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Nonlinear conjugate gradient method is one of the useful methods for unconstrained optimization problems. In this paper, we
consider three kinds of nonlinear conjugate gradient methods with Wolfe type line search for unstrained optimization problems.
Under some mild assumptions, the global convergence results of the given methods are proposed.The numerical results show that
the nonlinear conjugate gradient methods withWolfe type line search are efficient for some unconstrained optimization problems.

1. Introduction

In this paper, we focus our attention on the global conver-
gence of nonlinear conjugate gradient method with Wolfe
type line search. We consider the following unconstrained
optimization problem:

min
𝑥∈𝑅
𝑛

𝑓 (𝑥) . (1)

In (1), 𝑓 is continuously differentiable function, and its
gradient is denoted by 𝑔(𝑥) = ∇𝑓(𝑥). Of course, the iterative
methods are often used for (1). The iterative formula is given
by

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, (2)

where 𝑥
𝑘
, 𝑥
𝑘+1

∈ 𝑅𝑛 is the kth and (k+1)th iterative step, 𝛼
𝑘
is

a step size, and 𝑑
𝑘
is a search direction. Here, in the following,

we define the search direction by

𝑑
𝑘
= {

−𝑔
𝑘
, if 𝑘 = 1,

−𝑔
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

, if 𝑘 ≥ 2.
(3)

In (3), 𝛽
𝑘
is a conjugate gradient scalar, and the well-known

useful formulas are 𝛽FR
𝑘
, 𝛽PRP
𝑘

, 𝛽HS
𝑘
, and 𝛽DY

𝑘
(see [1–6]).

Recently, some kinds of new nonlinear conjugate gradient
methods are given in [7–11]. Based on the new method,
we give some new kinds of nonlinear conjugate gradient

methods and analyze the global convergence of the methods
with Wolfe type line search.

The rest of the paper is organized as follows. In Section 2,
we give the methods and the global convergence results
for them. In the last section, numerical results and some
discussions are given.

2. The Methods and Their Global
Convergence Results

Firstly, we give the Wolfe type line search, which will be used
in our new nonlinear conjugate gradient methods. In the
following section of this paper, ‖ ⋅ ‖ stands for the 2-norm.

We have used the Wolfe type line search in [12].
The line search is to compute 𝛼

𝑘
> 0 such that

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) ≤ 𝑓 (𝑥

𝑘
) − 𝜌𝛼2

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

, (4)

𝑔(𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘
≥ −2𝜎𝛼

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

, (5)
where 𝜌, 𝜎 ∈ (0, 1), 𝜌 < 𝜎.

Now, we present the nonlinear conjugate gradient meth-
ods as follows.

Algorithm 1. We have the following steps.

Step 0. Given 𝑥
0
∈ 𝑅𝑛, set 𝑑

0
= −𝑔
0
, 𝑘 := 0. If ‖𝑔

0
‖ = 0, then

stop.
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Step 1. Find 𝛼
𝑘

> 0 satisfying (4) and (5), and by (2), 𝑥
𝑘+1

is
given. If ‖𝑔

𝑘+1
‖ = 0, then stop.

Step 2. Compute 𝑑
𝑘
by the following equation:

𝑑
𝑘
= 𝛽
𝑘
𝑑
𝑘−1

− (1 + 𝛽
𝑘

𝑔𝑇
𝑘
𝑑
𝑘−1

‖𝑔
𝑘
‖2

)𝑔
𝑘
, (6)

in which 𝛽
𝑘
= −‖𝑔

𝑘
‖2/𝑑𝑇
𝑘−1

𝑔
𝑘−1

. Set 𝑘 := 𝑘 + 1, and go to
Step 1.

Before giving the global convergence theorem, we need
the following assumptions.

Assumption 1. (A1) The set 𝐿
0
= {𝑥 ∈ 𝑅𝑛 | 𝑓(𝑥) ≤ 𝑓(𝑥

0
)} is

bounded.
(A2) In the neighborhood of 𝐿

0
, denoted as 𝑈, 𝑓 is con-

tinuously differentiable. Its gradient is Lipschitz continuous;
namely, for 𝑥, 𝑦 ∈ 𝑈, there exists 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 . (7)

In order to establish the global convergence of Algorithm 1,
we also need the following lemmas.

Lemma 2. Suppose that Assumption 1 holds; then, (4) and (5)
are well defined.

The proof is essentially the same as Lemma 1 of [12];
hence, we do not rewrite it again.

Lemma 3. Suppose that direction 𝑑
𝑘
is given by (6); then, one

has

𝑑𝑇
𝑘
𝑔
𝑘
= −

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

≤ 0 (8)

holds for all 𝑘 ≥ 0. So, one knows that 𝑑
𝑘
is descent search

direction.

Proof. From the definitions of 𝑑
𝑘
and 𝛽

𝑘
, we can get it.

Lemma 4. Suppose that Assumption 1 holds, and 𝛼
𝑘
is deter-

mined by (4) and (5); one has

∞

∑
𝑘=1

(𝑔𝑇
𝑘
𝑑
𝑘
)
2

‖𝑑
𝑘
‖2

< +∞. (9)

Proof. By (4), (5), Lemma 3, and Assumption 1, we can get

− (2𝜎 + 𝐿) 𝛼
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

≤ 𝑔𝑇
𝑘
𝑑
𝑘
. (10)

Then, we know that

(2𝜎 + 𝐿) 𝛼
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≥ −

𝑔𝑇
𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
. (11)

By squaring both sides of the previous inequation, we get

(2𝜎 + 𝐿)
2𝛼2
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

≥
(𝑔𝑇
𝑘
𝑑
𝑘
)
2

‖𝑑
𝑘
‖2

. (12)

By (4), we know that

∞

∑
𝑘=1

(𝑔𝑇
𝑘
𝑑
𝑘
)
2

‖𝑑
𝑘
‖2

≤
∞

∑
𝑘=1

(2𝜎 + 𝐿)
2𝛼2
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

≤
(2𝜎 + 𝐿)2

𝜌

∞

∑
𝑘=1

{𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑘+1
)}

< +∞.

(13)

So, we get (9), and this completes the proof of the lemma.

Lemma 5. Suppose that Assumption 1 holds, 𝑑
𝑘
is computed

by (6), and 𝛼
𝑘
is determined by (4) and (5); one has

∑
𝑘≥0

‖𝑔
𝑘
‖4

‖𝑑
𝑘
‖2

< +∞. (14)

Proof. From Lemmas 3 and 4, we can obtain (14).

Theorem 6. Consider Algorithm 1, and suppose that
Assumption 1 holds. Then, one has

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (15)

Proof. We suppose that the theorem is not true. Suppose by
contradiction that there exists 𝜖 > 0 such that

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≥ 𝜖 (16)

holds for 𝑘 ≥ 0.
From (6) and Lemma 3, we get

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

= (𝛽
𝑘
)
2󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩
2

− (1 + 𝛽
𝑘

𝑔𝑇
𝑘
𝑑
𝑘−1

‖𝑔
𝑘
‖2

)

2

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

− 2(1 + 𝛽
𝑘

𝑔𝑇
𝑘
𝑑
𝑘−1

‖𝑔
𝑘
‖2

)𝑑𝑇
𝑘
𝑔
𝑘
.

(17)

Dividing the previous inequation by (𝑔𝑇
𝑘
𝑑
𝑘
)2, we get

‖𝑑
𝑘
‖2

‖𝑔
𝑘
‖4

=
‖𝑑
𝑘
‖2

(𝑔𝑇
𝑘
𝑑
𝑘
)
2

=
𝛽2
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

(𝑔𝑇
𝑘
𝑑
𝑘
)
2

−
(1 + 𝛽

𝑘
𝑔𝑇
𝑘
𝑑
𝑘−1

/‖𝑔
𝑘
‖2)
2

‖𝑔
𝑘
‖2

(𝑑𝑇
𝑘
𝑔
𝑘
)
2

−
2 (1 + 𝛽

𝑘
𝑔𝑇
𝑘
𝑑
𝑘−1

/‖𝑔
𝑘
‖2)

𝑑𝑇
𝑘
𝑔
𝑘
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=
‖𝑑
𝑘−1

‖2

‖𝑔
𝑘−1

‖4
+

1

‖𝑔
𝑘
‖2

−
𝛽2
𝑘
(𝑔𝑇
𝑘
𝑑
𝑘−1

)
2

/‖𝑔
𝑘
‖4

‖𝑔
𝑘
‖2

≤
1

‖𝑔
𝑘
‖2

+
‖𝑑
𝑘−1

‖2

‖𝑔
𝑘−1

‖4

≤
𝑘−1

∑
𝑖=0

1

‖𝑔
𝑖
‖2

≤
𝑘

𝜖2
.

(18)

So, we obtain

∑
𝑘≥1

‖𝑔
𝑘
‖4

‖𝑑
𝑘
‖2

≥ ∑
𝑘≥1

𝜖2
1

𝑘
= +∞, (19)

which contradicts (14). Hence we get this theorem.

Remark 7. In Algorithm 1, we also can use the following
equations to compute 𝑑

𝑘
:

𝑑
𝑘
= 𝛽
𝑘
𝑑
𝑘−1

− 𝛽
𝑘

𝑔𝑇
𝑘
𝑑
𝑘−1

‖𝑔
𝑘
‖2

− 𝑔
𝑘
, (20)

where 𝛽
𝑘
= max{min{𝛽FR

𝑘
, 𝛽PRP
𝑘

}, 0};

𝑑
𝑘
= 𝛽
𝑘
𝑑
𝑘−1

− 𝛽
𝑘

𝑔𝑇
𝑘
𝑑
𝑘−1

‖𝑔
𝑘
‖2

− 𝑔
𝑘
, (21)

where 𝛽
𝑘
= max{min{𝛽LS

𝑘
, 𝛽CD
𝑘

}, 0}.

Algorithm 8. We have the following steps.

Step 0. Given 𝑥
0
∈ 𝑅𝑛, set 𝑑

0
= −𝑔
0
, 𝑘 = 0. If ‖𝑔

0
‖ = 0, then

stop.

Step 1. Find 𝛼
𝑘

> 0 satisfying (4) and (5), and by (2), 𝑥
𝑘+1

is
given. If ‖𝑔

𝑘+1
‖ = 0, then stop.

Step 2. Compute 𝛽
𝑘
by formula

𝛽
𝑘
=

{{{{{
{{{{{
{

𝛽DY
𝑘

=
𝑔𝑇
𝑘
𝑔
𝑘

(𝑔
𝑘
− 𝑔
𝑘−1

)
𝑇

𝑑
𝑘−1

,
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩
2

≤ 𝑔𝑇
𝑘
𝑑
𝑘−1

,

𝛽FR
𝑘

=
‖𝑔
𝑘
‖2

‖𝑔
𝑘−1

‖2
,

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2

> 𝑔𝑇
𝑘
𝑑
𝑘−1

,

(22)

and compute 𝑑
𝑘+1

by (3). Set 𝑘 := 𝑘 + 1, and go to Step 1.

Lemma 9. Suppose that Assumption 1 holds, and 𝛽
𝑘
is com-

puted by (22); if ‖𝑔
𝑘
‖ ̸= 0, then one gets 𝑔𝑇

𝑘
𝑑
𝑘
< 0 for all 𝑘 ≥ 2

and 𝛽 FR
𝑘

≥ |𝛽
𝑘
| (see [9]).

Lemma 10. Suppose that 𝑙 > 0, and ] is a constant. If positive
series 𝜁

𝑘
satisfied

𝑘

∑
𝑖=1

𝜁
𝑖
≥ 𝑙𝑘 + ], (23)

one has

∑
𝑖≥1

𝜁2
𝑖

𝑖
= +∞,

∑
𝑘≥1

𝜁2
𝑘

∑
𝑘

𝑖=1
𝜁
𝑖

= +∞.

(24)

From the previous analysis, we can get the following global
convergence result for Algorithm 8.

Theorem 11. Suppose that Assumption 1 holds, and ‖𝑔(𝑥)‖2 ≤
𝑐, where 𝑐 is a constant. Then, one has

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (25)

Proof. Suppose by contradiction that there exists 𝜀 > 0 such
that

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

≥ 𝜀 (26)

holds for all 𝑘. From (3), we have

𝑑
𝑘
= 𝛽
𝑘
𝑑
𝑘−1

− 𝑔
𝑘
. (27)

Squaring both sides of the previous equation, we get
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2

= (𝛽
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩)
2

−
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

− 2𝑔𝑇
𝑘
𝑑
𝑘
. (28)

Let 𝜗
𝑘

= ‖𝑑
𝑘
‖2/‖𝑔
𝑘
‖4 and 𝑟

𝑘
= −𝑔𝑇
𝑘
𝑑
𝑘
/‖𝑔
𝑘
‖2; from (22), we

have

𝜗
𝑘
≤ 𝜗
𝑘−1

− 2
𝑟
𝑘

‖𝑔
𝑘
‖2

−
1

‖𝑔
𝑘
‖2

. (29)

By 𝜗
1
= 1/‖𝑔

1
‖2, 𝑟
1
= 1, we know that

𝜗
𝑘
≤
𝑘

∑
𝑖=1

2

𝜀

󵄨󵄨󵄨󵄨𝑟𝑖
󵄨󵄨󵄨󵄨 −

𝑘

𝑐
. (30)

By (30), we get

𝜗
𝑘
≤
𝑘

∑
𝑖=1

2

𝜀

󵄨󵄨󵄨󵄨𝑟𝑖
󵄨󵄨󵄨󵄨 ,

𝑘

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑟𝑖
󵄨󵄨󵄨󵄨 ≥ 2

𝜀𝑘

𝑐
.

(31)

From (31) and Lemma 10, we have

∑
𝑘≥1

(𝑔𝑇
𝑘
𝑑
𝑘
)
2

‖𝑑
𝑘
‖2

= +∞, (32)

which contradicts Lemma 4. Therefore, we get this theorem.
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Algorithm 12. We have the following steps.

Step 0. Given 𝑥
0

∈ 𝑅𝑛, 𝜇 > 1/4, set 𝑑
0

= −𝑔
0
, 𝑘 := 0. If

‖𝑔
0
‖ = 0, then stop.

Step 1. Find 𝛼
𝑘

> 0 satisfying (4) and (5), and by (2), 𝑥
𝑘+1

is
given. If ‖𝑔

𝑘+1
‖ = 0, then stop.

Step 2. Compute 𝑑
𝑘
by

𝑑
𝑘
=

{{{{
{{{{
{

−𝑔
𝑘
, 𝑘 = 0,

𝛽
𝑘
𝑑
𝑘−1

− (1 + 𝛽
𝑘

𝑔𝑇
𝑘
𝑑
𝑘−1

‖𝑔
𝑘
‖2

)𝑔
𝑘
, 𝑘 ≥ 1,

(33)

where

𝛽
𝑘
=

𝑔𝑇
𝑘
(𝑔
𝑘
− 𝑔
𝑘−1

)

‖𝑔
𝑘−1

‖2
− 𝜇

‖𝑔
𝑘
− 𝑔
𝑘−1

‖2𝑔𝑇
𝑘
𝑑
𝑘−1

‖𝑔
𝑘−1

‖4
. (34)

Set 𝑘 := 𝑘 + 1, and go to Step 1.

Lemma 13. Suppose that direction 𝑑
𝑘
is given by (33) and (34);

then, one has

𝑑𝑇
𝑘
𝑔
𝑘
= −

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

≤ 0 (35)

holds for any 𝑘 ≥ 0.

Lemma 14. Suppose that Assumption 1 holds, 𝑑
𝑘
is generated

by (33) and (34), and 𝛼
𝑘
is determined by (4) and (5); one has

∑
𝑘≥0

‖𝑔
𝑘
‖4

‖𝑑
𝑘
‖2

< +∞. (36)

Proof. From Lemma 4 and Lemma 13, we obtain (36).

Lemma 15. Suppose that𝑓 is convex.That is, 𝑑𝑇∇2𝑓(𝑥)𝑑 ≥ 0,
for all𝑑 ∈ 𝑅𝑛, where∇2𝑓(𝑥) is theHessianmatrix of𝑓. Let {𝑥

𝑘
}

and {𝑑
𝑘
} be generated by Algorithm 12; one has

𝜌𝛼
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

≤ −𝑔𝑇
𝑘
𝑑
𝑘
. (37)

Proof. By Taylor’s theorem, we can get

𝑓 (𝑥
𝑘+1

) = 𝑓 (𝑥
𝑘
) + 𝑔𝑇
𝑘
𝑠
𝑘
+

1

2
𝑠𝑇
𝑘
𝐺
𝑘
𝑠
𝑘
, (38)

where 𝑠
𝑘
= 𝑥
𝑘+1

− 𝑥
𝑘
, and 𝐺

𝑘
= ∫
1

0

∇2𝑓(𝑥
𝑘
+ 𝜏𝑠
𝑘
)𝑑𝜏𝑠
𝑘
.

By Assumption 1, (4), and (38), we get

−𝜌𝛼2
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

≥ 𝑓 (𝑥
𝑘+1

) − 𝑓 (𝑥
𝑘
) ≥ 𝑔𝑇
𝑘
𝑠
𝑘
= 𝛼
𝑘
𝑔𝑇
𝑘
𝑑
𝑘
. (39)

So, we get (37).

Theorem 16. Consider Algorithm 12, and suppose that
Assumption 1 and the assumption of Lemma 15 hold. Then,
one has

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (40)

Proof. We suppose that the conclusion is not true. Suppose
by contradiction that there exists 𝜖 > 0 such that

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≥ 𝜖 (41)

holds for all 𝑘 ≥ 0.
By Lemma 13, we have

𝛽
𝑘
= −

𝑔𝑇
𝑘
(𝑔
𝑘
− 𝑔
𝑘−1

)

𝑔𝑇
𝑘−1

𝑑
𝑘−1

− 𝜇(
‖𝑔
𝑘
− 𝑔
𝑘−1

‖

−𝑔𝑇
𝑘−1

𝑑
𝑘−1

)

2

𝑔𝑇
𝑘
𝑑
𝑘−1

. (42)

From Assumption 1, Lemma 15, and (42), we know that

󵄨󵄨󵄨󵄨𝛽𝑘
󵄨󵄨󵄨󵄨 ≤ (

𝜇𝐿2 + 𝜌𝐿

𝜌2
)

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
. (43)

Therefore, by (33), we get

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 + 2(

𝜇𝐿2 + 𝜌𝐿

𝜌2
)

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

= (1 + 2
𝐿

𝜌
+ 2

𝜇𝐿2

𝜌2
)

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 .

(44)

We obtain

∑
𝑘≥1

‖𝑔
𝑘
‖4

‖𝑑
𝑘
‖2

≥ +∞, (45)

which contradicts (36). Therefore, we have

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (46)

So, we complete the proof of this theorem.

Remark 17. In Algorithm 12, 𝛽
𝑘
can also be computed by the

following formula:

𝛽
𝑘
=

𝑔𝑇
𝑘
(𝑔
𝑘
− 𝑔
𝑘−1

)

‖𝑔
𝑘−1

‖2

− min{
𝑔𝑇
𝑘
(𝑔
𝑘
− 𝑔
𝑘−1

)

‖𝑔
𝑘−1

‖2
, 𝜇

‖𝑔
𝑘
− 𝑔
𝑘−1

‖2𝑔𝑇
𝑘
𝑑
𝑘−1

‖𝑔
𝑘−1

‖4
} ,

(47)

where 𝜇 > 1/4.

3. Numerical Experiments and Discussions

In this section, we give some numerical experiments for the
previous new nonlinear conjugate gradient methods with
Wolfe type line search and some discussions. The problems
that we tested are from [13]. We use the condition ‖𝑔

𝑘+1
‖ ≤

10−6 as the stopping criterion. We use MATLAB 7.0 to
test the chosen problems. We give the numerical results of
Algorithms 1 and 12 to show that the method is efficient for
unconstrained optimization problems. The numerical results
of Algorithms 1 and 12 are listed in Tables 1 and 2.
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Table 1: Test results for Algorithm 1.

Name Dim NI NF NG
GULF 3 2 52 3
VARDIM 2 3 54 6
LIN 50 1 3 3
LIN 2 1 3 3
LIN 1000 1 3 3
LIN1 2 1 51 2
LIN1 10 1 3 3
LIN0 4 1 3 3
Name: the test problem name; Dim: the problem dimension; NI: the
iterations number; NF: the function evaluations number; NG: the gradient
evaluations number.

Table 2: Test results for Algorithm 12.

Name Dim NI NF NG
GULF 3 2 52 3
BIGGS 6 1000 1149 1095
IE 50 1000 1053 1003
IE 3 1000 1101 1052
TRIG 1000 1103 1052 3
BV 10 5 203 55
BV 3 6 109 9
Name: the test problem name; Dim: the problem dimension; NI: the
iterations number; NF: the function evaluations number; NG: the gradient
evaluations number.

Discussion 1. From the analysis of the global convergence
of Algorithm 1, we can see that if 𝑑

𝑘
satisfies the property

of efficient descent search direction, we can get the global
convergence of the corresponding nonlinear conjugate gra-
dient method with Wolfe type line search without other
assumptions.

Discussion 2. In Algorithm 8, we use aWolfe type line search.
Overall, we also feel that nonmonotone line search (see [14])
also can be used in our algorithms.

Discussion 3. From the analysis of the global convergence of
Algorithm 12, we can see that when 𝑑

𝑘
is an efficient descent

search direction, we can get the global convergence of the
corresponding conjugate gradient method with Wolfe type
line search without requiring uniformly convex function.
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