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Wemodified the truncated expansionmethod to construct the exact solutions for somenonlinear differential difference equations in
mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic
discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function
method to find the rational solitary wave solutions for some nonlinear differential difference equations.The proposed methods are
more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.

1. Introduction

Nonlinear differential difference equations (NDDEs) play a
crucial role in many branches of applied physical sciences
such as condensed matter physics, biophysics, atomic chains,
molecular crystals, and discretization in solid-state and quan-
tum physics. They also play an important role in numeri-
cal simulation of soliton dynamics in high-energy physics
because of their rich structures. Therefore, researchers have
shown a wide interest in studying NDDEs since the original
work of Fermi et al. [1] in the 1950s. Contrary to differ-
ence equations that are being fully discretized, NDDEs are
semidiscretized, with some (or all) of their space variables
being discretized, while time is usually kept continuous. As
far as we could verify, little work has been done to search for
exact solutions of NDDEs. Hence, it would make sense to do
more research on solving NDDEs.

The study of discrete nonlinear system governed by
differential difference equations (DDEs) has drawn much
attention in recent years particularly from the point of view
of complete integrability.There is a vast body of work on non-
linear DDEs, including investigation of integrability criteria,
the computation of densities, Backlund transformation, and

recursion operator [2–17]. Xie [18] and Zayed et al. [19] have
put the rational solitary wave solutions for nonlinear partial
differential equations.

In the recent years, there have been a lot of papers
devoted to obtain the solitary wave or periodic solutions
for a variety of nonlinear differential difference equations
by using the symbolic computations. Among these methods
Liu [20] used the exponential function rational expansion
method to some NDDEs. Zhang et al. [21] have modified
the (𝐺󸀠/𝐺) expansion method form solving the nonlinear
partial differential equations to solve the nonlinear differ-
ential difference equations. Aslan [22, 23] has applied the
(𝐺
󸀠/𝐺) expansion method for solving the discrete nonlinear

Schrodinger equations with a saturable nonlinearity, discrete
Burgers equation, and the relativistic Toda lattice system.
More recently Gepreel et al. [24–26] have used the modified
rational Jacobi elliptic functions method to construct some
types of Jacobi elliptic solutions of the lattice equation, the
discrete nonlinear Schrodinger equation with a saturable
nonlinearity, and the quintic discrete nonlinear Schrodinger
equation.

In this paper, we use a modified truncated expansion
method to construct the exact solutions of the following
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nonlinear difference differential equations in mathematical
physics:

(i) the general lattice equation [21, 25, 27]:

𝑢
𝑛
𝑡

= (𝛼 + 𝛽𝑢
𝑛
+ 𝛾𝑢
2

𝑛
) (𝑢
𝑛+1
− 𝑢
𝑛−1
) ; (1)

(ii) the discrete nonlinear Schrodinger equation with a
saturable nonlinearity [23, 25]:

𝑖
𝜕𝜓
𝑛

𝜕𝑡
+ (𝜓
𝑛+1
+ 𝜓
𝑛−1
− 2𝜓
𝑛
) +

𝜂
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𝜓
𝑛
= 0; (2)

(iii) the quintic discrete nonlinear Schrodinger equation
[26, 28]:

𝑖
𝜕𝜓
𝑛

𝜕𝑡
+ 𝛼 (𝜓

𝑛+1
− 2𝜓
𝑛
+ 𝜓
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𝑛+1
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𝑛−1
) + 𝛿

󵄨󵄨󵄨󵄨𝜓𝑛
󵄨󵄨󵄨󵄨
4

(𝜓
𝑛+1
+ 𝜓
𝑛−1
) = 0;

(3)

(iv) the relativistic Toda lattice system [21]:

𝑢
𝑛
𝑡

− (1 + 𝛼𝑢
𝑛
) (𝑣
𝑛
− 𝑣
𝑛−1
) = 0,

𝑣
𝑛
𝑡

− 𝑣
𝑛
(𝑢
𝑛+1
− 𝑢
𝑛
+ 𝛼𝑣
𝑛+1
− 𝛼𝑣
𝑛−1
) = 0,

(4)

where 𝛼, 𝛽, 𝛾, 𝛿, 𝜇, and 𝜂 are arbitrary constants. Also, we
put a rational solitary wave method to the nonlinear differ-
ential difference equations. We use the proposed method to
find the rational solitary wave solutions for the nonlinear
differential difference equations via the discrete nonlinear
Schrodinger equation with a saturable nonlinearity, the
quintic discrete nonlinear Schrodinger equation, and the
relativistic Toda lattice equation.

2. Description of the Modified Truncated
Expansion Method to Nonlinear DDEs

In this section, we would like to outline the algorithm for
using the modified truncated expansion method to solve the
nonlinear DDEs. Consider a given system of𝑀 polynomial
nonlinear DDEs:

Δ (𝑢
𝑛+𝑝
1

(𝑋) , . . . , 𝑢
𝑛+𝑝
𝑘

(𝑋) , 𝑢
󸀠
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1

(𝑋) , . . . , 𝑢
󸀠
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𝑘

(𝑋) , . . . ,

𝑢
(𝑟)
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1

(𝑋) , . . . , 𝑢
(𝑟)

𝑛+𝑝
𝑘

(𝑋)) = 0,

(5)

where the dependent variable 𝑢 has 𝑀 components 𝑢
𝑖
, the

continuous variable 𝑥 has 𝑁 components 𝑥
𝑗
, the discrete

variable 𝑛 has 𝑄 components 𝑛
𝑖
, the 𝑘 shift vectors 𝑃

𝑠
∈ 𝑍
𝑄,

and 𝑢(𝑟) denotes the collection of mixed derivative terms of
order 𝑟.

The main steps of the algorithm for the modified trun-
cated expansion method to solve NDDEs are outlined as
follows.

Step 1. We seek the traveling wave transformation in the
following form:

𝑢
𝑛+𝑝
𝑠

(𝑋) = 𝑈 (𝜉
𝑛+𝑝
𝑠

) , 𝜉
𝑛
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𝑄
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𝑑
𝑖
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+

𝑚

∑
𝑗=1

𝑐
𝑗
𝑥
𝑗
+ 𝜉
0
,

𝑠 = 1, 2, . . . , 𝑘,

(6)

where the coefficients 𝑑
𝑖
(𝑖 = 1, . . . , 𝑄), 𝑐

𝑗
(𝑗 = 1, . . . , 𝑁) and

the phase 𝜉
0
are constants. The transformations (6) lead to

write (5) into the following form:

Δ (𝑈
𝑛+𝑝
1
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𝑛
) , . . . , 𝑈

𝑛+𝑝
𝑘
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1
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𝑛
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𝑘
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) , . . . , 𝑈

(𝑟)
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1
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𝑛
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(𝑟)
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𝑘

(𝜉
𝑛
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(7)

Step 2. We suppose the following series expansion as a
solution of (7):

𝑈(𝜉
𝑛
) =

𝑘

∑
𝑖=0

𝑎
𝑖
(𝜑 (𝜉
𝑛
))
𝑖

, (8)

where 𝑎
𝑖
= (0, 1, . . . , 𝐾) are arbitrary constants to be

determined later, 𝜑(𝜉
𝑛
) has the following form:

𝜑 (𝜉
𝑛
) =

1

𝐴 + 𝑒𝜉𝑛
, (9)

and 𝐴 is a nonzero arbitrary constant.
Further, using the properties of expansion functions the

iterative relations can be written in the following form:

𝑈
𝑛+𝑝𝑠
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=
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𝑛
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𝑛
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𝑠
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𝑠
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𝑛
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)

𝑖

,

𝑈
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𝑛
)
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𝐾
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𝑠
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𝑛
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) (1 + 𝐴)

)

𝑖

,

(10)

where

𝜉
𝑛+𝑝𝑠

= 𝜉
𝑛
+ 𝜎
𝑠
, 𝜎
𝑠
= 𝑝
𝑠1
𝑑
1
+ 𝑝
𝑠2
𝑑
2
+ ⋅ ⋅ ⋅ + 𝑝

𝑠𝑄
𝑑
𝑄
. (11)

Step 3. Determine the degree𝐾 of (8) by balancing the high-
est order nonlinear term(s) and the highest order derivative
of 𝑈(𝜉

𝑛
) in (7).

Step 4. Substituting (8)–(10) and given the value of 𝐾 deter-
mined in (7). Collecting all terms with the same power of
𝜑(𝜉
𝑛
), the left-hand side of (7) is converted into polynomial

in 𝜑(𝜉
𝑛
). Setting each coefficient of this polynomial to be

zero, we will derive a set of algebraic equations for 𝐴, 𝑎
𝑖
=

(0, 1, . . . , 𝐾).

Step 5. Solving the overdetermined system of nonlinear
algebraic equations by using Mathematica or Maple, we end
up with explicit expressions of 𝐴, 𝑎

𝑖
.
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Step 6. Using the results obtained in above steps, we can
finally obtain exact solutions of (5).

3. Applications of the Modified Truncated
Expansion Method

In this section, we apply the proposed modified truncated
expansion method to construct the exact solutions for the
nonlinear DDEs via the lattice equation, the discrete non-
linear Schrodinger equation with a saturable nonlinearity,
the quintic discrete nonlinear Schrodinger equation, and the
relativistic Toda lattice system which are very important in
the mathematical physics and have been paid attention by
many researchers.

3.1. Example 1: The General Lattice Equation. In this subsec-
tion, we use the modified truncated expansion method to
find the exact solutions of the general lattice equation. The
traveling wave variable (6) permits us converting (1) into the
following form:

𝐶
1
𝑈
󸀠
(𝜉
𝑛
) − [𝛼 + 𝛽𝑈 (𝜉

𝑛
) + 𝛾𝑈

2
(𝜉
𝑛
)]

× [𝑈 (𝜉
𝑛
+ 𝑑) − 𝑈 (𝜉

𝑛
− 𝑑)] = 0,

(12)

where (󸀠) = 𝑑/𝑑𝜉
𝑛
. Considering the homogeneous balance

between the highest order derivatives and nonlinear term in
(12), we get 𝐾 = 1. So we look for the solution of (12) in the
following form:

𝑈 (𝜉
𝑛
) = 𝑎
0
+ 𝑎
1
𝜑 (𝜉
𝑛
) , (13)

where 𝑎
0
and 𝑎

1
are arbitrary constants to be determined

later and 𝜑(𝜉
𝑛
) satisfies (9) and (10). We substitute (13), (9),

and (10) into (12) and collect all terms with the same power
in [𝜑(𝜉

𝑛
)]
𝑖

, (𝑖 = 0, 1, 2, . . .). Setting each coefficient of this
polynomial to zero, we derive a set of algebraic equations
for 𝑎
0
, 𝑎
1
, 𝑑 and 𝐶

1
. Solving the set of algebraic equations by

using Maple or Mathematica, we have the following results:

𝑎
0
= −

1

2

𝛽𝑒𝑑 + 𝛽 ± √− (𝑒𝑑 − 1)
2

(−𝛽
2
+ 4𝛼𝛾)

(𝑒𝑑 + 1) 𝛾
,

𝑎
1
= ±

𝐴√− (𝑒𝑑 − 1)
2

(−𝛽
2
+ 4𝛼𝛾)

(𝑒𝑑 + 1) 𝛾
,

𝐶
1
=
(𝑒𝑑 − 1) (4𝛼𝛾 − 𝛽2)

(𝑒𝑑 + 1) 𝛾
,

(14)

where 𝛼, 𝐴, 𝑑, 𝛽, and 𝛾 are arbitrary constants. In this case
the exact wave solution takes the following form:

𝑈 (𝜉
𝑛
) = −

1

2

𝛽𝑒𝑑 + 𝛽 ± √− (𝑒𝑑 − 1)
2

(−𝛽
2
+ 4𝛼𝛾)

(𝑒𝑑 + 1) 𝛾

±
𝐴√− (𝑒𝑑 − 1)

2

(−𝛽
2
+ 4𝛼𝛾)

(𝑒𝑑 + 1) 𝛾 (𝐴 + 𝑒𝜉𝑛)
,

(15)

where 𝜉
𝑛
= ((𝑒𝑑 − 1)(4𝛼𝛾 − 𝛽2)/(𝑒𝑑 + 1)𝛾)𝑡 + 𝑛𝑑 + 𝜉

0
.

3.2. Example 2: The Discrete Nonlinear Schrodinger Equation
with a Saturable Nonlinearity . If we take the transformation

𝜓
𝑛
= 𝑌 (𝜉

𝑛
) 𝑒
−𝑖(𝜎𝑡+𝜌)

, 𝜉
𝑛
= 𝑑𝑛 + 𝛽, (16)

where 𝑑, 𝜎, 𝛽, and 𝜌 are arbitrary constants to be determined
later.

The transformation (16) leads to write (2) into the follow-
ing form:

(𝜎 − 2) 𝑌 (𝜉
𝑛
) + 𝑌 (𝜉

𝑛
+ 𝑑) + 𝑌 (𝜉

𝑛
− 𝑑) +

𝜂𝑌3 (𝜉
𝑛
)

1 + 𝜇𝑌2 (𝜉
𝑛
)
= 0.

(17)

We suppose the solution of (17) takes the form

𝑌 (𝜉
𝑛
) = 𝑎
0
+ 𝑎
1
𝜑 (𝜉
𝑛
) , (18)

where 𝑎
0
and 𝑎
1
are arbitrary constants to be determined later

and 𝜑(𝜉
𝑛
) satisfies (9) and (10).

We substitute (18), (9), and (10) into (17) and collect all
terms with the same power in [𝜑(𝜉

𝑛
)]
𝑖

, (𝑖 = 0, 1, 2, . . .).
Setting each coefficient of this polynomial to zero, we derive
a set of algebraic equations for 𝑎

0
, 𝑎
1
, 𝑑, and 𝐶

1
. Solving the

set of algebraic equations by usingMaple orMathematica, we
have the following results:

𝑎
0
= ±

(𝑒𝛼 − 1)

√−𝜇 (𝑒𝛼 + 1)
, 𝑎

1
= ±

2𝐴 (1 − 𝑒𝛼)

√−𝜇 (𝑒𝛼 + 1)
,

𝜎 =
2(𝑒𝛼 − 1)

2

(𝑒𝛼 + 1)
2
, 𝜂 =

8𝑒𝛼𝜇

(𝑒𝛼 + 1)
2
,

(19)

where 𝛼, 𝜇, 𝐴, and 𝑑 are arbitrary constants. In this case the
exact wave solution of (2) takes the following form:

𝜓
𝑛
= (±

(𝑒𝛼 − 1)

√−𝜇 (𝑒𝛼 + 1)
±

2𝐴 (1 − 𝑒
𝛼)

√−𝜇 (𝑒𝛼 + 1)𝐴 + 𝑒𝜉𝑛
)

× 𝑒
−𝑖((2(𝑒

𝛼
−1)
2
/(𝑒
𝛼
+1)
2
)𝑡+𝜌)

,

(20)

where 𝜉
𝑛
= 𝑑𝑛 + 𝛽.

3.3. Example 3: The Quintic Discrete Nonlinear Schrodinger
Equation. In this subsection, we study the quintic discrete
nonlinear Schrodinger equation (3) by using the modified
truncated expansion method.

If we take the transformation

𝜓
𝑛
= 𝑌
𝑛
𝑒
𝑖𝜔𝑡
, (21)

where 𝜔 is arbitrary constant to be determined later.
The transformation (21) leads to write (3) into the follow-

ing form:

𝑌
𝑛+1
+ 𝑌
𝑛−1

=
(2𝛼 − 𝜔)𝑌

𝑛
− 𝛽𝑌3
𝑛

𝛼 + 𝛾𝑌2
𝑛
+ 𝛿𝑌4
𝑛

. (22)

If we suppose

𝑌
𝑛
= 𝑈 (𝜉

𝑛
) , 𝜉

𝑛
= 𝑑𝑛 + 𝑘. (23)
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Equation (23) leads to write (22) into the following form:

𝑈 (𝜉
𝑛
+ 𝑑) + 𝑈 (𝜉

𝑛
− 𝑑) =

(2𝛼 − 𝜔)𝑈 (𝜉
𝑛
) − 𝛽𝑈3 (𝜉

𝑛
)

𝛼 + 𝛾𝑈2 (𝜉
𝑛
) + 𝛿𝑈4 (𝜉

𝑛
)
.

(24)

We suppose that the solution of (24) takes the form

𝑈 (𝜉
𝑛
) = 𝑎
0
+ 𝑎
1
𝜑 (𝜉
𝑛
) , (25)

where 𝑎
0
and 𝑎

1
are arbitrary constants to be determined

later and 𝜑(𝜉
𝑛
) satisfies (9) and (10). We substitute (25), (9),

and (10) into (24) and collect all terms with the same power
in [𝜑(𝜉

𝑛
)]
𝑖, (𝑖 = 0, 1, 2, . . .). Setting each coefficient of this

polynomial to zero, we derive a set of algebraic equations for
𝑎
0
, 𝑎
1
, 𝑑, and 𝐶

1
. Solving the set of algebraic equations by

using Maple or Mathematica, we have the following results:

𝑎
0
= ±

1

4

√2√𝛿𝑒𝑑𝛽 (𝑒𝑑 − 1)

𝛿𝑒𝑑
,

𝑎
1
= ±

1

2

√2√𝛿𝑒𝑑𝛽 (𝑒𝑑 − 1)𝐴

𝛿𝑒𝑑
,

𝜔 = −
𝛽

32

[8𝛾𝑒𝑑(𝑒𝑑 − 1)
2

+ 𝛽((𝑒𝑑)
2

− 1)
2

]

𝛿(𝑒𝑑)
2

,

𝛼 = −
𝛽

64

(𝑒
𝑑 + 1)

2

(8𝛾𝑒𝑑 + 𝛽(𝑒𝑑 + 1)
2

)

𝛿(𝑒𝑑)
2

,

(26)

where 𝛽,𝐴, 𝑑, 𝛾, and 𝛿 are arbitrary constants. In this case the
solitary wave solution takes the following form:

𝑈 (𝜉
𝑛
) = ±

1

4

√2√𝛿𝑒𝑑𝛽 (𝑒𝑑 − 1)

𝛿𝑒𝑑
±
1

2

√2√𝛿𝑒𝑑𝛽 (𝑒𝑑 − 1)𝐴

𝛿𝑒𝑑 (𝐴 + 𝑒𝜉𝑛)
.

(27)

Consequently the exact solution of (3) is given by

𝜓
𝑛
= (±

1

4

√2√𝛿𝑒𝑑𝛽 (𝑒𝑑 − 1)

𝛿𝑒𝑑
±
1

2

√2√𝛿𝑒𝑑𝛽 (𝑒𝑑 − 1)𝐴

𝛿𝑒𝑑 (𝐴 + 𝑒𝜉𝑛)
)

× 𝑒
𝑖(−(𝛽/32)([8𝛾𝑒

𝑑
(𝑒
𝑑
−1)

2

+𝛽((𝑒
𝑑
)

2

−1)

2

]/𝛿(𝑒
𝑑
)

2

))𝑡
,

(28)

where 𝜉
𝑛
= 𝑛𝑑 + 𝑘.

3.4. Example 4: The Relativistic Toda Lattice System. In this
subsection, we use themodified truncated expansionmethod
to study the relativistic Toda lattice system (4). The traveling
wave variables 𝑢

𝑛
= 𝑈(𝜉

𝑛
), 𝑣
𝑛
= 𝑉(𝜉

𝑛
), and 𝜉

𝑛
= 𝐶
1
𝑡 + 𝑛𝑑+ 𝜉

0

permit us to reduce (4) to the following nonlinear difference
differential equations:

𝐶
1
𝑈
󸀠
(𝜉
𝑛
) − (1 + 𝛼𝑈 (𝜉

𝑛
))

× (𝑉 (𝜉
𝑛
) − 𝑉 (𝜉

𝑛
− 𝑑)) = 0,

𝐶
1
𝑉
󸀠
(𝜉
𝑛
) − 𝑉 (𝜉

𝑛
) (𝑈 (𝜉

𝑛
+ 𝑑) − 𝑈 (𝜉

𝑛
)

+𝛼𝑉 (𝜉
𝑛
+ 𝑑) − 𝛼𝑉 (𝜉

𝑛
− 𝑑)) = 0.

(29)

Considering the homogeneous balance between the highest
order derivatives and nonlinear terms in (30), we get 𝑘 = 1.
So we look for the solutions of (30) in the form

𝑈(𝜉
𝑛
) = 𝑎
0
+ 𝑎
1
𝜑 (𝜉
𝑛
) , 𝑉 (𝜉

𝑛
) = 𝑏
0
+ 𝑏
1
𝜑 (𝜉
𝑛
) , (30)

where 𝑎
0
, 𝑏
0
, 𝑎
1
, and 𝑏

1
are arbitrary constants to be deter-

mined later and 𝜑(𝜉
𝑛
) satisfies (9), and (10). We substitute

(31), (9) and (10) into (30) and collect all terms with the same
power in [𝜑(𝜉

𝑛
)]
𝑖, (𝑖 = 0, 1, 2, . . .). Setting each coefficient of

this polynomial to zero, we derive a set of algebraic equations
for 𝑎
0
, 𝑎
1
, 𝑑, and 𝐶

1
. Solving the set of algebraic equations by

using Maple or Mathematica, we have the following results:

𝑎
0
= −

(𝑒𝑑 − 1) + 𝛼𝐶
1

𝛼 (𝑒𝑑 − 1)
, 𝑎

1
= −𝐶
1
𝐴,

𝑏
0
=

𝐶
1

𝛼 (𝑒𝑑 − 1)
, 𝑏

1
=
𝐶
1
𝐴

𝛼
,

(31)

where 𝐴, 𝑑, 𝐶
1
, and 𝛼 are arbitrary constants. In this case the

solitary wave solutions take the following form:

𝑈 (𝜉
𝑛
) = −

𝑒𝑑 − 1 + 𝛼𝐶
1

𝛼 (𝑒𝑑 − 1)
+
−𝐶
1
𝐴

𝐴 + 𝑒𝜉𝑛
,

𝑉 (𝜉
𝑛
) =

𝐶
1

𝛼 (𝑒𝑑 − 1)
+

𝐶
1
𝐴

𝛼 (𝐴 + 𝑒𝜉𝑛)
,

(32)

where 𝜉
𝑛
= 𝐶
1
𝑡 + 𝑛𝑑 + 𝜉

0
.

4. Description of the Rational Solitary Wave
Functions Method

In this section, we would like to outline the algorithm for
using the rational solitary wave functions method to solve
nonlinear DDEs. Consider a given system of𝑀 polynomial
NDDEs:

Δ (𝑢
𝑛+𝑝
1

(𝑋) , . . . , 𝑢
𝑛+𝑝
𝑘

(𝑋) , 𝑢
󸀠

𝑛+𝑝
1

(𝑋) , . . . , 𝑢
󸀠

𝑛+𝑝
𝑘

(𝑋) , . . . ,

𝑢
(𝑟)

𝑛+𝑝
1

(𝑋) , . . . , 𝑢
(𝑟)

𝑛+𝑝
𝑘

(𝑋)) = 0,

(33)

where the dependent variable 𝑢 has 𝑀 components 𝑢
𝑖
, the

continuous variable 𝑥 has 𝑁 components 𝑥
𝑗
, the discrete

variable 𝑛 has 𝑄 components 𝑛
𝑖
, the 𝑘 shift vectors 𝑃

𝑠
∈ 𝑍𝑄,
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and 𝑢(𝑟) denotes the collection of mixed derivative terms of
order 𝑟.

The main steps of the algorithm for the rational solitary
wave functions method to solve nonlinear DDEs are outlined
as follows.

Step 1. We suppose the wave transformation in the following
form:

𝑢
𝑛+𝑝
𝑠

(𝑋) = 𝑈 (𝜉
𝑛+𝑝
𝑠

) , 𝜉
𝑛
=

𝑄

∑
𝑖=1

𝑑
𝑖
𝑛
𝑖
+

𝑚

∑
𝑗=1

𝑐
𝑗
𝑥
𝑗
+ 𝜉
0
,

𝑠 = 1, 2, . . . , 𝑘,

(34)

where the coefficients 𝑑
𝑖
(𝑖 = 1, . . . , 𝑄), 𝑐

𝑗
(𝑗 = 1, . . . , 𝑁) and

the phase 𝜉
0
are constants. The transformations (34) lead to

write (33) into the following form:

Δ (𝑈
𝑛+𝑝
1

(𝜉
𝑛
) , . . . , 𝑈

𝑛+𝑝
𝑘

(𝜉
𝑛
) , 𝑈
󸀠

𝑛+𝑝
1

(𝜉
𝑛
) , . . . ,

𝑈
󸀠

𝑛+𝑝
𝑘

(𝜉
𝑛
) , . . . , 𝑈

(𝑟)

𝑛+𝑝
1

(𝜉
𝑛
) , . . . , 𝑈

(𝑟)

𝑛+𝑝
𝑘

(𝜉
𝑛
)) = 0.

(35)

Step 2. We suppose the rational solitary wave series expan-
sion solutions of (35) in the following form:

𝑈 (𝜉
𝑛
) =

𝑁

∑
𝑖=0

𝑎
𝑖
[𝑔 (𝜉
𝑛
)]
𝑖

+

𝑁

∑
𝑗=1

𝑏
𝑗
[𝑔 (𝜉
𝑛
)]
𝑗−1

𝑓 (𝜉
𝑛
) , (36)

with

𝑓 (𝜉
𝑛
) =

1

𝐴 tanh (𝜉
𝑛
) + 𝐵 sec ℎ (𝜉

𝑛
)
,

𝑔 (𝜉
𝑛
) =

sec ℎ (𝜉
𝑛
)

𝐴 tanh (𝜉
𝑛
) + 𝐵 sec ℎ (𝜉

𝑛
)
,

(37)

which satisfy

𝑓
󸀠
(𝜉
𝑛
) = −𝐴𝑔

2
(𝜉
𝑛
) +

𝐵𝑔 (𝜉
𝑛
)

𝐴
[1 − 𝐵𝑔 (𝜉

𝑛
)] ,

𝑔
󸀠
(𝜉
𝑛
) = −𝐴𝑓 (𝜉

𝑛
) 𝑔 (𝜉
𝑛
) ,

𝑓
2
(𝜉
𝑛
) = 𝑔
2
(𝜉
𝑛
) +

1

𝐴2
[1 − 𝐵𝑔 (𝜉

𝑛
)]
2

,

𝑓 (𝜉
𝑛
± 𝜎
𝑠
)

= (𝐴
2
𝑓 (𝜎
𝑠
) 𝑓 (𝜉
𝑛
) ± [1 − 𝐵𝑔 (𝜉

𝑛
)] [1 − 𝐵𝑔 (𝜎

𝑠
)])

× (𝐴
2
𝑓 (𝜎
𝑠
) [1 − 𝐵𝑔 (𝜉

𝑛
)] ± 𝐴

2
𝑓 (𝜉
𝑛
) [1 − 𝐵𝑔 (𝜎

𝑠
)]

+𝐵𝐴
2
𝑔 (𝜉
𝑛
) 𝑔 (𝜎
𝑠
))
−1

,

𝑔 (𝜉
𝑛
± 𝜎
𝑠
)

= (𝑔 (𝜉
𝑛
) 𝑔 (𝜎
𝑠
)) (𝑓 (𝜎

𝑠
) [1 − 𝐵𝑔 (𝜉

𝑛
)] ± 𝑓 (𝜉

𝑛
)

× [1 − 𝐵𝑔 (𝜎
𝑠
)] + 𝐵𝑔 (𝜉

𝑛
) 𝑔 (𝜎
𝑠
))
−1

,

(38)

where 𝑎
𝑖
, 𝑏
𝑗
, 𝐴, and 𝐵 are arbitrary constants to be deter-

mined later and

𝜎
𝑠
= 𝑝
𝑠
1

𝑑
1
+ 𝑝
𝑠
2

𝑑
2
+ ⋅ ⋅ ⋅ + 𝑝

𝑠𝑄
𝑑
𝑄
. (39)

Also, we can assume that

𝑓 (𝜉
𝑛
) =

1

𝐴 tan (𝜉
𝑛
) + 𝐵 sec (𝜉

𝑛
)
,

𝑔 (𝜉
𝑛
) =

sec (𝜉
𝑛
)

𝐴 tan (𝜉
𝑛
) + 𝐵 sec (𝜉

𝑛
)
,

(40)

which satisfy

𝑓
󸀠
(𝜉
𝑛
) = −𝐴𝑔

2
(𝜉
𝑛
) −

𝐵𝑔 (𝜉
𝑛
)

𝐴
[1 − 𝐵𝑔 (𝜉

𝑛
)] ,

𝑔
󸀠
(𝜉
𝑛
) = −𝐴𝑓 (𝜉

𝑛
) 𝑔 (𝜉
𝑛
) ,

𝑓
2
(𝜉
𝑛
) = 𝑔
2
(𝜉
𝑛
) −

1

𝐴2
[1 − 𝐵𝑔 (𝜉

𝑛
)]
2

,

𝑓 (𝜉
𝑛
± 𝜎
𝑠
)

= (𝐴
2
𝑓 (𝜎
𝑠
) 𝑓 (𝜉
𝑛
) ∓ [1 − 𝐵𝑔 (𝜉

𝑛
)] [1 − 𝐵𝑔 (𝜎

𝑠
)])

× (𝐴
2
𝑓 (𝜎
𝑠
) [1 − 𝐵𝑔 (𝜉

𝑛
)] ± 𝐴

2
𝑓 (𝜉
𝑛
) [1 − 𝐵𝑔 (𝜎

𝑠
)]

+𝐵𝐴
2
𝑔 (𝜉
𝑛
) 𝑔 (𝜎
𝑠
))
−1

,

𝑔 (𝜉
𝑛
± 𝜎
𝑠
)

= (𝑔 (𝜉
𝑛
) 𝑔 (𝜎
𝑠
)) (𝑓 (𝜎

𝑠
) [1 − 𝐵𝑔 (𝜉

𝑛
)] ± 𝑓 (𝜉

𝑛
)

× [1 − 𝐵𝑔 (𝜎
𝑠
)] + 𝐵𝑔 (𝜉

𝑛
) 𝑔 (𝜎
𝑠
))
−1

.

(41)

Equations (38) and (40) can be written into unified form:

𝑓
󸀠
(𝜉
𝑛
) = −𝐴𝑔

2
(𝜉
𝑛
) + 𝜌

𝐵𝑔 (𝜉
𝑛
)

𝐴
[1 − 𝐵𝑔 (𝜉

𝑛
)] ,

𝑔
󸀠
(𝜉
𝑛
) = −𝐴𝑓 (𝜉

𝑛
) 𝑔 (𝜉
𝑛
) ,

𝑓
2
(𝜉
𝑛
) = 𝑔
2
(𝜉
𝑛
) + 𝜌

1

𝐴2
[1 − 𝐵𝑔 (𝜉

𝑛
)]
2

,

𝑓 (𝜉
𝑛
± 𝜎
𝑠
)

= (𝐴
2
𝑓 (𝜎
𝑠
) 𝑓 (𝜉
𝑛
) ± 𝜌 [1 − 𝐵𝑔 (𝜉

𝑛
)] [1 − 𝐵𝑔 (𝜎

𝑠
)])

× (𝐴
2
𝑓 (𝜎
𝑠
) [1 − 𝐵𝑔 (𝜉

𝑛
)] ± 𝐴

2
𝑓 (𝜉
𝑛
) [1 − 𝐵𝑔 (𝜎

𝑠
)]

+𝐵𝐴
2
𝑔 (𝜉
𝑛
) 𝑔 (𝜎
𝑠
))
−1

,

𝑔 (𝜉
𝑛
± 𝜎
𝑠
)

= (𝑔 (𝜉
𝑛
) 𝑔 (𝜎
𝑠
)) (𝑓 (𝜎

𝑠
) [1 − 𝐵𝑔 (𝜉

𝑛
)] ± 𝑓 (𝜉

𝑛
)

× [1 − 𝐵𝑔 (𝜎
𝑠
)] + 𝐵𝑔 (𝜉

𝑛
) 𝑔 (𝜎
𝑠
))
−1

,

(42)

where 𝜌 = ±1.
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Step 3. Determine the degree 𝑁 of (35) by balancing the
highest order nonlinear term(s) and the highest order deriva-
tives of 𝑈(𝜉

𝑛
) in (35).

Step 4. Substituting (36)–(41) and given the value of 𝑁
determined in Step 3 into (35) and collecting all terms with
the same degree of 𝑓(𝜉

𝑛
) and 𝑔(𝜉

𝑛
) together, the left-hand

side of (35) is converted into polynomial in 𝑓(𝜉
𝑛
) and 𝑔(𝜉

𝑛
).

Then setting each coefficient 𝑓𝑖(𝜉
𝑛
), 𝑔𝑗(𝜉

𝑛
) (𝑖 = 0, 1, 𝑗 =

0, 1, 2, . . .) of this polynomial to zero, we derive a set of
algebraic equations for 𝑎

𝑖
, 𝑏
𝑗
, 𝐶
𝑖
, 𝐴, 𝐵.

Step 5. Solving the overdetermined system of nonlinear
algebraic equations by using Maple or Mathematica soft-
ware package, we end up with explicit expressions for
𝑎
𝑖
, 𝑏
𝑗
, 𝐶
𝑖
, 𝐴, and 𝐵.

Step 6. Substituting 𝑎
𝑖
, 𝑏
𝑗
, 𝐶
𝑖
, 𝐴, and 𝐵 into (36) along with

(37) and (39), we can finally obtain the rational solitary wave
solutions for nonlinear difference differential equations (33).

5. Applications

In this section, we apply the proposed rational solitary wave
functions method to construct the rational solitary wave
solutions for some nonlinear DDEs via the discrete non-
linear Schrodinger equation with a saturable nonlinearity,
the quintic discrete nonlinear Schrodinger equation, and the
relativistic Toda lattice system, which are very important in
the mathematical physics and modern physics.

5.1. Example 1: The Discrete Nonlinear Schrodinger Equation
with a Saturable Nonlinearity. We suppose that the solution
of (17) takes the form

𝑈 (𝜉
𝑛
) = 𝑎
0
+ 𝑎
1
𝑓 (𝜉
𝑛
) + 𝑎
2
𝑔 (𝜉
𝑛
) , (43)

where 𝑎
0
, 𝑎
1
, and 𝑏

1
are arbitrary constants to be deter-

mined later. With the aid of Maple, we substitute (43),
(41) into (17) and collect all terms with the same power
in 𝑓𝑖(𝜉

𝑛
), 𝑔𝑗(𝜉

𝑛
) (𝑖 = 0, 1, 𝑗 = 0, 1, 2, . . .). Setting each

coefficient of these terms 𝑓𝑖(𝜉
𝑛
), 𝑔𝑗(𝜉

𝑛
) (𝑖 = 0, 1, 𝑗 =

0, 1, 2, . . .) to zero yields a set of algebraic equations which
have the following solutions.

Case 1 (𝜌 = 1).

𝑎
1
= ±𝐴√

−2

𝜂

sinh (𝑑/2)
cosh2 (𝑑/2)

,

𝑎
2
= ±√

−2 (𝐴2 + 𝐵2)

𝜂

sinh (𝑑/2)
cosh2 (𝑑/2)

,

𝜇 =
1

4
(1 + cosh (𝑑)) 𝜂,

𝜎 =
2 (cosh (𝑑) − 1)
1 + cos (𝑑)

, 𝑎
0
= 0,

(44)

where 𝐴, 𝐵, and 𝜂 are arbitrary constants and 𝜂 < 0. In this
case the rational hyperbolic solitary wave solution of (17)
takes the following form:

𝑈(𝜉
𝑛
) = ± 𝐴√

−2

𝜂

sinh (𝑑/2)
cosh2 (𝑑/2) [𝐴 tanh (𝜉

𝑛
) + 𝐵 sech (𝜉

𝑛
)]

± √
−2 (𝐴2 + 𝐵2)

𝜂

sinh (𝑑/2) sech (𝜉
𝑛
)

[𝐴 tanh (𝜉
𝑛
) + 𝐵 sech (𝜉

𝑛
)]
.

(45)

Consequently the rational hyperbolic solitary wave solu-
tion of (2) has the following form:

𝜓
𝑛
=
[
[

[

= ±𝐴√
−2

𝜂

sinh (𝑑/2)
cosh2 (𝑑/2) [𝐴 tanh (𝜉

𝑛
) + 𝐵 sech (𝜉

𝑛
)]

±√
−2 (𝐴2 + 𝐵2)

𝜂

sinh (𝑑/2) sech (𝜉
𝑛
)

[𝐴 tanh (𝜉
𝑛
) + 𝐵 sech (𝜉

𝑛
)]

]
]

]

× 𝑒
−𝑖((2(cosh(𝑑)−1)/(1+cos(𝑑)))𝑡+𝜌)

,

(46)

where 𝜉
𝑛
= 𝑛𝑑 + 𝛽.

Case 2 (𝜌 = −1).

𝑎
1
= ±𝐴√

−2

𝜂

sin (𝑑/2)
cos2 (𝑑/2)

,

𝑎
2
= ±√

−2 (𝐴2 − 𝐵2)

𝜂

sin (𝑑/2)
cos2 (𝑑/2)

,

𝜇 =
1

4
(cos (𝑑) + 1) 𝜂,

𝜎 =
2 (−1 + 2 cos (𝑑))

cos (𝑑) + 1
, 𝑎

0
= 0,

(47)

where 𝐴, 𝐵, and 𝜂 are arbitrary constants and 𝜂 < 0. In this
case the rational trigonometric solitary wave solution of (17)
takes the following form:

𝑈(𝜉
𝑛
) = ± 𝐴√

−2

𝜂

sin (𝑑/2)
cos2 (𝑑/2) [𝐴 tan (𝜉

𝑛
) + 𝐵 sec (𝜉

𝑛
)]

± √
−2 (𝐴2 − 𝐵2)

𝜂

×
sin (𝑑/2) sec (𝜉

𝑛
)

cos2 (𝑑/2) [𝐴 tan (𝜉
𝑛
) + 𝐵 sec (𝜉

𝑛
)]
.

(48)
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Consequently the rational trigonometric solitary wave solu-
tion of (2) has the following form:

𝜓
𝑛
= [±𝐴√

−2

𝜂

sin (𝑑/2)
cos2 (𝑑/2) [𝐴 tan (𝜉

𝑛
) + 𝐵 sec (𝜉

𝑛
)]

± √
−2 (𝐴2 − 𝐵2)

𝜂

×
sin (𝑑/2) sec (𝜉

𝑛
)

cos2 (𝑑/2) [𝐴 tan (𝜉
𝑛
) + 𝐵 sec (𝜉

𝑛
)]
]

× 𝑒
−𝑖((2(−1+2 cos(𝑑))/(cos(𝑑)+1))𝑡+𝜌)

,

(49)

where 𝜉
𝑛
= 𝑛𝑑 + 𝛽.

5.2. Example 2: The Quintic Discrete Nonlinear Schrodinger
Equation. In this subsection, we study the quintic discrete
nonlinear Schrodinger equation (3) by using the rational
solitary wave functions method.

We suppose that the solution of (24) takes the form

𝑈 (𝜉
𝑛
) = 𝑎
0
+ 𝑎
1
𝑓 (𝜉
𝑛
) + 𝑎
2
𝑔 (𝜉
𝑛
) , (50)

where 𝑎
0
, 𝑎
1
, and 𝑏

1
are arbitrary constants to be deter-

mined later. With the aid of Maple, we substitute (50) and
(41) into (24), collect all terms with the same power in
𝑓
𝑖(𝜉
𝑛
), 𝑔𝑗(𝜉

𝑛
) (𝑖 = 0, 1, 𝑗 = 0, 1, 2, . . .), and setting each

coefficient of these terms 𝑓𝑖(𝜉
𝑛
), 𝑔𝑗(𝜉

𝑛
) (𝑖 = 0, 1, 𝑗 =

0, 1, 2, . . .) to zero yields a set of algebraic equations which
have the following solutions.

Case 1 (𝜌 = 1).

𝑎
1
= ±

1

4
((√2√𝛿𝛽 (cos ℎ (𝑑) + sin ℎ (𝑑))

× (cos ℎ (𝑑) + sin ℎ (𝑑) − 1)𝐴)

× (𝛿 (cos ℎ (𝑑) + sin ℎ (𝑑)))−1) ,

𝑎
2
= ±

1

4
((√2√𝛿𝛽 (𝐴2 + 𝐵2) (cos ℎ (𝑑) + sin ℎ (𝑑))

× (cos ℎ (𝑑) + sin ℎ (𝑑) − 1) )

× (𝛿 (cos ℎ (𝑑) + sin ℎ (𝑑)))−1) ,

𝛼 =
−1

16

[4𝛾 (cos ℎ (𝑑) + 1)+𝛽 (1+2 cosh (𝑑) + cosh2 (𝑑))]
cosh (𝑑) − 1

,

𝜔 =
−1

8

𝛽 [4𝛾 (cos ℎ (𝑑) − 1) + 𝛽 (cosh2 (𝑑) − 1)]
𝛿

,

𝑎
0
= 0,

(51)

where 𝐴, 𝐵, 𝛽, 𝛾, and 𝛿 are arbitrary constants. In this case
the rational hyperbolic solitary wave solution of (24) takes
the following form:

𝑈(𝜉
𝑛
) = ±

1

4
((√2√𝛿𝛽 (cos ℎ (𝑑) + sin ℎ (𝑑))

× (cos ℎ (𝑑) + sin ℎ (𝑑) − 1)𝐴)

× (𝛿 (cos ℎ (𝑑) + sin ℎ (𝑑))

× (𝐴 tanh (𝜉
𝑛
) + 𝐵 sech (𝜉

𝑛
)))
−1

)

±
1

4
((√2√𝛿𝛽 (𝐴2 + 𝐵2) (cos ℎ (𝑑) + sin ℎ (𝑑))

× (cos ℎ (𝑑) + sin ℎ (𝑑) − 1) sech (𝜉
𝑛
) )

× (𝛿 (cos ℎ (𝑑) + sin ℎ (𝑑))

× [𝐴 tanh (𝜉
𝑛
) + 𝐵 sech (𝜉

𝑛
)])
−1

) .

(52)

Consequently the rational hyperbolic solitary wave solution
of (3) has the following form:

𝜓
𝑛
= [±

1

4
((√2√𝛿𝛽 (cos ℎ (𝑑) + sin ℎ (𝑑))

× (cos ℎ (𝑑) + sin ℎ (𝑑) − 1)𝐴)

× (𝛿 (cos ℎ (𝑑) + sin ℎ (𝑑))

× (𝐴 tanh (𝜉
𝑛
) + 𝐵 sech (𝜉

𝑛
)))
−1

)

±
1

4
((√2√𝛿𝛽 (𝐴2 + 𝐵2) (cos ℎ (𝑑) + sin ℎ (𝑑))

× (cos ℎ (𝑑) + sin ℎ (𝑑) − 1) sech (𝜉
𝑛
) )

× (𝛿 (cos ℎ (𝑑) + sin ℎ (𝑑))

× [𝐴 tanh (𝜉
𝑛
) + 𝐵 sech (𝜉

𝑛
)])
−1

) ]

× 𝑒
𝑖((−1/8)(𝛽[4𝛾(cos ℎ(𝑑)−1)+𝛽(cosh2(𝑑)−1)]/𝛿))𝑡

,

(53)

where 𝜉
𝑛
= 𝑛𝑑 + 𝑘.

Case 2 (𝜌 = −1).

𝑎
1
= ±

1

2

√−𝛿𝛽 (cos (𝑑) − 1)𝐴
𝛿

,

𝑎
2
= ±

1

2

√𝛿𝛽 (𝐴2 − 𝐵2) (1 − cos (𝑑))
𝛿

,
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𝑎
0
= 0,

𝛼 =
−1

16

𝛽 [(cos (𝑑) + 1) (4𝛾 + 2𝛽) − 𝛽 sin2 (𝑑)]
𝛿

,

𝜔 =
−1

8

𝛽 [4𝛾 (cos (𝑑) − 1) − 𝛽 sin2 (𝑑)]
𝛿

,

(54)

where 𝐴, 𝐵, 𝛽, 𝛾, and 𝛿 are arbitrary constants. In this case
the rational trigonometric solitary wave solution of (24) takes
the following form:

𝑈(𝜉
𝑛
) = ±

1

2

√−𝛿𝛽 (cos (𝑑) − 1)𝐴
𝛿 (𝐴 tan (𝜉

𝑛
) + 𝐵 sec (𝜉

𝑛
))

±
1

2

√𝛿𝛽 (𝐴2 − 𝐵2) (1 − cos (𝑑))sec (𝜉
𝑛
)

𝛿 [𝐴 tan (𝜉
𝑛
) + 𝐵 sec (𝜉

𝑛
)]

.

(55)

Consequently the rational trigonometric solitary wave solu-
tion of (3) has the following form:

𝜓
𝑛
= ( ±

1

2

√−𝛿𝛽 (cos (𝑑) − 1)𝐴
𝛿 (𝐴 tan (𝜉

𝑛
) + 𝐵 sec (𝜉

𝑛
))

±
1

2

√𝛿𝛽 (𝐴2 − 𝐵2) (1 − cos (𝑑))sec (𝜉
𝑛
)

𝛿 [𝐴 tan (𝜉
𝑛
) + 𝐵 sec (𝜉

𝑛
)]

)

×𝑒𝑖((−1/8)(𝛽[4𝛾(cos(𝑑)−1)−𝛽 sin
2
(𝑑)]/𝛿))𝑡,

(56)

where 𝜉
𝑛
= 𝑛𝑑 + 𝑘.

5.3. Example 3: The Relativistic Toda Lattice System. In this
subsection, we study the relativistic Toda lattice system (4)
by using the rational solitary wave functions method.

If we take the transformation

𝑣
𝑛
= −

1

𝛼
𝑢
𝑛
−
1

𝛼2
, (57)

the transformation (57) reduced the relativistic Toda lattice
system (4) into the following difference differential equation:

𝑢
𝑛
𝑡

= (𝑢
𝑛
+
1

𝛼
) (𝑢
𝑛−1
− 𝑢
𝑛
) . (58)

According to the main steps of rational solitary wave func-
tions method, we seek traveling wave solutions of (58) in the
following form:

𝑢
𝑛
(𝑡) = 𝑈 (𝜉

𝑛
) , 𝜉

𝑛
= 𝐶
1
𝑡 + 𝑛𝑑 + 𝜉

0
, (59)

where 𝑑, 𝐶
1
, and 𝜉

0
are constants. The transformation (59)

permits us converting (58) into the following form:

𝐶
1
𝑈
󸀠
(𝜉
𝑛
) = (𝑈 (𝜉

𝑛
) +

1

𝛼
) [𝑈 (𝜉

𝑛
− 𝑑) − 𝑈 (𝜉

𝑛
)] . (60)

Considering the homogeneous balance between the highest
order derivatives and nonlinear terms in (60), we get𝑁 = 1.
Thus, the solution of (60) has the following form:

𝑈(𝜉
𝑛
) = 𝑎
0
+ 𝑎
1
𝑓 (𝜉
𝑛
) + 𝑎
2
𝑔 (𝜉
𝑛
) , (61)

where 𝑎
0
, 𝑏
0
, 𝑎
1
, and 𝑏

1
are arbitrary constants to be deter-

mined later. With the aid of Maple, we substitute (61) and
(41) into (60) and collect all terms with the same power
in 𝑓𝑖(𝜉

𝑛
), 𝑔
𝑗
(𝜉
𝑛
) (𝑖 = 0, 1, 𝑗 = 0, 1, 2, . . .). Setting each

coefficient of these terms 𝑓𝑖(𝜉
𝑛
), 𝑔
𝑗
(𝜉
𝑛
) (𝑖 = 0, 1, 𝑗 =

0, 1, 2, . . .) to be zero yields a set of algebraic equations which
have the following solutions.

Case 1 (𝜌 = 1).

𝑎
0
=

1

𝛼 (𝑒𝑑 − 1)
[
±𝛼𝑎
2
(𝑒𝑑 + 1)

√𝐴2 + 𝐵2
+ (1 − 𝑒

𝑑
)] ,

𝑎
1
=

±𝐴𝑎
2

√𝐴2 + 𝐵2
, 𝐶

1
=

±2𝑎
2

√𝐴2 + 𝐵2
,

(62)

where 𝐴, 𝐵, 𝑎
2
, and 𝛼 are arbitrary constants. In this case

the rational hyperbolic solitary wave solution of (58) has the
following form:

𝑈 (𝜉
𝑛
) =

1

𝛼 (𝑒𝑑 − 1)
[
±𝛼𝑎
2
(𝑒𝑑 + 1)

√𝐴2 + 𝐵2
+ (1 − 𝑒

𝑑
)]

±
𝐴𝑎
2

√𝐴2 + 𝐵2 [𝐴 tanh (𝜉
𝑛
) + 𝐵 sech (𝜉

𝑛
)]

+
𝑎
2
sech (𝜉

𝑛
)

[𝐴 tanh (𝜉
𝑛
) + 𝐵 sech (𝜉

𝑛
)]
,

(63)

where

𝜉
𝑛
= ±

2𝑎
2

√𝐴2 + 𝐵2
𝑡 + 𝑛𝑑 + 𝜉

0
. (64)

Case 2 (𝜌 = −1).

𝑎
0
=

1

𝛼 sin (𝑑)
[
±𝛼𝑎
2
(cos (𝑑) + 1)
√𝐴2 − 𝐵2

+ sin (𝑑)] ,

𝑎
1
=

±𝐴𝑎
2

√𝐴2 − 𝐵2
, 𝐶

1
=

±2𝑎
2

√𝐴2 − 𝐵2
.

(65)

In this case the rational trigonometric solitary wave solution
of (58) has the following form:

𝑈(𝜉
𝑛
) =

1

𝛼 sin (𝑑)
[
±𝛼𝑎
2
(cos (𝑑) + 1)
√𝐴2 − 𝐵2

+ sin (𝑑)]

±
𝐴𝑎
2

√𝐴2 − 𝐵2 [𝐴 tan (𝜉
𝑛
) + 𝐵 sec (𝜉

𝑛
)]

+
𝑎
2
sec (𝜉
𝑛
)

[𝐴 tan (𝜉
𝑛
) + 𝐵 sec (𝜉

𝑛
)]
,

(66)

where

𝜉
𝑛
= ±

2𝑎
2

√𝐴2 − 𝐵2
𝑡 + 𝑛𝑑 + 𝜉

0
. (67)
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6. Discussion

Whenwe compare between the results which obtained in this
paper and other exact solutions we get the following.

The solutions obtained in the modified truncated expan-
sion functionsmethod are equivalent to the solution obtained
by the exp-functions method, but the modified truncated
expansion is simple and allowed us to solvemore complicated
nonlinear difference differential equations such as the dis-
crete nonlinear Schrodinger equation with a saturable non-
linearity, the quintic discrete nonlinear Schrodinger equa-
tion, and the relativistic Toda lattice system. For example, the
solution (15) equivalent is to the solution (40) in [20].

In the special case when 𝐵 = 0 in the rational solitary
wave function method, we get this method which is equiv-
alent to the tanh-function method which discussed in [29].
The rational solitary wave functionmethod is extended to the
new rational formal solution which is discussed by [30] when
𝑏
𝑗
= 0 in (36).

Remarks. These methods which are discussed in this paper
allowed us to obtain some new rational solitary wave solu-
tions for some complicated nonlinear differential difference
equations.

These methods prefer to another methods to convert
the complicated rational methods into a direct nonrational
method.

7. Conclusions

In this paper, we use the modified truncated expansion
method to obtain the exact solutions for some nonlinear
differential difference equations in the mathematical physics.
Also, we calculate the rational solitary wave solutions for the
nonlinear differential difference equations. As a result, many
new and more rational solitary wave solutions are obtained,
from the hyperbolic function solutions and trigonometric
function.
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