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Stochastic delay differential equations with jumps have a wide range of applications, particularly, in mathematical finance. Solution
of the underlying initial value problems is important for the understanding and control of many phenomena and systems in the
real world. In this paper, we construct a robust Taylor approximation scheme and then examine the convergence of the method in a
weak sense. A convergence theorem for the scheme is established and proved. Our analysis and numerical examples show that the
proposed scheme of high order is effective and efficient forMonte Carlo simulations for jump-diffusion stochastic delay differential
equations.

1. Introduction

Stochastic delay differential equation models play a very
important role in the study of many fields such as economics
and finance, chemistry, biology, microelectronics, and con-
trol theories.Models of this type canmore accurately describe
many phenomena in the real world by taking into account
the effect of time delay and random noise. By time delay, it
means a certain period of time is required for the effect of an
action to be observed after themoment when the action takes
place.This phenomenon exists in most systems in almost any
area of science; for example, a patient shows symptoms of an
illness days or even weeks after he/she was infected. Similarly,
random noises appear in almost all real world phenomena
and systems, for example, the motion of molecules and the
price of assets in financial markets. Hence, study of SDDEs is
an important undertaking in order to understand real world
phenomena and systems precisely.

Over the last couple of decades, a lot of work has been
carried out to study differential equations with delay and/
or random noises, for example, [1–5]. The best-known and

well-studied theory and systems include the delay differential
equations (DDEs) presented by Kolmanvskii andMyshkis [6]
and their stochastic generalizations and the stochastic delay
differential equations (SDDEs) established by Mohammed
[7, 8],Mao [9, 10], andMohammed and Scheutzow [11].Other
SDDEs theories of interest include, for instance, the so-called
SDDEs with Markovian switching and Poisson jumps. These
models have been investigated in the literature [12–14].

Analytical solutions of SDDEs can hardly be obtained. It
is thus important to develop and study discrete-time approx-
imation methods for solving SDDEs. Discrete-time approx-
imations may be divided into two categories: weak approxi-
mations and strong approximations [15]. Some implicit and
explicit numerical approximation methods for SDDEs in
strong approximation sense were derived by Küchler and
Platen [16]. Weak numerical methods for SDDEs have been
studied by Küchler and Platen. The Monte Carlo simulation
method has also been developed as a powerful simulation
method for SDEs, while weak numerical approximations are
required for Monte Carlo simulation [9, 17–20].
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In this paper, we extend a fully weak approximation
method for SDDEs to the type of jump-diffusion SDDEs:

𝑑X (𝑡) = a (𝑡,X (𝑡) ,X (𝑡 − 𝛾)) 𝑑𝑡

+ b (𝑡,X (𝑡) ,X (𝑡 − 𝛾)) 𝑑W
𝑡

+ ∫
𝜀

c (𝑡,X (𝑡
−
) , 𝜐) 𝑝

𝜑
(𝑑𝜐, 𝑑𝑡)

(1)

subject to the initial condition

𝑋 (𝜃) = 𝜒 (𝜃) for 𝜃 ∈ [−𝛾, 0] , (2)

where 𝑡 ∈ [0, 𝑇], 𝛾 is the time delay which is assumed to be
constant at all time,W

𝑡
= {(𝑊

1

𝑡
, . . . ,𝑊

𝑚

𝑡
), 𝑡 ∈ [0, 𝑇]} is anA-

adapted 𝑚-dimensional Wiener process, and 𝑝
𝜑
denotes the

Poisson random measure. Also here we denote by X(𝑡
−
) the

almost sure left-hand limit ofX(𝑡). The coefficient a(𝑡, 𝑥, 𝑥𝑟) :

[0, 𝑇] × R𝑑
× R𝑑

→ R𝑑 and c(𝑡, 𝑥, 𝜐) : [0, 𝑇] × R𝑑
× 𝜀 →

R𝑑 are 𝑑-dimensional vectors of Borel measurable functions.
Further, b(𝑡, 𝑥, 𝑥𝑟) defined on [0, 𝑇] × R𝑑

× R𝑑 is a 𝑑 × 𝑚-
matrix of Borel measurable function.

Themain contributions of this work include construction
of a numerical approximation method for weak solutions of
SDDEs with jump-diffusion, and establishment of a theoreti-
cal result for the convergence of the scheme.

The remaining part of this paper is organised as fol-
lows. In the following section, we give the conditions for
the existence and uniqueness of the solution of the jump-
diffusion SDDEs (1) which is applicable to any cases where
solution exists, and present various lemmas to be used later
for the proof of the convergence theorem.We then introduce,
in Section 3, a general weak approximation scheme, where
the simplified stochastic Taylor approximation scheme with
order 𝛽 is constructed; followed by a convergence theorem
and its proof. In Section 4, we give a numerical example
to demonstrate the application and the convergence of the
numerical scheme.

2. Preliminaries

In this section, we present some basic concepts and defini-
tions to be used in later sections, then establish the conditions
for the existence and uniqueness of solution to the Jump-
diffusion SDDEs (1), and then give some lemmas to be used
later for the proof of the convergence theorem. In this work,
we assume that the 𝑑-dimensional vector valued function for
the initial condition, 𝜒 = {𝜒(𝑠), 𝑠 ∈ [−𝛾, 0]}, is right contin-
uous and has left-hand limits.

From (1), we have the following integral formof the jump-
diffusion equation SDDE:

X (𝑡) = X (0) + ∫

𝑡

0

a (𝜏,X (𝜏) ,X (𝜏 − 𝛾)) 𝑑𝜏

+ ∫

𝑡

0

b (𝜏,X (𝜏) ,X (𝜏 − 𝛾)) 𝑑W
𝜏

+

𝑝𝜑(𝑡)

∑

𝑖=1

c (𝜏
𝑖
,X (𝜏

−

𝑖
) , 𝜉

𝑖
) ,

(3)

where (𝜏
𝑖
, 𝜉

𝑖
), for 𝑖 ∈ {1, 2, 3, . . . , 𝑝

𝜑
(𝑡)}, are a sequence of pairs

of jump times and corresponding values generated by the
Poisson random measure 𝑝

𝜑
.

Definition 1. Given a filtered probability space (Ω,A,A, 𝑃), a
stochastic process given by X = {X(𝑡), 𝑡 ∈ [−𝛾, 𝑇]} is known
as a solution of (1) subject to the initial condition (2) if X is
A-adapted, the integrals in the equation are well defined, and
equalities (3) and (2) hold almost surely. Moreover, if any two
solution processes X(𝑖)

= {X(𝑖)
(𝑡), 𝑖 ∈ 1, 2} are indistinguish-

able on [−𝛾, 𝑇] with the same initial segment 𝜒 and the same
path on [0, 𝑇], and

𝑃( sup
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩󵄩
𝑋
(1)

(𝑡) − 𝑋
(2)

(𝑡)
󵄩󵄩󵄩󵄩󵄩
> 0) = 0, (4)

where ‖ ⋅ ‖ is the Euclidean norm, then if (1) has a solution,
it is a unique solution for this initial value problem.

To guarantee the existence of a unique solution of the
jump-diffusion SDDE (1), we assume that the coefficients of
(1) satisfy the following Lipschitz conditions:

󵄨󵄨󵄨󵄨a (𝑡, y1, z1) − a (𝑡, y
2
, z

2
)
󵄨󵄨󵄨󵄨 ≤ 𝐶

1
(
󵄨󵄨󵄨󵄨y1 − y

2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨z1 − z

2

󵄨󵄨󵄨󵄨) ,

󵄨󵄨󵄨󵄨b (𝑡, y
1
, z

1
) − b (𝑡, y

2
, z

2
)
󵄨󵄨󵄨󵄨 ≤ 𝐶

2
(
󵄨󵄨󵄨󵄨y1 − y

2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨z1 − z

2

󵄨󵄨󵄨󵄨) ,

∫
𝜀

󵄨󵄨󵄨󵄨c (𝑡, y1, z1, 𝜐) − c (𝑡, y
2
, z

2
, 𝜐)

󵄨󵄨󵄨󵄨
2

𝜑 (𝑑𝜐)

≤ 𝐶
3
((𝑦

1
− 𝑦

2
)
2

+ (𝑧
1
− 𝑧

2
)
2

)

(5)

for 𝑡 ∈ [0, 𝑇] and x
1
, x

2
, y

1
, y

2
∈ R𝑑, as well as the growth

conditions
󵄨󵄨󵄨󵄨a (𝑡, y, z)

󵄨󵄨󵄨󵄨 ≤ 𝐷
1
(1 +

󵄨󵄨󵄨󵄨y
󵄨󵄨󵄨󵄨 + |z|) ,

󵄨󵄨󵄨󵄨b (𝑡, y, z)󵄨󵄨󵄨󵄨 ≤ 𝐷
2
(1 +

󵄨󵄨󵄨󵄨y
󵄨󵄨󵄨󵄨 + |z|) ,

∫
𝜀

󵄨󵄨󵄨󵄨c (𝑡, y, z, 𝜐)
󵄨󵄨󵄨󵄨
2

𝜑 (𝑑𝜐) ≤ 𝐷
3
(1 + 𝑦

2
+ 𝑧

2
)

(6)

for y, z ∈ R𝑑, 𝑡 ∈ [0, 𝑇].
We denote by C = C([−𝛾, 0],R𝑑

) the Banach space of all
𝑑-dimensional continuous functions 𝜂 on [−𝛾, 0] equipped
with the supremum norm ‖𝜂‖C = sup

𝑠∈[−𝛾,0]
|𝜂(𝑠)|. Further-

more, we suppose that the set 𝐿
2
(Ω,C,A

0
) of R𝑑-valued

continuous process 𝜂 = {𝜂(𝑠), 𝑠 ∈ [−𝛾, 0]} isA
0
-measurable

with

𝐸 (
󵄩󵄩󵄩󵄩𝜂

󵄩󵄩󵄩󵄩
2

C
) = 𝐸( sup

𝑠∈[−𝛾,0]

󵄨󵄨󵄨󵄨𝜂 (𝑠)
󵄨󵄨󵄨󵄨
2

) < ∞. (7)

Following the work in [7, 10], the following theorem can
be established for the existence and uniqueness of a solution
to the problem defined by (1) and (2).

Theorem 2. Suppose that the Lipschitz conditions and the
growth conditions are satisfied, and the initial condition 𝜒 is
in 𝐿

2
(Ω,C,A

0
). Then (1) subject to the initial condition (2)

admits a unique solution.
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Now we present some lemmas to be used later for the
proof of the convergence theorem. Consider a right contin-
uous process 𝑌Δ 𝑙 = {𝑌

Δ 𝑙(𝑡), 𝑡 ∈ [−𝛾, 𝑇]}. 𝑌Δ 𝑙 is called a dis-
crete-time numerical approximationwithmaximum step size
Δ
𝑙
, if it is obtained by using a time discretization 𝑡

Δ 𝑙
, and

the random variable 𝑌
Δ 𝑙

𝑡𝑛
is F

𝑡𝑛
-measurable for 𝑛 ∈ {1, . . . ,

𝑁}. Further, 𝑌
Δ 𝑙

𝑡𝑛+1
can be expressed as a function of 𝑌

Δ 𝑙

𝑡−𝑙
,

𝑌
Δ 𝑙

𝑡−𝑙+1
, . . . , 𝑌

Δ 𝑙

𝑡𝑛
and the discrete-time 𝑡

𝑛
.

Because of dealing with the approximation of solutions of
jump-diffusion SDDEs, we introduce a concept of weak order
convergence due to Kloeden and Platen [15].

Definition 3. A discrete-time approximation 𝑌
Δ 𝑙 converges

weakly towards 𝑋 at time 𝑇 with order 𝛽 > 0 if for each 𝑔 ∈

C
𝑝
there is a constant 𝐶, independent of Δ

𝑙
, such that

󵄨󵄨󵄨󵄨󵄨
𝐸 (𝑔 (𝑋 (𝑇))) − 𝐸 (𝑔 (𝑌

Δ 𝑙 (𝑇)))
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶(Δ

𝑙
)
𝛽

, (8)

whereC
𝑝
denotes the set of all polynomials 𝑔 : R𝑑

→ R.

We now give some auxiliary results to prepare for the
proof of the weak convergence theorem to be presented.

Lemma 4. For 𝑛 ∈ {−𝑙 + 1, . . . , 0, 1, . . . , 𝑁} and z ∈ R𝑑, we
have

𝐸(𝑢 (𝑛,X𝑛−1,𝑧

𝑛
− ) − 𝑢 (𝑛 − 1, z)

+∫

𝑛

𝑛−1

∫
𝜀

L−1
𝜐
𝑢 (𝜏,X𝑛−1,𝑧

𝜏
) 𝜑 (𝑑𝜐) 𝑑𝜏 | A

𝑛−1
) = 0

(9)

for (𝜏, z) ∈ [−𝛾, 𝑡] ×R𝑑 and 𝑢(𝜏, z) = 𝐸(𝑔(X𝜏,𝑧

𝑇
)A

𝜏
).

The proof of the lemma for the case with no delay was
established by Platen and Bruti-Liberati [21], and a similar
procedure can be used for the proof of this lemma.

Lemma 5. Given 𝑝 ∈ {1, 2, 3, . . .}, there is a bounded constant
𝑀 satisfying

𝐸(
󵄨󵄨󵄨󵄨󵄨
X𝑛−1,𝑧

𝑛
− − z󵄨󵄨󵄨󵄨󵄨

2𝑞

| Ã
𝑛−1

) ≤ 𝑀(1 + |z|2𝑞) (Δ
𝑙
)
𝑞 (10)

for 𝑞 ∈ {1, . . . , 𝑝} and 𝑛 ∈ {−𝑙 + 1, . . . , 0, 1, . . . , 𝑁}.

The proof of (10) can be obtained by following that
of a lemma for SDEs with jumps but with no delay in
[15]. The following results are similar to what was given in
Mikulevičius and Platen [22].

Lemma 6. Given 𝑝 ∈ {1, 2, 3, . . .}, there is a finite constant 𝑀
satisfying

𝐸( sup
−𝛾≤𝑡≤𝑇

|𝜁 (𝑡)|
2𝑞
) ≤ 𝑀(1 +

󵄨󵄨󵄨󵄨Y0

󵄨󵄨󵄨󵄨
2𝑞

) (11)

for every 𝑞 ∈ {1, . . . , 𝑝}.

Lemma 7. Given 𝑝 ∈ {1, 2, . . .}, there is 𝑟 ∈ {1, 2, 3, . . .} and a
bounded constant 𝑀 satisfying

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐸 (

󵄨󵄨󵄨󵄨󵄨
Fp (𝜁 (𝑧) − YΔ 𝑙

𝑧
)
󵄨󵄨󵄨󵄨󵄨

2𝑞

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Fp (X𝑧,𝑌

Δ𝑙
𝑧

𝑧
− YΔ 𝑙

𝑧
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑞

| Ã
𝑧
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀(1 +
󵄨󵄨󵄨󵄨󵄨
YΔ 𝑙

𝑧

󵄨󵄨󵄨󵄨󵄨

2𝑟

) (Δ
𝑙
)
𝑞𝑘

(12)

for each 𝑞 ∈ {1, . . . , 𝑝}, 𝑘 ∈ {1, . . . , 2(𝛽 + 1)}, p ∈ 𝑃
𝑘
= {1, 2, ...,

𝑑}
𝑘, and 𝑧 ∈ [−𝑟, 𝑇], where 𝐹p(y) = ∏

𝑘

ℎ=1
𝑦
𝑝ℎ for all y = (𝑦

1
,

..., 𝑦
𝑑
)
𝑇
∈ R𝑑 and p = (𝑝

1
, ..., 𝑝

𝑘
) ∈ 𝑃

𝑘
.

The proof of estimate (12) can be established by following
Itô’s formula for SDEs with jumps but with no delay as in [15].

Lemma 8. For p ∈ 𝑃
𝑘
, there exist 𝑟 ∈ {1, 2, . . .} and a finite

constant 𝑀 satisfying
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐸 (FP (𝜁 (𝑡) − YΔ 𝑙

𝑛−1
) − FP (X𝑛−1,𝑌

Δ𝑙

𝑛−1

𝑡
− YΔ

𝑡𝑛−1
) | Ã

𝑡
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀(1 +
󵄨󵄨󵄨󵄨󵄨
YΔ 𝑙

𝑛−1

󵄨󵄨󵄨󵄨󵄨

𝑟

) (Δ
𝑙
)
𝛽

(13)

for each 𝑘 ∈ {1, . . . , 2𝛽 + 1}, 𝑛 ∈ {−𝑙 + 1, . . . , 0, 1, . . . , 𝑁}, and
𝑡 ∈ [𝑡

𝑛−1
, 𝑡
𝑛
).

3. The Jump-Adapted Weak Taylor
Approximation Scheme

InMonte Carlo simulations for functionals of jump-diffusion
SDDEs, one uses numerical approximations evaluated only at
discretization time. Here, we first give a jump adapted weak
approximation Taylor scheme of order 𝛽, and then study the
basic properties of the discrete Taylor approximation in a
weak order sense.

First we define the jump-adapted time discretization. Let
𝑇 > 𝑟 > 0. The jump adapted time discretization used
throughout this paper is

(𝑡)
Δ
= {𝑡

𝑖
: 𝑖 = −𝑙, −𝑙 + 1, . . . , 0, 1, 2, . . . , 𝑁} (14)

with the maximum step size Δ
𝑙
∈ (0, 1). We choose the time

discretization in such a way that all jump times are at the
nodes of the time discretization. If the discretization node 𝑡

𝑖

is not a jump time, then 𝑡
𝑖
isA

𝑡𝑖−1
-measurable. Otherwise, 𝑡

𝑖
is

A
𝑡
𝑖
−
-measurable. Also, throughout the paper, we denote the

set of all multiindices 𝛼 by

M
𝑚

= {(𝑗
1
, . . . , 𝑗

𝑙
) : 𝑗

𝑖
∈ {0, 1, 2, . . . , 𝑚} , 𝑖 ∈ {1, 2, . . . , 𝑙}

for 𝑙 ∈ N} ∪ {V} ,

(15)

where the element 𝛼 = (𝑗
1
, 𝑗

2
, . . . , 𝑗

𝑙
) is called a multiindex of

length 𝑙 = 𝑙(𝛼) ∈ N and V has zero length. In the following,
by a component 𝑗 ∈ {0, 1, 2, . . . , 𝑚} of a multi-index we refer
to the integration with respect to the 𝑗th Wiener process in a
multiple stochastic integral. A component with 𝑗 = 0 cor-
responds to integration with respect to time 𝑡.
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Now define the following operators for the coefficient
functions:

𝐿
0
=

𝜕

𝜕𝑡
+

𝑑

∑

𝑖=1

𝑎
𝑖
(𝑡, 𝑥, 𝑥

𝑙
)

𝜕

𝜕𝑥𝑖
+

𝑑

∑

𝑖=1

𝑎
𝑖
(𝑡 − 𝑙, 𝑥

𝑙
, 𝑥

2𝑙
)

𝜕

𝜕𝑥𝑖
𝑙

+
1

2

𝑑

∑

𝑖,𝛾=1

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡, 𝑥, 𝑥

𝑙
) 𝑏

𝛾𝑗
(𝑡, 𝑥, 𝑥

𝑙
)

𝜕
2

𝜕𝑥𝑖𝜕𝑥𝛾

+
1

2

𝑑

∑

𝑖,𝛾=1

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡 − 𝑙, 𝑥

𝑙
, 𝑥

2𝑙
) 𝑏

𝛾𝑗
(𝑡 − 𝑙, 𝑥

𝑙
, 𝑥

2𝑙
)

𝜕
2

𝜕𝑥𝑖
𝑙
𝜕𝑥

𝛾

𝑙

,

𝐿
𝑘
=

𝑑

∑

𝑖=1

𝑏
𝑖𝑘
(𝑡, 𝑥, 𝑥

𝑙
)

𝜕

𝜕𝑥𝑖
+

𝑑

∑

𝑖=1

𝑏
𝑖𝑘
(𝑡 − 𝑙, 𝑥

𝑙
, 𝑥

2𝑙
)

𝜕

𝜕𝑥𝑖
𝑙

.

(16)

A subset A ∈ M is the hierarchical set, and its corre-
sponding remainder set 𝐴(M) is defined by 𝐴(M) = {𝛼 ∈

M
𝑚
\A : −𝛼 ∈ A}. For each𝛽 ∈ 1, 2, 3, . . ., we can then define

the hierarchical set Γ
𝛽

= {𝛼 ∈ M
𝑚

: 𝑙(𝛼) ≤ 𝛽}. The weak
Taylor method of order 𝛽 is then constructed as follows:

Y
(𝑛+1)

− = Y
𝑛
+ ∑

𝛼∈Γ𝛽

𝑓
𝛼
(𝑛,Y

𝑛
,Y

𝑛−𝑙
) 𝐼

𝛼
,

Y
𝑛+1

= Y
(𝑛+1)

− + ∫
𝜀

𝑐 (𝑛,Y
(𝑛+1)

− , 𝜐) 𝑝
𝜑
(𝑑𝜐, (𝑛 + 1)) ,

(17)

where

𝑓
𝛼
(𝑡, 𝑥, 𝑢) =

{{

{{

{

𝑓 (𝑡, 𝑥) if 𝑙 (𝛼) = 0

𝐿
𝑗1𝑓

−𝛼
(𝑡, 𝑥, 𝑢) if 𝑙 (𝛼) ≥ 1,

𝑗
1
∈ 0, 1, . . . , 𝑚.

(18)

The multiple stochastic integral is then defined recur-
sively as follows:

𝐼
𝛼,𝑡

=

{{{{{

{{{{{

{

𝑡 if 𝑙 = 0

∫

𝑡

0

𝐼
𝛼−,𝑧

𝑑𝑧 if 𝑙 ≥ 1, 𝑗
𝑙
= 0

∫

𝑡

0

𝐼
𝛼−,𝑧

𝑑𝑊
𝑗𝑙

𝑧
if 𝑙 ≥ 1, 𝑗

𝑙
∈ 1, . . . , 𝑚,

(19)

where 𝛼− is obtained from 𝛼 by deleting its last component,
while −𝛼 is obtained from 𝛼 by deleting its first component.

Now, we give the weak convergence theorem of the Taylor
approximation with order 𝛽.

Theorem 9. Given 𝛽 ∈ {1, 2, . . .}, let 𝑌Δ 𝑙 = {𝑌
Δ 𝑙

𝑛
, 𝑛 ∈ [−𝑙, . . . ,

0, 1, . . . , 𝑁]} be the results obtained from the Taylor scheme
(17) corresponding to (t)

Δ
with maximum step size Δ l ∈ (0, 1).

Suppose that 𝐸(|X
𝜉
|
𝑖
) < ∞ for 𝜉 ∈ (−𝛾, 0), 𝑖 ∈ {1, 2, . . .}, and

YΔ

𝜉
converges to X

𝜉
weakly with order 𝛽 ∈ {1, 2, . . .}. Assume

that the coefficients, 𝑎𝑘, 𝑏𝑘𝑗, 𝑐𝑘, are in the spaceC2(𝛽+1)

𝑃
(R𝑑

,R),
for 𝑗 ∈ {1, 2, . . . , 𝑚} and 𝑘 ∈ {1, 2, . . . , 𝑑}, and the coefficient
functions 𝑓

𝛼
, with 𝑓(𝑡, y) = y, satisfy the growth condition

|𝑓
𝛼
(𝑡, y)| ≤ 𝑀(1 + |y|), with 𝑀 < ∞, for all 𝑡 < 𝑇, y ∈ R𝑑,

and 𝛼 ∈ Γ
𝛽
. Then for any 𝑔 ∈ C

2(𝛽+1)

𝑃
(R𝑑

,R) there is a positive
constant 𝐶, which does not depend on Δ, such that

󵄨󵄨󵄨󵄨󵄨
𝐸 (𝑔 (𝑋 (𝑇))) − 𝐸 (𝑔 (𝑌

Δ 𝑙 (𝑇)))
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶(Δ

𝑙
)
𝛽

. (20)

Proof. For 𝛽 ∈ {1, 2, 3, . . .} and 𝑔 ∈ C
2(𝛽+1)

𝑝
(R𝑑

,R), consider
the Itô process below:

X𝑧,𝑦

𝑡
= y + ∫

𝑡

𝑧

a (X𝑧,𝑦

𝑢
) 𝑑𝑢 + ∫

𝑡

𝑧

b (X𝑧,𝑦

𝑢
) 𝑑W

𝑢

+ ∫

𝑡

𝑧

∫
𝜀

c (X𝑧,𝑦

𝑢−
, 𝜐) 𝑝

𝜑
(𝑑𝜐, 𝑑𝑢) .

(21)

Then we can get 𝑢(0, 𝑋
0
) = 𝐸(𝑔(𝑋

0,𝑋0

𝑇
)) = 𝐸(𝑔(𝑋

𝑇
)).

Define also the process 𝜁 = 𝜁(𝑡), 𝑡 ∈ (−𝛾, 𝑇), by

𝜁 (𝑡) = 𝜁 (𝑡
𝑛
) + ∑

𝛼∈Γ𝛽

𝐼
𝛼
(𝑓

𝛼
(𝑛, 𝜁

𝑛
, 𝜁

𝑛−𝑙
))

+ ∫

𝑡

𝑛

∫
𝜀

𝑐 (𝑛, 𝜁
(𝑛+1)

− , 𝜐) 𝑝
𝜑
(𝑑𝜐, (𝑛 + 1))

(22)

for 𝑛 ∈ {−𝑙, −𝑙+1, . . . , 0, 1, . . . , 𝑁−1}, 𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

], 𝜁(0) = 𝑌
0
,

and 𝜁(𝑡
𝑛
) = 𝑌

𝑡𝑛
for 𝑛 ∈ {−𝑙, . . . , 0, 1, 2, . . . , 𝑁}.

By the definition of the functional 𝑢 and the terminal
condition of the stochastic process𝑋, we have

𝐻 =
󵄨󵄨󵄨󵄨󵄨
𝐸 (𝑔 (YΔ 𝑙

𝑇
)) − 𝐸 (𝑔 (X

𝑇
))
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝐸 (𝑢 (𝑇,YΔ 𝑙

𝑇
) − 𝑢 (0,X

0
))

󵄨󵄨󵄨󵄨󵄨
.

(23)

Since Y
0
converges towards X

0
weakly with order 𝛽, one

has

𝐻 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸(

𝑁

∑

𝑛=−𝑙+1

(𝑢 (𝑛,Y
𝑛
) − 𝑢 (𝑛,Y

𝑛
−) + 𝑢 (𝑛,Y

𝑛
−)

− 𝑢 (𝑛 − 1,Y
𝑛−1

)))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝐾(Δ
𝑙
)
𝛽

.

(24)

By Lemma 4, we can write

𝐻 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸(

𝑁

∑

𝑛=−𝑙+1

{ [𝑢 (𝑛,Y
𝑛
) − 𝑢 (𝑛,Y

𝑛
−)

+𝑢 (𝑛,Y
𝑛
−) − 𝑢 (𝑛 − 1,Y

𝑛−1
)]

− [𝑢 (𝑛,X𝑛−1,𝑌𝑛−1

𝑛
− ) − 𝑢 (𝑛 − 1,Y

𝑛−1
)

+ ∫

𝑛

𝑛−1

∫
𝜀

L−1
𝜐
𝑢 (𝑧,X𝑛−1,𝑌𝑛−1

𝑧
)

×𝜑 (𝑑𝜐) 𝑑𝑧] })

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝐾(Δ
𝑙
)
𝛽

.

(25)

From the properties of stochastic integrals, we obtain

𝐸(

𝑁

∑

𝑛=−𝑙

[𝑢 (𝑛,Y
𝑛
) − 𝑢 (𝑛,Y

𝑛
−)])

= 𝐸(∫

𝑇

−𝑟

∫
𝜀

L−1
𝜐
𝑢 (𝑧, 𝜁 (𝑧)) 𝜑 (𝑑𝜐) 𝑑𝑧) .

(26)
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Therefore, we have

𝐻 ≤ 𝐻
1
+ 𝐻

2
+ 𝐾(Δ

𝑙
)
𝛽

, (27)

where

𝐻
1
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸(

𝑁

∑

𝑛=−𝑙+1

{ [𝑢 (𝑛,Y
𝑛
−) − 𝑢 (𝑛,Y

𝑛−1
)]

− [𝑢 (𝑛,X𝑛−1,𝑌𝑛−1

𝑛
− ) − 𝑢 (𝑛,Y

𝑛−1
)]})

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(28)

𝐻
2
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸 (∫

𝑇

−𝑟

∫
𝜀

{[𝐿
−1

𝜐
𝑢 (𝑧, 𝜁 (𝑧)) − 𝐿

−1

𝜐
𝑢 (𝑧,Y

𝑧
)]

− [𝐿
−1

𝜐
𝑢 (𝑧,X𝑧,𝑌𝑧

𝑧
) − 𝐿

−1

𝜐
𝑢 (𝑧,Y

𝑧
)]}

× 𝜑 (𝑑𝜐) 𝑑𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(29)

In the following, we proceed to estimate 𝐻
1
and 𝐻

2
in

Steps 1 and 2, respectively, and then complete the proof in Step
3.

Step 1. Let us assume that 𝑢 is so smooth that the determin-
istic Taylor expansion may be applied. Hence, by expanding
𝑑𝑢 in𝐻

1
, we get

𝐻
1
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸(

𝑁

∑

𝑛=−𝑙+1

{

{

{

[

[

2𝛽+1

∑

𝑘=1

1

𝑘!
∑

P∈𝑃𝑘
(𝜕

P
𝑦
𝑢 (𝑛,Y

𝑛−1
))

× 𝐹P (Y
𝑛
− − Y

𝑛−1
)

+𝑅
𝑛
(Y

𝑛
−) ]

− [

[

2𝛽+1

∑

𝑘=1

1

𝑘!
∑

P∈𝑃𝑘
(𝜕

P
𝑦
𝑢 (𝑛,Y

𝑛−1
))

× 𝐹P (X𝑛−1,𝑌𝑛−1

𝑛
− − Y

𝑛−1
)

+ 𝑅
𝑛
(X𝑛−1,𝑌𝑛−1

𝑛
− ) ]})

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(30)

where the remainder term is

𝑅
𝑛
(Z) =

1

2 (𝛽 + 1)!

× ∑

p∈𝑃2(𝛽+1)
𝜕
p
𝑦
𝑢 (𝑛,Y

𝑛−1
+ 𝜃p,𝑛 (Z − Y

𝑛−1
))

× 𝐹p (Z − Y
𝑛−1

) ,

(31)

where 𝜃p,𝑛(Z) is a 𝑑 × 𝑑 diagonal matrix with 𝜃
𝑘,𝑘

p,𝑛(Z) ∈ (0, 1)

for 𝑘 ∈ {1, 2, 3, . . . , 𝑑} and Z = Y
𝑛
− and X𝑛−1,𝑌𝑛−1

𝑛
− , respectively.

Therefore, according to the properties of expectation and
absolute value, we get

𝐻
1
≤ 𝐸(

𝑁

∑

𝑛=−𝑙+1

{

2𝛽+1

∑

𝑘=1

1

𝑘!
∑

p∈𝑃𝑘

󵄨󵄨󵄨󵄨󵄨
(𝜕

p
𝑦
𝑢 (𝑛,Y

𝑛−1
))

󵄨󵄨󵄨󵄨󵄨

× (𝐹p (Y
𝑛
− − Y

𝑛−1
)

−𝐹p (X𝑛−1,𝑌𝑛−1

𝑛
− − Y

𝑛−1
))

×
󵄨󵄨󵄨󵄨𝑅𝑛

(Y
𝑛
−)
󵄨󵄨󵄨󵄨+

󵄨󵄨󵄨󵄨󵄨
𝑅
𝑛
(X𝑛−1,𝑌𝑛−1

𝑛
− )

󵄨󵄨󵄨󵄨󵄨
})

≤ 𝐸(

𝑁

∑

𝑛=−𝑙+1

{

2𝛽+1

∑

𝑘=1

1

𝑘!
∑

p∈𝑃𝑘

󵄨󵄨󵄨󵄨󵄨
(𝜕

p
𝑦
𝑢 (𝑛,Y

𝑛−1
))

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝐸 (𝐹p (Y

𝑛
− − Y

𝑛−1
)

− 𝐹p (X𝑛−1,𝑌𝑛−1

𝑛
− −Y

𝑛−1
) |Ã

𝑛−1
)
󵄨󵄨󵄨󵄨󵄨

+ 𝐸 (
󵄨󵄨󵄨󵄨𝑅𝑛

(Y
𝑛
−)
󵄨󵄨󵄨󵄨 | Ã𝑛−1

)

+ 𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝑅
𝑛
(X𝑛−1,𝑌𝑛−1

𝑛
− )

󵄨󵄨󵄨󵄨󵄨
| Ã

𝑛−1
)}) .

(32)

By (31), the Hölder inequality, and Lemma 7, we get

𝐸 (
󵄨󵄨󵄨󵄨𝑅𝑛

(Y
𝑛
−)
󵄨󵄨󵄨󵄨 | Ã𝑛−1

)

≤ 𝑀 ∑

p∈𝑃2(𝛽+1)
[𝐸 (

󵄨󵄨󵄨󵄨󵄨
𝜕
p
𝑦
𝑢 (𝑛,Y

𝑛−1
+ 𝜃p,𝑛 (Y𝑛

−)

× (Y
𝑛
−−Y

𝑛−1
))
󵄨󵄨󵄨󵄨
2

| Ã
𝑛−1

)]
1/2

× [𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝐹p (Y

𝑛
− − Y

𝑛−1
)
󵄨󵄨󵄨󵄨󵄨

2

| Ã
𝑛−1

)]
1/2

≤ 𝑀[𝐸 (1 +
󵄨󵄨󵄨󵄨Y𝑛−1

󵄨󵄨󵄨󵄨
2𝑟

+
󵄨󵄨󵄨󵄨Y𝑛
− − Y

𝑛−1

󵄨󵄨󵄨󵄨
2𝑟

| Ã
𝑛−1

)]
1/2

× [𝐸 (
󵄨󵄨󵄨󵄨Y𝑛
− − Y

𝑛−1

󵄨󵄨󵄨󵄨
4(𝛽+1)

| Ã
𝑛−1

)]
1/2

≤ 𝑀(1 +
󵄨󵄨󵄨󵄨Y𝑛−1

󵄨󵄨󵄨󵄨
2𝑟

) (Δ
𝑙
)
𝛽+1

.

(33)
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Similarly, by Lemma 5 and the Cauchy-Schwarz inequal-
ity, we have

𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝑅
𝑛
(X𝑛−1,𝑌𝑛−1

𝑛
− )

󵄨󵄨󵄨󵄨󵄨
| Ã

𝑛−1
)

≤ 𝑀 ∑

p∈𝑃2(𝛽+1)
[𝐸 (

󵄨󵄨󵄨󵄨󵄨
𝜕
p
𝑦
𝑢 (𝑛,Y

𝑛−
+ 𝜃p,𝑛 (X

𝑛−1,𝑌𝑛−1

𝑛
− )

× (X𝑛−1,𝑌𝑛−1

𝑛
− −Y

𝑛−1
))

󵄨󵄨󵄨󵄨󵄨

2

|Ã
𝑛−1

)]

1/2

× [𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝐹p (X𝑛−1,𝑌𝑛−1

𝑛
− − Y

𝑛−1
)
󵄨󵄨󵄨󵄨󵄨

2

| Ã
𝑛−1

)]

1/2

≤ 𝑀[𝐸(1 +
󵄨󵄨󵄨󵄨Y𝑛−1

󵄨󵄨󵄨󵄨
2𝑟

+
󵄨󵄨󵄨󵄨󵄨
X𝑛−1,𝑌𝑛−1

𝑛
− − Y

𝑛−1

󵄨󵄨󵄨󵄨󵄨

2𝛾

| Ã
𝑛−1

)]

1/2

× [𝐸(
󵄨󵄨󵄨󵄨󵄨
X𝑛−1,𝑌𝑛−1

𝑛
− − Y

𝑛−1

󵄨󵄨󵄨󵄨󵄨

4(𝛽+1)

| Ã
𝑛−1

)]

1/2

≤ 𝑀(1 +
󵄨󵄨󵄨󵄨Y𝑛−1

󵄨󵄨󵄨󵄨
2𝑟

) (Δ
𝑙
)
𝛽+1

.

(34)

Now, from theCauchy-Schwarz inequality, Lemmas 8 and
6, and inequalities (33) and (34), we obtain

𝐻
1
≤𝐸(𝐾

𝑁

∑

𝑛=−𝑙+1

(1 +
󵄨󵄨󵄨󵄨Y𝑛−1

󵄨󵄨󵄨󵄨
2𝛾

) (Δ
𝑙
)
𝛽

)

≤𝑀(Δ
𝑙
)
𝛽

(1 + 𝐸( max
−𝑙≤𝑛≤𝑁

󵄨󵄨󵄨󵄨Y𝑛

󵄨󵄨󵄨󵄨
2𝛾

))

≤𝑀(Δ
𝑙
)
𝛽

(1 +
󵄨󵄨󵄨󵄨Y0

󵄨󵄨󵄨󵄨
2𝛾

) ≤ 𝐾(Δ
𝑙
)
𝛽

.

(35)

Step 2. Now we estimate the term 𝐻
2
in inequality (27). By

the jump coefficient 𝑐 and the smooth function 𝑢, applying
the Taylor expansion yields

𝐻
2
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸(∫

𝑇

−𝑟

∫
𝜀

{[

2𝛽+1

∑

𝑘=1

1

𝑘!
∑

p∈𝑃𝑘
(𝜕

p
𝑦
𝐿
−1

𝜐
𝑢 (𝑧,Y

𝑧
))

× 𝐹p (𝜁 (𝑧) − Y
𝑡𝑧
)

+𝑅
𝑛
(𝜁 (𝑧)) ]

− [

2𝛽+1

∑

𝑘=1

1

𝑘!
∑

p∈𝑃𝑘
(𝜕

p
𝑦
𝐿
−1

𝜐
𝑢 (𝑧,Y

𝑧
))

× 𝐹p (X𝑧,𝑌𝑧

𝑧
− Y

𝑡𝑧
)

+𝑅
𝑛
(X𝑧,𝑌𝑧

𝑧
) ]}𝜑 (𝑑𝜐) 𝑑𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑇

−𝑟

∫
𝜀

𝐸(

2𝛽+1

∑

𝑘=1

1

𝑘!
∑

p∈𝑃𝑘

󵄨󵄨󵄨󵄨󵄨
(𝜕

p
𝑦
𝐿
−1

𝜐
𝑢 (𝑧,Y

𝑧
))

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝐸 (𝐹p (𝜁 (𝑧) − Y

𝑧
)

− 𝐹p (X𝑧,𝑌𝑧

𝑧
− Y

𝑧
) | Ã

𝑧
)
󵄨󵄨󵄨󵄨󵄨

+ 𝐸 (
󵄨󵄨󵄨󵄨𝑅𝑛

(𝜁 (𝑧))
󵄨󵄨󵄨󵄨 | Ã𝑧

)

+𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝑅
𝑛
(X𝑧,𝑌𝑧

𝑧
)
󵄨󵄨󵄨󵄨󵄨
| Ã

𝑧
))𝜑 (𝑑𝜐) 𝑑𝑧.

(36)

Similarly, we can estimate the reminders as follows:

𝐸 (
󵄨󵄨󵄨󵄨𝑅𝑛

(𝜁 (𝑧))
󵄨󵄨󵄨󵄨 | Ã𝑧

) ≤ 𝑀(1 +
󵄨󵄨󵄨󵄨󵄨
Y
𝑡𝑧

󵄨󵄨󵄨󵄨󵄨

2𝑟

) (𝑧 − 𝑡
𝑧
)
𝛽+1

,

𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝑅
𝑛
(X𝑧,𝑌𝑧

𝑧
)
󵄨󵄨󵄨󵄨󵄨
| Ã

𝑧
) ≤ 𝑀(1 +

󵄨󵄨󵄨󵄨󵄨
Y
𝑡𝑧

󵄨󵄨󵄨󵄨󵄨

2𝑟

) (𝑧 − 𝑡
𝑧
)
𝛽+1

.

(37)

Then, by applying the Hölder inequality, Lemmas 8 and
6, inequalities (37) to estimate the inequality above, we get

𝐻
2
≤𝑀∫

𝑇

−𝑟

∫
𝜀

𝐸(1 +
󵄨󵄨󵄨󵄨󵄨
Y
𝑡𝑧

󵄨󵄨󵄨󵄨󵄨

2𝑟

) (Δ
𝑙
)
𝛽

𝜑 (𝑑𝜐) 𝑑𝑧

≤𝑀(Δ
𝑙
)
𝛽

∫

𝑇

0

𝐸(1 + max
0≤𝑛≤𝑛𝑇

󵄨󵄨󵄨󵄨󵄨
Y
𝑡𝑛

󵄨󵄨󵄨󵄨󵄨

2𝑟

) (𝑧 − 𝑡
𝑧
) 𝑑𝑧

≤𝑀(Δ
𝑙
)
𝛽

.

(38)

Step 3. Finally, by inequalities (27) and (35) as well as (38), we
have

󵄨󵄨󵄨󵄨󵄨
𝐸 (𝑔 (𝑋 (𝑇))) − 𝐸 (𝑔 (𝑌

Δ 𝑙 (𝑇)))
󵄨󵄨󵄨󵄨󵄨
≤ 𝑀(Δ

𝑙
)
𝛽

. (39)

4. A Numerical Example

Herewe give an illustrative example to demonstrate the appli-
cation and the convergence of the proposed numerical
scheme.We consider the following linear SDDEwith Poisson
jumps:

𝑑𝑋
𝑡
= [(𝜇 − ]𝜆)𝑋

𝑡
+ 𝛼𝑋

𝑡−1
] 𝑑𝑡

+ [𝜎𝑋
𝑡
+ 𝛽𝑋

𝑡−1
] 𝑑𝑊

𝑡
+ ]𝑋

𝑡
𝑑𝑁,

𝑋 (𝑡) = 𝑡 + 1, 𝑡 ∈ [−1, 0] ,

(40)

where 𝜇, 𝜎, and ] are, respectively, the drift coefficient, the
diffusion coefficient and the jump coefficient; 𝜆 is the jump
intensity; and 𝛼 and 𝛽 are the delay coefficients.
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Table 1: Convergence results for the linear SDDE with jumps.

Stepsize 1/ℎ 2
8

2
10

2
12

2
14

2
16

2
18

2
20

Weak error1 0.00352 0.00201 0.00156 0.00114 0.00082 0.00060 0.00031

Weak error2 0.00229 0.00142 0.00061 0.00020 0.00009 0.00004 0.00002

By the method for solving linear stochastic differential
equations in [23], the analytical solution for 𝑡 ∈ [0, 1] is
derived as follows:

𝑋(𝑡) = Φ (𝑡) (1 + ∫

𝑡

0

Φ(𝑠)
−1

(𝛼 − 𝜎𝛽) 𝑠𝑑𝑠

+∫

𝑡

0

Φ(𝑠)
−1
𝛽𝑠𝑑𝑊

𝑠
) ,

(41)

where

Φ (𝑡) = (] + 1)
𝑁(𝑡) exp{(𝜇 − ]𝜆 −

𝜎
2

2
) 𝑡 + 𝜎𝑊

𝑡
} . (42)

According to the weak Taylor approximation scheme
(17)–(19) proposed in Section 3, we now expand it with weak
order 1 (well known as Euler scheme):

𝑌
(𝑛+1)

− = 𝑌
𝑛
+ ((𝜇 − ]𝜆)𝑌

𝑛
+ 𝛼ℎ𝑛) ℎ + (𝜎𝑌

𝑛
+ 𝛽ℎ𝑛) Δ𝑊

𝑛
,

𝑌
𝑛+1

= 𝑌
(𝑛+1)

− + ]𝑌
𝑛
Δ𝑁

𝑛
.

(43)

Here we have used the jump adapted time discretization, and
ℎ is the maximum step size.

For higher accuracy and efficiency, one needs to construct
higher order numerical schemes. We now give a Taylor
scheme of weak order two below:

𝑌
(𝑛+1)

− = 𝑌
𝑛
+ ((𝜇 − ]𝜆)𝑌

𝑛
+ 𝛼ℎ𝑛) ℎ

+ (𝜎𝑌
𝑛
+ 𝛽ℎ𝑛) Δ𝑊

𝑛

+ ((𝜇 − ]𝜆) (𝜎𝑌
𝑛
+ 𝛽ℎ𝑛)

+ 𝜎 ((𝜇 − ]𝜆)𝑌
𝑛
+ 𝛼ℎ𝑛))

ℎ

2
Δ𝑊

𝑛

+ (𝜇 − ]𝜆) ((𝜇 − ]𝜆)𝑌
𝑛
+ 𝛼ℎ𝑛)

ℎ
2

2

+ 𝜎 (𝜎𝑌
𝑛
+ 𝛽ℎ𝑛)

(Δ𝑊
𝑛
)
2

− ℎ

2
,

𝑌
𝑛+1

= 𝑌
(𝑛+1)

− + ]𝑌
𝑛
Δ𝑁

𝑛
.

(44)

Next, we study the convergence of the two numerical
schemes presented above by using the weak errors measured
by

𝜀 (ℎ) = |𝐸 (𝑋 (𝑇)) − 𝐸 (𝑌 (𝑇))| (45)

and compare the results obtained from these two schemes to
the explicit exact solution. We estimate the weak errors 𝜀(ℎ)
by running a very large number of simulations. The exact
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Euler approximation
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𝑌
1
,
𝑌
2

Figure 1: Sample paths of linear SDDE with jumps.

number depends on the implemented scheme. We use the
following parameters: 𝛼 = 0.01, 𝛽 = 0.01, 𝜇 = 0.001, 𝜎 = 0.6,
] = 0.002, and 𝜆 = 0.001.

In Figure 1, we give the sample paths under the two
approximation schemes and the numerical explicit solution
of (40). We can see from the figure that the weak Taylor
scheme path is closer to the analytical solution line than the
Euler scheme.

Now we present the numerical errors generated by the
two numerical schemes presented above. From Table 1, we
notice that, for all the step sizes used in the numerical exper-
iments, the weak Taylor method is more accurate. Moreover,
the errors of the weak order two Taylor method decrease
faster than the Euler scheme.

5. Conclusions

In this work, we have extended previous research on weak
convergence to a more general class of stochastic differential
equations involving both jumps and time delay. We proved
that under the Poisson random measure and a fixed time
delay, a simplifiedTaylormethod givesweak convergence rate
arbitrarily close to order 𝛽. There is much scope for further
work in the context of weak solution of jump-diffusion
SDDEs. For example, it is clearly of great importance to
extend the weak convergence theory to the case where coef-
ficients in the equations are not globally Lipschitz, and to
develop and analyze new methods that maintain good prop-
erties of convergence and stability.



8 Abstract and Applied Analysis

Acknowledgments

The authors thank the anonymous referees and the editors
for their constructive comments and suggestions. Yanli Zhou
acknowledges financial support from Curtin International
Postgraduate Research Scholarship (CIPRS) and Chinese
Scholarship Council (CSC). Acknowledgement is also made
to theChinaNational Social Science Foundation (SSF) for the
research support (10BJY104).

References

[1] P. Hu and C. Huang, “Stability of stochastic 𝜃-methods for sto-
chastic delay integro-differential equations,” International Jour-
nal of Computer Mathematics, vol. 88, no. 7, pp. 1417–1429, 2011.

[2] J. Tan and H. Wang, “Mean-square stability of the Euler-
Maruyama method for stochastic differential delay equations
with jumps,” International Journal of Computer Mathematics,
vol. 88, no. 2, pp. 421–429, 2011.

[3] N. Jacob, Y. Wang, and C. Yuan, “Numerical solutions of sto-
chastic differential delay equationswith jumps,” Stochastic Anal-
ysis and Applications, vol. 27, no. 4, pp. 825–853, 2009.

[4] H. Zhang, S. Gan, and L. Hu, “The split-step backward Euler
method for linear stochastic delay differential equations,” Jour-
nal of Computational and Applied Mathematics, vol. 225, no. 2,
pp. 558–568, 2009.

[5] W. Wang and Y. Chen, “Mean-square stability of semi-implicit
Euler method for nonlinear neutral stochastic delay differential
equations,” Applied Numerical Mathematics, vol. 61, no. 5, pp.
696–701, 2011.

[6] V. Kolmanovskii and A. Myshkis, AppliedTheory of Fundamen-
tal Differential Equations, Kluwer, New York, NY, USA, 1992.

[7] S. E. A. Mohammed, Stochastic Functional Differential Equa-
tions, vol. 99 of Research Notes in Mathematics, Pitman, Boston,
Mass, USA, 1984.

[8] S. E. A. Mohammed, “Lyapunov exponents and stochastic flows
of linear and affine hereditary systems,” in Diffusion Processes
and Related Problems in Analysis, Volume II, vol. 27 of Progress
in Probability, pp. 141–169, Birkhäuser, Boston,Mass, USA, 1992.
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