝑦 (𝑠)) + 𝜆𝑦 (𝑠)] 𝑑𝑠, (38)

where

𝐺 (𝑡, 𝑠) =

{
{
{
{

{
{
{
{

{

𝑒
𝜆(𝑇+𝑠−𝑡)

𝑒
𝜆𝑡
− 1

, 0 ≤ 𝑠 < 𝑡 ≤ 𝑇,

𝑒
𝜆(𝑠−𝑡)

𝑒
𝜆𝑡
− 1

, 0 ≤ 𝑡 < 𝑠 ≤ 𝑇.

(39)

Let 𝐶(𝐼,R) be the set of continuous functions defined on 𝐼 =
[0, 𝑇]. Consider 𝐹 : 𝐶(𝐼,R) → 𝐶(𝐼,R) given by

(𝐹𝑦) (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) [ℎ (𝑠, 𝑦 (𝑠)) + 𝜆𝑦 (𝑠)] 𝑑𝑠. (40)

Note that if 𝑦 ∈ 𝐶(𝐼,R) is a fixed point of 𝐹, then 𝑦 ∈

𝐶
1
(𝐼,R) is a solution of (35). Now, we check that hypotheses

of Theorem 5 are satisfied.
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Take 𝑋 = 𝐶(𝐼,R). The space 𝑋 can be equipped with a
partial order ≤ given by

𝑥, 𝑦 ∈ 𝐶 (𝐼,R) , 𝑥 ≤ 𝑦 ⇐⇒ 𝑥 (𝑡) ≤ 𝑦 (𝑡) , ∀𝑡 ∈ 𝐼.

(41)

Also,𝑋 can be equipped with the following metric:

𝑥, 𝑦 ∈ 𝐶 (𝐼,R) , 𝑑 (𝑥, 𝑦) = sup
𝑡∈𝐼

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
. (42)

We have that (𝑋, 𝑑) is complete. For every𝑦 ≥ 𝑥 and for every
𝑡 ∈ 𝐼, we have 𝑦 − 𝑡𝜁 ≥ 𝑥 − 𝑡𝜁 and by hypothesis,

𝑓 (𝑡, 𝑦 − 𝑡𝜁) + 𝜆 (𝑦 − 𝑡𝜁) ≥ 𝑓 (𝑡, 𝑥 − 𝑡𝜁) + 𝜆 (𝑥 − 𝑡𝜁) . (43)

Therefore,

ℎ (𝑡, 𝑦) + 𝜆𝑦 ≥ ℎ (𝑡, 𝑥) + 𝜆𝑥, (44)

and since 𝐺(𝑡, 𝑠) > 0 for (𝑡, 𝑠) ∈ 𝐼 × 𝐼, hence

(𝐹𝑦) (𝑡) ≥ (𝐹𝑥) (𝑡) , (45)

for all 𝑥, 𝑦 ∈ 𝐶(𝐼,R) with 𝑦 ≥ 𝑥.
Also, for all 𝑥, 𝑦 ∈ 𝐶(𝐼,R) with 𝑦 ≥ 𝑥, we find (using the

fact that 𝑡 󳨃→ 𝑡 − 𝜑(𝑡) is nondecreasing)

𝑑 (𝐹𝑦, 𝐹𝑥)

= sup
𝑡∈𝐼

󵄨
󵄨
󵄨
󵄨
(𝐹𝑦) (𝑡) − (𝐹𝑥) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ sup
𝑡∈𝐼

∫

𝑇

0

𝐺 (𝑡, 𝑠)

×
󵄨
󵄨
󵄨
󵄨
ℎ (𝑠, 𝑦 (𝑠)) + 𝜆𝑦 (𝑠) − ℎ (𝑠, 𝑥 (𝑠)) − 𝜆𝑥 (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ sup
𝑡∈𝐼

∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝜆
󵄨
󵄨
󵄨
󵄨
(𝑦 (𝑠) − 𝑥 (𝑠)) − 𝜑 (𝑦 (𝑠) − 𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ 𝜆 [𝑑 (𝑦, 𝑥) − 𝜑 (𝑑 (𝑦, 𝑥))] sup
𝑡∈𝐼

∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑑𝑠

= 𝜆 [𝑑 (𝑦, 𝑥) − 𝜑 (𝑑 (𝑦, 𝑥))]

× sup
𝑡∈𝐼

1

𝑒
𝜆𝑇
− 1

(

1

𝜆

𝑒
𝜆(𝑇+𝑠−𝑡)

]

𝑡

0

+

1

𝜆

𝑒
𝜆(𝑠−𝑡)

]

𝑇

𝑡

)

= 𝜆 [𝑑 (𝑦, 𝑥) − 𝜑 (𝑑 (𝑦, 𝑥))]

1

𝜆 (𝑒
𝜆𝑇
− 1)

(𝑒
𝜆𝑇
− 1)

= 𝑑 (𝑦, 𝑥) − 𝜑 (𝑑 (𝑦, 𝑥)) .

(46)

Finally, let 𝛼(𝑡) be a lower solution for (35). We can show that
𝛼 ≤ 𝐹𝛼 by a method similar to that in [1, 2]. Also,𝑋 is totally
ordered. Hence, due toTheorem 5,𝐹 has a unique fixed point.
Therefore, problem (35) has a unique solution 𝑦 ∈ 𝐶

1
(𝐼,R).

Thus, 𝑥(𝑡) = 𝑦(𝑡) − 𝜁𝑡 is the unique solution of (34) and this
completes the proof.

Remark 10. If the mapping 𝑓 : [0, 𝑇] × R → R satisfies the
condition (33), then for𝑥, 𝑦 ∈ Rwith𝑦 ≥ 𝑥 and for 𝑡 ∈ [0, 𝑇],

−𝜆 (𝑦 − 𝑥) ≤ 𝑓 (𝑡, 𝑦) − 𝑓 (𝑡, 𝑥) ≤ −𝜆𝜑 (𝑦 − 𝑥) ≤ 0. (47)

Hence, for all 𝑥, 𝑦 ∈ R and all 𝑡 ∈ [0, 𝑇], we have
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦) − 𝑓 (𝑡, 𝑥)

󵄨
󵄨
󵄨
󵄨
≤ 𝜆

󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑥

󵄨
󵄨
󵄨
󵄨
. (48)

Therefore, by using Banach contraction principle, for every
𝜂 ∈ R, the problem

𝑢
󸀠

(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) if 𝑡 ∈ [0, 𝑇]

𝑢 (0) = 𝜂

(49)

has a unique solution 𝑢
𝜂
∈ 𝐶
1
([0, 𝑇]). So there exists a unique

𝜂 ∈ R such that 𝑢
𝜂
is a solution of (1).

Now let 𝑓 : [0, 𝑇] × R → R be a mapping such that for
all 𝑥, 𝑦 ∈ R and all 𝑡 ∈ [0, 𝑇],

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑦) − 𝑓 (𝑡, 𝑥)

󵄨
󵄨
󵄨
󵄨
≤ 𝑅

󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑥

󵄨
󵄨
󵄨
󵄨
, (50)

for some 𝑅 > 0. We know that for every 𝜂 ∈ R, problem (49)
has a unique solution 𝑢

𝜂
∈ 𝐶
1
([0, 𝑇]).

Question 1. It is natural to ask whether there is an 𝜂 ∈ R

where 𝑢
𝜂
is a solution of problem ((2), i.e., (𝑢

𝜂
(0) = 𝑢

𝜂
(𝑇))?

The following example shows that the above question is
not true.

Example 11. Let 𝑓 : [0, 𝑇] × R → R be defined by 𝑓(𝑡, 𝑥) =
𝑡+|𝑥|. Obviously, (50) holds for 𝑅 = 1. Let 𝑢 ∈ 𝐶1([0, 𝑇]) be a
solution for problem (2). From 𝑢

󸀠
(𝑡) = 𝑓(𝑡, 𝑢(𝑡)) = 𝑡 + |𝑢(𝑡)|,

we conclude that 𝑢󸀠(𝑡) > 0 for all 𝑡 > 0. Hence, 𝑢 is monotone
nondecreasing. Using 𝑢(0) = 𝑢(𝑇), we conclude that 𝑢 ≡ 0.
Since 𝑢󸀠(𝑡) = 𝑓(𝑡, 𝑢(𝑡)) = 𝑡 + |𝑢(𝑡)| and 𝑢 ≡ 0, then 𝑡 = 0 for
all 𝑡 ∈ [0, 𝑇] and this is a contradiction. So, problem (2) has
no solution.

Example 12. Let 𝑓 : [0, 𝑇] × R → R be defined by 𝑓(𝑡, 𝑥) =
exp(𝑡) − (1/2)𝑥 and let 𝜑 : [0, +∞) → [0, +∞) be defined
by 𝜑(𝑡) = (1/3)𝑡. Take 𝜆 = 1. One can show that inequality
(33) holds. Suppose that 𝛼 : R → R is defined by 𝛼(𝑡) =
0. Obviously, 𝛼 is a lower solution of problem (2). Hence,
problem (2) has a unique solution, which is

𝑢 (𝑡) =

2

3

exp (𝑡) + 𝐶 exp (−1
2

𝑡) , (51)

where 𝐶 = 2(exp(𝑇) − 1)/3(1 − exp((−1/2)𝑡)).

4.2. Solving Some Polynomials. In this paragraph, we prove
the existence and uniqueness of a solution of some polyno-
mials.

Theorem 13. Let 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑘−1
∈ [0, +∞) be such that 𝑎

1
+

𝑎
2
+ ⋅ ⋅ ⋅ + 𝑎

𝑘−1
< 1 and 𝑎

0
≥ 1. Then,

𝑦
𝑘
= 𝑎
𝑘−1

𝑦
𝑘−1

+ 𝑎
𝑘−2

𝑦
𝑘−2

+ ⋅ ⋅ ⋅ + 𝑎
1
𝑦 + 𝑎
0

(52)

has a unique solution on [ 𝑘√𝑎0, +∞).
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Proof. Suppose that 𝑓 : [𝑎
0
, +∞) → [𝑎

0
, +∞) is defined by

𝑓 (𝑥) = 𝑎
𝑘−1

𝑘
√
𝑥
𝑘−1

+ 𝑎
𝑘−2

𝑘
√
𝑥
𝑘−2

+ ⋅ ⋅ ⋅ + 𝑎
1

𝑘
√𝑥 + 𝑎

0
. (53)

If 𝑥 ≤ 𝑦, then 𝑓(𝑥) ≤ 𝑓(𝑦). So 𝑓 is nondecreasing. Also for
𝑥, 𝑦 ∈ [𝑎

0
, +∞) with 𝑥 ≤ 𝑦, we derive that

0 ≤ 𝑓 (𝑦) − 𝑓 (𝑥)

= 𝑎
𝑘−1

(
𝑘
√𝑦
𝑘−1

−

𝑘
√
𝑥
𝑘−1

) + 𝑎
𝑘−2

(
𝑘
√𝑦
𝑘−2

−

𝑘
√
𝑥
𝑘−2

)

+ ⋅ ⋅ ⋅ + 𝑎
1
(
𝑘
√𝑦 −

𝑘
√𝑥) .

(54)

Suppose that𝑔
𝑖
: [1, +∞) → R is defined by 𝑔

𝑖
(𝑡) = 𝑡−𝑡

1−𝑖/𝑘,
for 𝑖 = 1, 2, . . . , 𝑘 − 1. Since 𝑔󸀠

𝑖
(𝑡) = 1 − (1 − 𝑖/𝑘)1/𝑡

𝑖/𝑘
≥ 0,

then 𝑔
𝑖
is monotone nondecreasing. Hence, if 1 ≤ 𝑥 ≤ 𝑦, then

𝑔
𝑖
(𝑥) ≤ 𝑔

𝑖
(𝑦). So, 𝑦1−𝑖/𝑘−𝑥1−𝑖/𝑘 ≤ 𝑦−𝑥.Therefore, from (54),

we get

0 ≤ 𝑓 (𝑦) − 𝑓 (𝑥) ≤ (𝑦 − 𝑥) − 𝜑 (𝑦 − 𝑥) , (55)

where 𝜑(𝑡) = [1 − (𝑎
𝑘−1

+ 𝑎
𝑘−2

+ ⋅ ⋅ ⋅ + 𝑎
1
)]𝑡. Also 𝑎

0
≤

𝑓(𝑎
0
). Thus, using Theorem 5, the mapping 𝑓 has a unique

fixed point 𝑥 ∈ [𝑎
0
, +∞). Moreover, the sequence {𝑓𝑛(𝑎

0
)}

converges to this fixed point. Note that here the space 𝑋
is taken to be [𝑎

0
, +∞), which is equipped with the usual

Euclidian metric and the usual partial order.
On the other hand, there exists a unique 𝑦 ∈ [ 𝑘√𝑎0

, +∞)

such that 𝑦𝑘 = 𝑥. So, from 𝑥 = 𝑓(𝑥), we have 𝑦𝑘 = 𝑓(𝑦𝑘) and
therefore we find

𝑦
𝑘
= 𝑎
𝑘−1

𝑦
𝑘−1

+ 𝑎
𝑘−2

𝑦
𝑘−2

+ ⋅ ⋅ ⋅ + 𝑎
1
𝑦 + 𝑎
0
. (56)

Also the sequence { 𝑘√𝑓𝑛(𝑎
0
)} converges to 𝑦 and this com-

pletes the proof.
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