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Two tecHniques were implemented, the Adomian decompositionmethod (ADM) andmultivariate Padé approximation (MPA), for
solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in Caputo sense. First,
the fractional differential equation has been solved and converted to power series by Adomian decomposition method (ADM),
then power series solution of fractional differential equation was put into multivariate Padé series. Finally, numerical results were
compared and presented in tables and figures.

1. Introduction

Recently, differential equations of fractional order have
gained much interest in engineering, physics, chemistry, and
other sciences. It can be said that the fractional derivative has
drawn much attention due to its wide application in engi-
neering physics [1–9]. Some approximations and numerical
techniques have been used to provide an analytical approx-
imation to linear and nonlinear differential equations and
fractional differential equations.Among them, the variational
iteration method, homotopy perturbation method [10, 11],
and the Adomian decomposition method are relatively new
approaches [5–9, 12, 13].

The decomposition method has been used to obtain
approximate solutions of a large class of linear or nonlinear
differential equations [12, 13]. Recently, the application of the
method is extended for fractional differential equations [6–
9, 14].

Many definitions and theorems have been developed for
multivariate Padé approximations MPA (see [15] for a sur-
vey on multivariate Padé approximation). The multivariate
Padé Approximation has been used to obtain approximate
solutions of linear or nonlinear differential equations [16–19].

Recently, the application of the unvariate Padé approximation
is extended for fractional differential equations [20, 21].

The objective of the present paper is to provide approxi-
mate solutions for initial value problems of nonlinear partial
differential equations of fractional order by usingmultivariate
Padé approximation.

2. Definitions

For the concept of fractional derivative, we will adopt
Caputo’s definition, which is a modification of the Riemann-
Liouville definition and has the advantage of dealing properly
with initial value problems in which the initial conditions are
given in terms of the field variables and their integer order,
which is the case in most physical processes. The definitions
can be seen in [3, 4, 22, 23].

3. Decomposition Method [24]

Consider

𝐷
𝛼

∗𝑡
𝑢 (𝑥, 𝑡) = 𝑓 (𝑢, 𝑢

𝑥
, 𝑢
𝑥𝑥
) + 𝑔 (𝑥, 𝑡) , 𝑚 − 1 < 𝛼 ≤ 𝑚.

(1)
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The decomposition method requires that a nonlinear frac-
tional differential equation (1) is expressed in terms of opera-
tor form as

𝐷
𝛼

∗𝑡
𝑢 (𝑥, 𝑡) + 𝐿𝑢 (𝑥, 𝑡) + 𝑁𝑢 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) , 𝑥 > 0, (2)

where 𝐿 is a linear operator which might include other frac-
tional derivatives of order less than 𝛼,𝑁 is a nonlinear oper-
ator which also might include other fractional derivatives of
order less than 𝛼, 𝐷𝛼

∗𝑡
= 𝜕
𝛼

/𝜕𝑡
𝛼 is the Caputo fractional

derivative of order 𝛼, and 𝑔(𝑥, 𝑡) is the source function [24].
Applying the operator 𝐽𝛼 [3, 4, 22, 23], the inverse of the

operator 𝐷𝛼
∗𝑡
, to both sides of (5) Odibat and Momani [24]

obtained

𝑢 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝜕
𝑘

𝑢

𝜕𝑡𝑘
(𝑥, 0
+

)
𝑡
𝑘

𝑘!
+ 𝐽
𝛼

𝑔 (𝑥, 𝑡)

− 𝐽
𝛼

[𝐿𝑢 (𝑥, 𝑡) + 𝑁𝑢 (𝑥, 𝑡)] ,

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝜕
𝑘

𝑢

𝜕𝑡𝑘
(𝑥, 0
+

)
𝑡
𝑘

𝑘!
+ 𝐽
𝛼

𝑔 (𝑥, 𝑡)

− 𝐽
𝛼

[𝐿(

∞

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡)) +

∞

∑

𝑛=0

𝐴
𝑛
] .

(3)

From this, the iterates are determined in [24] by the following
recursive way:

𝑢
0
(𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝜕
𝑘

𝑢

𝜕𝑡𝑘
(𝑥, 0
+

)
𝑡
𝑘

𝑘!
+ 𝐽
𝛼

𝑔 (𝑥, 𝑡) ,

𝑢
1
(𝑥, 𝑡) = −𝐽

𝛼

(𝐿𝑢
0
+ 𝐴
0
) ,

𝑢
2
(𝑥, 𝑡) = −𝐽

𝛼

(𝐿𝑢
1
+ 𝐴
1
) ,

...

𝑢
𝑛+1
(𝑥, 𝑡) = −𝐽

𝛼

(𝐿𝑢
𝑛
+ 𝐴
𝑛
) .

(4)

4. Multivariate Padé Aproximation [25]

Consider the bivariate function 𝑓(𝑥, 𝑦) with Taylor series
development

𝑓 (𝑥, 𝑦) =

∞

∑

𝑖,𝑗=0

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗 (5)

around the origin. We know that a solution of unvariate Padé
approximation problem for

𝑓 (𝑥) =

∞

∑

𝑖=0

𝑐
𝑖
𝑥
𝑖 (6)

is given by

𝑝 (𝑥) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑖=0

𝑐
𝑖
𝑥
𝑖

𝑥

𝑚−1

∑

𝑖=0

𝑐
𝑖
𝑥
𝑖

. . . 𝑥
𝑛

𝑚−𝑛

∑

𝑖=0

𝑐
𝑖
𝑥
𝑖

𝑐
𝑚+1

𝑐
𝑚

. . . 𝑐
𝑚+1−𝑛

...
...

. . .
...

𝑐
𝑚+𝑛

𝑐
𝑚+𝑛−1

. . . 𝑐
𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (7)

𝑞 (𝑥) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑥 . . . 𝑥
𝑛

𝑐
𝑚+1

𝑐
𝑚

. . . 𝑐
𝑚+1−𝑛

...
...

. . .
...

𝑐
𝑚+𝑛

𝑐
𝑚+𝑛−1

. . . 𝑐
𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (8)

Let us now multiply 𝑗th row in 𝑝(𝑥) and 𝑞(𝑥) by 𝑥𝑗+𝑚−1 (𝑗 =
2, . . . , 𝑛 + 1) and afterwards divide 𝑗th column in 𝑝(𝑥) and
𝑞(𝑥) by 𝑥𝑗−1 (𝑗 = 2, . . . , 𝑛+1). This results in a multiplication
of numerator and denominator by 𝑥𝑚𝑛. Having done so, we
get

𝑝 (𝑥)

𝑞 (𝑥)
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝑚

𝑖=0
𝑐
𝑖
𝑥
𝑖

∑
𝑚−1

𝑖=0
𝑐
𝑖
𝑥
𝑖

⋅⋅⋅ ∑
𝑚−𝑛

𝑖=0
𝑐
𝑖
𝑥
𝑖

𝑐
𝑚+1
𝑥
𝑚+1

𝑐
𝑚
𝑥
𝑚

⋅⋅⋅ 𝑐
𝑚+1−𝑛
𝑥
𝑚+1−𝑛

...
...

. . .
...

𝑐
𝑚+𝑛
𝑥
𝑚+𝑛

𝑐
𝑚+𝑛−1
𝑥
𝑚+𝑛−1

⋅⋅⋅ 𝑐
𝑚
𝑥
𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 1 ⋅⋅⋅ 1

𝑐
𝑚+1
𝑥
𝑚+1

𝑐
𝑚
𝑥
𝑚

⋅⋅⋅ 𝑐
𝑚+1−𝑛
𝑥
𝑚+1−𝑛

...
...

. . .
...

𝑐
𝑚+𝑛
𝑥
𝑚+𝑛

𝑐
𝑚+𝑛−1
𝑥
𝑚+𝑛−1

⋅⋅⋅ 𝑐
𝑚
𝑥
𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(9)

if (𝐷 = det 𝐷
𝑚,𝑛

̸= 0).
This quotent of determinants can also immediately be

written down for a bivariate function 𝑓(𝑥, 𝑦). The sum
∑
𝑘

𝑖=0
𝑐
𝑖
𝑥
𝑖 shall be replaced by 𝑘th partial sum of the Taylor

series development of 𝑓(𝑥, 𝑦) and the expression 𝑐
𝑘
𝑥
𝑘 by an

expression that contains all the terms of degree 𝑘 in 𝑓(𝑥, 𝑦).
Here a bivariate term 𝑐

𝑖𝑗
𝑥
𝑖

𝑦
𝑗 is said to be of degree 𝑖 + 𝑗. If we

define

𝑝 (𝑥, 𝑦)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑖+𝑗=0

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

𝑚−1

∑

𝑖+𝑗=0

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

⋅ ⋅ ⋅

𝑚−𝑛

∑

𝑖+𝑗=0

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

∑

𝑖+𝑗=𝑚+1

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

∑

𝑖+𝑗=𝑚

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

⋅ ⋅ ⋅ ∑

𝑖+𝑗=𝑚+1−𝑛

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

...
...

. . .
...

∑

𝑖+𝑗=𝑚+𝑛

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

∑

𝑖+𝑗=𝑚+𝑛−1

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

⋅ ⋅ ⋅ ∑

𝑖+𝑗=𝑚

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,
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𝑞 (𝑥, 𝑦)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 1 ⋅ ⋅ ⋅ 1

∑

𝑖+𝑗=𝑚+1

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

∑

𝑖+𝑗=𝑚

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

⋅ ⋅ ⋅ ∑

𝑖+𝑗=𝑚+1−𝑛

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

...
...

. . .
...

∑

𝑖+𝑗=𝑚+𝑛

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

∑

𝑖+𝑗=𝑚+𝑛−1

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

⋅ ⋅ ⋅ ∑

𝑖+𝑗=𝑚

𝑐
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(10)

Then it is easy to see that 𝑝(𝑥, 𝑦) and 𝑞(𝑥, 𝑦) are of the form

𝑝 (𝑥, 𝑦) =

𝑚𝑛+𝑚

∑

𝑖+𝑗=𝑚𝑛

𝑎
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

,

𝑞 (𝑥, 𝑦) =

𝑚𝑛+𝑛

∑

𝑖+𝑗=𝑚𝑛

𝑏
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

.

(11)

We know that 𝑝(𝑥, 𝑦) and 𝑞(𝑥, 𝑦) are called Padé equations
[25]. So themultivariate Padé approximant of order (𝑚, 𝑛) for
𝑓(𝑥, 𝑦) is defined as

𝑟
𝑚,𝑛
(𝑥, 𝑦) =

𝑝 (𝑥, 𝑦)

𝑞 (𝑥, 𝑦)
. (12)

5. Numerical Experiments

In this section, two methods, ADM and MPA, shall be
illustrated by two examples. All the results are calculated
by using the software Maple12. The full ADM solutions of
examples can be seen from Odibat and Momani [24].

Example 1. Consider the nonlinear time-fractional advection
partial differential equation [24]

𝐷
𝛼

∗𝑡
𝑢 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡) 𝑢

𝑥
(𝑥, 𝑡) = 𝑥 + 𝑥𝑡

2

,

𝑡 > 0, 𝑥 ∈ 𝑅, 0 < 𝛼 ≤ 1,

(13)

subject to the initial condition

𝑢 (𝑥, 0) = 0. (14)

Odibat and Momani [24] solved the problem using the
decomposition method, and they obtained the following
recurrence relation [24]:

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝐽

𝛼

(𝑥 + 𝑥𝑡
2

)

= 𝑥(
𝑡
𝛼

Γ (𝛼 + 1)
+

2𝑡
𝛼+2

Γ (𝛼 + 3)
) ,

𝑢
𝑗+1
(𝑥, 𝑡) = −𝐽

𝛼

(𝐴
𝑗
) , 𝑗 ≥ 0,

(15)

where 𝐴
𝑗
are the Adomian polynomials for the nonlinear

function 𝑁 = 𝑢𝑢
𝑥
. In view of (15), the first few components

of the decomposition series are derived in [24] as follows:

𝑢
0
(𝑥, 𝑡) = 𝑥(

𝑡
𝛼

Γ (𝛼 + 1)
+

2𝑡
𝛼+2

Γ (𝛼 + 3)
) ,

𝑢
1
(𝑥, 𝑡) = −𝑥(

Γ (2𝛼 + 1) 𝑡
3𝛼

Γ(𝛼 + 1)
2

Γ (3𝛼 + 1)

+
4Γ (2𝛼 + 3) 𝑡

3𝛼+2

Γ (𝛼 + 1) Γ (𝛼 + 3) Γ (3𝛼 + 3)

+
4Γ (2𝛼 + 5) 𝑡

3𝛼+4

Γ(𝛼 + 3)
2

Γ (3𝛼 + 5)

) ,

𝑢
2
(𝑥, 𝑡) = 2𝑥(

Γ (2𝛼 + 1) Γ (4𝛼 + 1) 𝑡
5𝛼

Γ(𝛼 + 1)
3

Γ (3𝛼 + 1) Γ (5𝛼 + 1)

+
8Γ (2𝛼 + 5) Γ (4𝛼 + 7) 𝑡

5𝛼+6

Γ(𝛼 + 1)
3

Γ (3𝛼 + 5) Γ (5𝛼 + 7)

+ ⋅ ⋅ ⋅) ,

(16)

and so on; in this manner, the rest of components of the
decomposition series can be obtained [24].

The first three terms of the decomposition series are given
by [24]

𝑢 (𝑥, 𝑡)

= 𝑥(
𝑡
𝛼

Γ (𝛼 + 1)
+

2𝑡
𝛼+2

Γ (𝛼 + 3)
−

Γ (2𝛼 + 1) 𝑡
3𝛼

Γ(𝛼 + 1)
2

Γ (3𝛼 + 1)

−
4Γ (2𝛼 + 3) 𝑡

3𝛼+2

Γ (𝛼 + 1) Γ (𝛼 + 3) Γ (3𝛼 + 3)
+ ⋅ ⋅ ⋅) .

(17)

For 𝛼 = 1 (16) is

𝑢 (𝑥, 𝑡) = 𝑥𝑡 + 0.1 × 10
−9

𝑡
3

− 0.1333333333𝑥𝑡
5

. (18)

Now, let us calculate the approximate solution of (18) for𝑚 =
4 and 𝑛 = 2 by using Multivariate Padé approximation. To
obtain multivariate Padé equations of (18) for𝑚 = 4 and 𝑛 =
2, we use (10). By using (10), we obtain

𝑝 (𝑥, 𝑡)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥𝑡 + 0.1 × 10
−9

𝑡
3

𝑥𝑡 𝑥𝑡

0 0.1 × 10
−9

𝑡
3

0

−0.1333333333𝑥𝑡
5

0 0.1 × 10
−9

𝑡
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.1333333333 × 10
−10

× (𝑡
2

+ 0.7500000002 × 10
−9

) 𝑥
3

𝑡
7

,
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𝑞 (𝑥, 𝑡)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 1 1

0 0.1 × 10
−9

𝑡
3

0

−0.1333333333𝑥𝑡
5

0 0.1 × 10
−9

𝑡
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.1333333333 × 10
−10

× (𝑡
2

+ 0.7500000002 × 10
−9

) 𝑥
2

𝑡
6

.

(19)

So, the multivariate Padé approximation of order (4, 2) for
(17), that is,

[4, 2]
(𝑥,𝑡)

=

(𝑡
2

+ 0.7500000002 × 10
−9

) 𝑥𝑡

𝑡2 + 0.7500000002 × 10−9
. (20)

For 𝛼 = 0.5 (17) is

𝑢 (𝑥, 𝑡) = 1.128379167𝑥𝑡
0.5

− 0.9577979850𝑥𝑡
1.5

+ 0.6018022226𝑥𝑡
2.5

− 0.7005608116𝑥𝑡
3.5

.

(21)

For simplicity, let 𝑡1/2 = 𝑎; then

𝑢 (𝑥, 𝑎) = 1.128379167𝑥𝑎 − 0.9577979850𝑥𝑎
3

+ 0.6018022226𝑥𝑎
5

− 0.7005608116𝑥𝑎
7

.

(22)

Using (10) to calculate the multivariate Padé equations for
(22) we get

𝑝 (𝑥, 𝑎)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1.128379167𝑥𝑎 − 0.9577979850𝑥𝑎
3

+ 0.6018022226𝑥𝑎
5

1.128379167𝑥𝑎 − 0.9577979850𝑥𝑎
3

1.128379167𝑥𝑎 − 0.9577979850𝑥𝑎
3

0 0.6018022226𝑥𝑎
5

0

−0.7005608116𝑥𝑎
7

0 0.6018022226𝑥𝑎
5

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= −0.4907854507 (1.201464294𝑎
4

− 1.231832347𝑎
2

− 0.8326662354) 𝑥
3

𝑎
11

,

𝑞 (𝑥, 𝑎) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 1 1

0 0.6018022226𝑥𝑎
5

0

−0.7005608116𝑥𝑎
7

0 0.6018022226𝑥𝑎
5

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.4907854507 (0.7379312378 + 1.718058483𝑎
2

) 𝑥
3

𝑎
10

(23)

recalling that 𝑡1/2 = 𝑎, we get multivariate Padé approxima-
tion of order (6, 2) for (21), that is,

[6, 2]
(𝑥,𝑡)

= − (1.201464294𝑡
2

− 1.231832347𝑡

−0.8326662354) 𝑥√𝑡

× (0.7379312378 + 1.718058483𝑡)
−1

.

(24)

For 𝛼 = 0.75 (17) is

𝑢 (𝑥, 𝑡) = 0.00007125345441𝑥𝑡
7.5

+ 0.1764791440 × 10
−5

𝑥𝑡
9.5

− 0.1238343301 × 10
−17

𝑥𝑡
22.5

− 0.2897967272 × 10
−19

𝑥𝑡
24.5

.

(25)

For simplicity, let 𝑡1/2 = 𝑎; then

𝑢 (𝑥, 𝑎) = 0.00007125345441𝑥𝑎
15

+ 0.1764791440 × 10
−5

𝑥𝑎
19

− 0.1238343301 × 10
−17

𝑥𝑎
45

− 0.2897967272 × 10
−19

𝑥𝑎
49

.

(26)

Using (10) to calculate the multivariate Padé equations and
then recalling that 𝑡1/2 = 𝑎, we get multivariate Padé
approximation of order (49, 2) for (25), that is,

[49, 2]
(𝑥,𝑡)

= − 0.8398214310 × 10
−39

𝑥
3

𝑡
113/2

× ( − 0.00007125345441 − 0.1764791440

×10
−5

𝑡
2

+ 0.1238343301 × 10
−17

𝑡
15

)

× (0.8398214310 × 10
−39

𝑥
2

𝑡
49

)
−1

.

(27)

Table 1, Figures 1(a), 1(b), 1(c), 2(a), 2(b), 2(c), and 2(d) shows
the approximate solutions for (13) obtained for different
values of 𝛼 using the decomposition method (ADM) and the
multivariate Padé approximation (MPA). The value of 𝛼 = 1
is for the exact solution 𝑢(𝑥, 𝑡) = 𝑥𝑡 [24].

Example 2. Consider the nonlinear time-fractional hyper-
bolic equation [24]

𝐷
𝛼

∗𝑡
𝑢 (𝑥, 𝑡) =

𝜕

𝜕𝑥
(𝑢 (𝑥, 𝑡)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
) ,

𝑡 > 0, 𝑥 ∈ 𝑅, 1 < 𝛼 ≤ 2,

(28)

subject to the initial condition

𝑢 (𝑥, 0) = 𝑥
2

, 𝑢
𝑡
(𝑥, 0) = −2𝑥

2

. (29)
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Figure 1: (a) Exact solution of Example 1 for 𝛼 = 1 (b) ADM solution of Example 1 for 𝛼 = 1 (c) Multivariate Padé approximation of ADM
solution for 𝛼 = 1 in Example 1.

Odibat and Momani [24] solved the problem using the
decomposition method, and they obtained the following
recurrence relation in [24]:

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝑡𝑢

𝑥
(𝑥, 0) = 𝑥

2

(1 − 2𝑡) ,

𝑢
𝑗+1
(𝑥, 𝑡) = 𝐽

𝛼

(𝐴
𝑗
)
𝑥

, 𝑗 ≥ 0,

(30)

where 𝐴
𝑗
are the Adomian polynomials for the nonlinear

function𝑁 = 𝑢𝑢
𝑥
. In view of (30), the first few components

of the decomposition series are derived in [24] as follows:

𝑢
0
(𝑥, 𝑡) = 𝑥

2

(1 − 2𝑡) ,

𝑢
1
(𝑥, 𝑡) = 6𝑥

2

(
𝑡
𝛼

Γ (𝛼 + 1)
−

4𝑡
𝛼+1

Γ (𝛼 + 2)
+

8𝑡
𝛼+2

Γ (𝛼 + 3)
) ,

𝑢
2
(𝑥, 𝑡) = 72𝑥

2

(
𝑡
2𝛼

Γ (2𝛼 + 1)
−

4𝑡
2𝛼+1

Γ (2𝛼 + 2)

+
8𝑡
2𝛼+2

Γ (2𝛼 + 3)
−

2Γ (𝛼 + 2) 𝑡
2𝛼+1

Γ (𝛼 + 1) Γ (2𝛼 + 2)
)

+ 72𝑥
2

(
8Γ (𝛼 + 3) 𝑡

2𝛼+2

Γ (𝛼 + 2) Γ (2𝛼 + 3)

−
16Γ (𝛼 + 4) 𝑡

2𝛼+3

Γ (𝛼 + 3) Γ (2𝛼 + 4)
) ,

...
(31)
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Figure 2: (a) ADM solution of Example 1 for 𝛼 = 0.5 (b) Multivariate Padé approximation of ADM solution for 𝛼 = 0.5 in Example 1 (c)
ADM solution of Example 1 for 𝛼 = 0.75 (d) Multivariate Padé approximation of ADM solution for 𝛼 = 0.75 in Example 1.

and so on; in this manner the rest of components of the
decomposition series can be obtained.

The first three terms of the decomposition series (7) are
given [24] by

𝑢 (𝑥, 𝑡) = 𝑥
2

(1 − 2𝑡) + 6𝑥
2

× (
𝑡
𝛼

Γ (𝛼 + 1)
−

4𝑡
𝛼+1

Γ (𝛼 + 2)
+

8𝑡
𝛼+2

Γ (𝛼 + 3)
)

+ 72𝑥
2

(
𝑡
2𝛼

Γ (2𝛼 + 1)
+ ⋅ ⋅ ⋅) .

(32)

For 𝛼 = 2 (43) is

𝑢 (𝑥, 𝑡) = 𝑥
2

(1 − 2𝑡)

+ 6𝑥
2

(0.5000000000𝑡
2

− 0.6666666668𝑡
3

+0.3333333334𝑡
4

)

+ 3.000000000𝑥
2

𝑡
4

.

(33)

Now, let us calculate the approximate solution of (33) for𝑚 =
4 and 𝑛 = 2 by using multivariate Padé approximation. To
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Figure 3: (a) Exact solution of Example 2 for 𝛼 = 2.0 (b) ADM solution of Example 2 for 𝛼 = 2.0 (c) Multivariate Padé approximation of
ADM solution for 𝛼 = 2.0 in Example 2.

obtain multivariate Padé equations of (33) for𝑚 = 4 and 𝑛 =
2, we use (10). By using (10), we obtain

𝑝 (𝑥, 𝑡)

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
2

(1 − 2𝑡) + 3.000000000𝑥
2

𝑡
2

𝑥
2

(1 − 2𝑡) 𝑥
2

−4.000000001𝑥
2

𝑡
3

3.000000000𝑥
2

𝑡
2

−2𝑥
2

𝑡

5.000000000𝑥
2

𝑡
4

−4.000000001𝑥
2

𝑡
3

3.000000000𝑥
2

𝑡
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= −20.00000000𝑡
4

(0.28 × 10
−9

𝑡
2

− 0.34 × 10
−9

𝑡 (−0.04999999986) 𝑥
6

,

𝑞 (𝑥, 𝑡)

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 1 1

−4.000000001𝑥
2

𝑡
3

3.000000000𝑥
2

𝑡
2

−2𝑥
2

𝑡

5.000000000𝑥
2

𝑡
4

−4.000000001𝑥
2

𝑡
3

3.000000000𝑥
2

𝑡
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 20.00000000𝑡
4

(0.0499999999 + 0.1000000001𝑡 + 0.0500000004𝑡
2

) 𝑥
4

.

(34)

So, the multivariate Padé approximation of order (4, 2) for
(33), that is,

[4, 2]
(𝑥,𝑡)

= − 1.000000000 (0.28 × 10
−9

𝑡
2

− 0.34 × 10
−9

𝑡

−0.04999999986) 𝑥
2

× (0.0499999999 + 0.1000000001𝑡

+0.0500000004𝑡
2

)
−1

.

(35)
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Figure 4: (a) ADM solution of Example 2 for 𝛼 = 1.5 (b) Multivariate Padé approximation of ADM solution for 𝛼 = 1.5 in Example 2 (c)
ADM solution of Example 2 for 𝛼 = 1.75 (d) Multivariate Padé approximation of ADM solution for 𝛼 = 1.75 in Example 2.

For 𝛼 = 1.5 (32) is

𝑢 (𝑥, 𝑡) = 𝑥
2

(1 − 2𝑡) + 6𝑥
2

× (0.7522527782𝑡
1.5

− 1.203604445𝑡
2.5

+0.6877739683𝑡
3.5

) + 12.00000000𝑥
2

𝑡
3.0

.

(36)

For simplicity, let 𝑡1/2 = 𝑎; then

𝑢 (𝑥, 𝑎) = 𝑥
2

(1 − 2𝑎
2

) + 6𝑥
2

× (0.7522527782𝑎
3

−1.203604445𝑎
5

+ 0.6877739683𝑡
7

)

+ 12.00000000𝑥
2

𝑎
6

.

= 𝑥
2

− 𝑥
2

2𝑎
2

+ 4.513516669𝑥
2

𝑎
3

− 7.221626670𝑥
2

𝑎
5

+ 4.126643810𝑥
2

𝑎
7

+ 12.00000000𝑥
2

𝑎
6

.

(37)

Using (10) to calculate multivariate Padé equations of (37) for
𝑚 = 7 and 𝑛 = 2, we use (10). By using (10), we obtain
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𝑝 (𝑥, 𝑎) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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5
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2
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2

𝑎
3
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2
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2
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󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 49.51972572 (8.235760151𝑎
5

+ 0.879185531𝑎
4

+ 1.253427636𝑎
3

+ 1.403426542𝑎
2

+ 1.750000001𝑎 + 1.053153890) 𝑥
6

𝑎
10

,

𝑞 (𝑥, 𝑎) =
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(38)

recalling that 𝑡1/2 = 𝑎, we get multivariate Padé approxima-
tion of order (7, 2) for (36), that is,
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For 𝛼 = 1.75 (32) is
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For simplicity, let 𝑡1/4 = 𝑎; then
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(41)

Using (10) to calculate multivariate Padé equations of (41) for
𝑚 = 15 and 𝑛 = 2, we use (10). By using (10), we obtain
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,

(42)

recalling that 𝑡1/4 = 𝑎, we get multivariate Padé approxima-
tion of order (15, 2) for (40), that is,

[15, 2]
(𝑥,𝑡)

= − 38.31567556𝑥
6

𝑡
7

× (−1 + 2𝑡 − 3.730509436𝑡
7/4
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11/4

)

× (38.31567556𝑥
4

𝑡
7

)
−1

.

(43)

Table 2, Figures 3(a), 3(b), 3(c), 4(a), 4(b), 4(c), and 4(d)
show the approximate solutions for (28) obtained for different
values of 𝛼 using the decomposition method (ADM) and the
multivariate Padé approximation (MPA). The value of 𝛼 = 2
is for the exact solution 𝑢(𝑥, 𝑡) = (𝑥/𝑡 + 1)2 [24].

6. Concluding Remarks

The fundamental goal of this paper has been to construct
an approximate solution of nonlinear partial differential
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equations of fractional order by using multivariate Padé
approximation.The goal has been achieved by using the mul-
tivariate Padé approximation and comparing with the Ado-
mian decomposition method. The present work shows the
validity and great potential of the multivariate Padé approxi-
mation for solving nonlinear partial differential equations of
fractional order from the numerical results.Numerical results
obtained using the multivariate Padé approximation and the
Adomian decompositionmethod are in agreement with exact
solutions.
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tion,” Journal of Computational and Applied Mathematics, vol.
121, no. 1-2, pp. 197–219, 2000.
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