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Via the Fountain theorem, we obtain the existence of infinitely many solutions of the following superlinear elliptic boundary value
problem: −Δ𝑢 = 𝑓(𝑥, 𝑢) in Ω, 𝑢 = 0 on 𝜕Ω, where Ω ⊂ R𝑁

(𝑁 > 2) is a bounded domain with smooth boundary and f is odd in
u and continuous. There is no assumption near zero on the behavior of the nonlinearity f, and f does not satisfy the Ambrosetti-
Rabinowitz type technical condition near infinity.

1. Introduction

Consider the following nonlinear problem:

−Δ𝑢 = 𝑓 (𝑥, 𝑢) in Ω,

𝑢 = 0 on 𝜕Ω,
(1)

which has been receiving much attention during the last sev-
eral decades. Here Ω ⊂ R𝑁

(𝑁 > 2) is a bounded smooth
domain and 𝑓 is a continuous function on Ω × 𝑅 and odd in
𝑢. We make the following assumptions on 𝑓:

(𝑆

1
) there exist constants 𝑎

1
> 0 and 2𝑁/(𝑁 − 2) = 2∗ >

] > 2 such that
󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑢)

󵄨

󵄨

󵄨

󵄨

≤ 𝑎

1
(1 + |𝑢|

]−1
) , ∀𝑥 ∈ Ω, 𝑢 ∈ 𝑅; (2)

(𝑆

2
) 𝐹(𝑥, 𝑢) ≥ 0, for all (𝑥, 𝑢) ∈ Ω × 𝑅, and

lim
|𝑢|→∞

𝐹 (𝑥, 𝑢)

𝑢

2
= ∞, uniformly for 𝑥 ∈ Ω, (3)

where 𝐹(𝑥, 𝑢) = ∫𝑢
0
𝑓(𝑥, 𝑢)𝑑𝑥;

(𝑆

3
) there exists a constant 𝑏 > 0 such that

lim sup
|𝑢|→∞

𝑓 (𝑥, 𝑢) 𝑢 − 2𝐹(𝑥, 𝑢)

𝑢

2
+ 1

< 𝑏, uniformly for 𝑥 ∈ Ω.

(4)

Note that Costa and Magalhães in [1] introduced a
condition similar to (𝑆

3
), which also appeared in [2].

In this paper, wewill study the existence of infinitelymany
nontrivial solutions of (1) via a variant of Fountain theorems
established by Zou in [3]. Fountain theorems and their dual
form were established by Bartsch in [4] and by Bartsch and
Willem in [5], respectively. They are effective tools for stud-
ying the existence of infinitely many large or small energy
solutions. It should be noted that the P.S. condition and its
variants play an important role for these theorems and their
applications.

We state our main result as follows.

Theorem 1. Assume that (𝑆
1
)–(𝑆

3
) hold and 𝑓(𝑥, 𝑢) is odd in

𝑢. Then problem (1) possesses infinitely many solutions.

Problem (1) was studied widely under various conditions
on 𝑓(𝑥, 𝑢); see, for example, [6–10]. In 2007, Rabinowitz et al.
[6] studied the problem

−Δ𝑢 = 𝜆𝑢 + 𝑓 (𝑥, 𝑢) in Ω, 𝑢 = 0 on 𝜕Ω, (5)

whereΩ ⊂ 𝑅𝑁 is a bounded smooth domain, and assumed
(𝑓

1
) 𝑓 ∈ 𝐶

1
(Ω × 𝑅, 𝑅),

(𝑓

2
) 𝑓(𝑥, 0) = 0 = 𝑓

𝑢
(𝑥, 0),

(𝑓

3
) |𝑓(𝑥, 𝑢)| ≤ 𝐶(1 + |𝑢|

𝑝−1
), 2 < 𝑝 < 2

∗,
(𝑓

4
) ∃𝜇 > 2, 𝑀 > 0, s.t.

𝑥 ∈ Ω, |𝑢| ≥ 𝑀 󳨐⇒ 0 < 𝜇𝐹 (𝑥, 𝑢) ≤ 𝑢𝑓 (𝑥, 𝑢) , (6)
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(𝑓

5
) 𝐹(𝑥, 𝑢) ≥ 0, for all 𝑥 and 𝑢, and 𝑢𝑓(𝑥, 𝑢) > 0 for |𝑢| >
0 small.

They got the existence of at least three nontrivial solu-
tions. (𝑓

4
) was given by Ambrosetti and Rabinowitz [11] to

ensure that some compactness and theMountain Pass setting
hold.

However, there are many functions which are superlinear
but do not necessarily need to satisfy (𝑓

4
). For example,

𝐹 (𝑥, 𝑢) =

1

2

𝑢

2 ln (1 + 𝑢) − 1
2

(

𝑢

2

2

− 𝑢 + ln (1 + 𝑢)) . (7)

It is easy to check that (𝑓
4
) does not hold. On the other

hand, in order to verify (𝑓
4
), it is usually an annoying task

to compute the primitive function of 𝑓 and sometimes it is
almost impossible, for example,

𝑓 (𝑥, 𝑢) = |𝑢| 𝑢 (1 + 𝑒

(1+|sin 𝑢|)𝛼
+ |cos 𝑢|𝛼) , 𝑢 ∈ 𝑅, 𝛼 > 0.

(8)

More examples are presented in Remark 2.
We recall that (𝑓

4
) implies a weaker condition

𝐹 (𝑥, 𝑢) ≥ 𝑐|𝑢|

𝜃
−𝑑, 𝑐, 𝑑 > 0, a.e. 𝑥 ∈ Ω, 𝑢 ∈ 𝑅, 𝜃>2.

(9)

In [12], Willem and Zou gave one weaker condition

𝑐|𝑢|

𝜃
≤ 𝑢𝑓 (𝑥, 𝑢) for |𝑢| ≥ 𝑅0, a.e. 𝑥 ∈ Ω, 𝜃 > 2. (10)

Note that (𝑆
2
) is much weaker than the above conditions.

In [13], Schechter and Zou proved that under the hypoth-
eses that

(𝑆

1
) holds and

either lim
𝑢→−∞

𝐹 (𝑥, 𝑢)

𝑢

2
= +∞ or lim

𝑢→∞

𝐹 (𝑥, 𝑢)

𝑢

2
= +∞,

(11)

problem (1) has a nontrivial weak solution.
Recently, Miyagaki and Souto in [2] proved that problem

(1) has a nontrivial solution via the Mountain Pass theorem
under the following conditions:

(𝑆

1
) and (𝑆

2
) hold, and

lim
|𝑢|→0

𝑓 (𝑥, 𝑢)

𝑢

= 0, ∃ 𝑢

0
> 0,

s.t.
𝑓 (𝑥, 𝑢)

𝑢

is increasing in 𝑢 ≥ 𝑢
0

and decreasing in 𝑢 ≤ −𝑢
0
, ∀𝑥 ∈ Ω,

(12)

and they adapted some monotonicity arguments used by
Schechter and Zou [13]. This approach is interesting, but
many powerful variational tools such as the Fountain theo-
rem andMorse theory are not directly applicable. In addition,
the monotonicity assumption on 𝐹(𝑥, 𝑢)/𝑢2 is weaker than
the monotonicity assumption on 𝑓(𝑥, 𝑢)/𝑢.

As to the case in the current paper, we make some
concluding remarks as follows.

Remark 2. To show that our assumptions (𝑆
2
) and (𝑆

3
) are

weaker than (𝑓
4
), we give two examples:

(1) 𝑓(𝑥, 𝑢) = 2𝑢 ln 𝑢 + 𝑢,
(2) 𝑓(𝑥, 𝑢) = 𝛾|𝑢|𝛾−2𝑢+(𝛾−1)|𝑢|𝛾−3𝑢 sin2𝑢+|𝑢|𝛾−1 sin 2𝑢,
𝑢 ∈ 𝑅 \ {0}, 𝛾 > 2,

which do not satisfy (𝑓
4
). Example (2) can be found in [3].

So the case considered here cannot be covered by the cases
mentioned in [6, 11].

Remark 3. Compared with papers [11, 12], we do not assume
any superlinear conditions near zero. Compared with paper
[2], we do not impose any kind of monotonic conditions. In
addition, although we do not assume (𝑓

4
) holds, we are able

to check the boundedness of P.S. (or P.S.∗) sequences. So, our
result is different from those in the literature.

Our argument is variational and close to that in [2, 3,
13, 14]. The paper is arranged as follows. In Section 2 we
formulate the variational setting and recall some critical point
theorems required. We then in Section 3 complete the proof
of Theorem 1.

2. Variational Setting

In this section, we will first recall some related preliminar-
ies and establish the variational setting for our problem.
Throughout this paper, we work on the space 𝐸 = 𝐻1

0
(Ω)

equipped with the norm

‖𝑢‖ = (∫

Ω

|∇𝑢|

2
𝑑𝑥)

1/2

.

(13)

Lemma 4. 𝐸 embeds continuously into 𝐿𝑝, for all 0 < 𝑝 ≤ 2∗,
and compactly into 𝐿𝑝, for all 1 ≤ 𝑝 < 2∗; hence there exists
𝜏

𝑝
> 0 such that

|𝑢|𝑝
≤ 𝜏

𝑝 ‖
𝑢‖ , ∀𝑢 ∈ 𝐸, (14)

where |𝑢|
𝑝
= (∫

Ω
|𝑢|

𝑝
𝑑𝑥)

1/𝑝.

Define the Euler-Lagrange functional associated to prob-
lem (1), given by

𝐼 (𝑢) =

1

2

‖𝑢‖

2
− Ψ (𝑢) , 𝑢 ∈ 𝐸,

(15)

where Ψ(𝑢) = ∫
Ω
𝐹(𝑥, 𝑢)𝑑𝑥. Note that (𝑆

1
) implies that

𝐹 (𝑥, 𝑢) ≤ 𝑎1
(|𝑢| + |𝑢|

]
) , ∀ (𝑥, 𝑢) ∈ Ω × 𝑅. (16)

In view of (16) and Sobolev embedding theorem, 𝐼
𝜇
and

Ψ are well defined. Furthermore, we have the following.

Lemma 5 (see [15] or [16]). Suppose that (𝑆
1
) is satisfied.Then

Ψ ∈ 𝐶

1
(𝐸, 𝑅) and Ψ󸀠

: 𝐸 → 𝐸

∗ is compact and hence 𝐼 ∈
𝐶

1
(𝐸, 𝑅). Moreover

Ψ

󸀠
(𝑢) V = ∫

Ω

𝑓 (𝑥, 𝑢) V 𝑑𝑥,

𝐼

󸀠
(𝑢) V = ∫

Ω

∇𝑢∇V 𝑑𝑥 − Ψ
󸀠
(𝑢)V,

(17)

for all 𝑢, V ∈ 𝐸, and critical points of 𝐼 on 𝐸 are solutions of (1).
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Lemma 6 (see [17]). Assume that |Ω| < ∞, 1 ≤ 𝑝, 𝑟 ≤
∞, 𝑓 ∈ 𝐶(Ω×𝑅), and |𝑓(𝑥, 𝑢)| ≤ 𝑐(1+|𝑢|𝑝/𝑟). Then for every
𝑢 ∈ 𝐿

𝑝
(Ω), 𝑓(𝑥, 𝑢) ∈ 𝐿

𝑟
(Ω), and the operator 𝐴 : 𝐿𝑝(Ω) 󳨃→

𝐿

𝑟
(Ω) : 𝑢 󳨃→ 𝑓(𝑥, 𝑢) is continuous.

Let 𝐸 be a Banach space equipped with the norm ‖ ⋅ ‖
and 𝐸 = ⨁

𝑗∈𝑁
𝑋

𝑗
, where dim𝑋

𝑗
< ∞ for any 𝑗 ∈ 𝑁. Set

𝑌

𝑘
= ⨁

𝑘

𝑗=1
𝑋

𝑗
and 𝑍

𝑘
= ⨁

∞

𝑗=𝑘
𝑋

𝑗
. Consider the following 𝐶1

functionalΦ
𝜆
: 𝐸 → 𝑅 defined by

Φ

𝜆 (
𝑢) := 𝐴 (𝑢) − 𝜆𝐵 (𝑢) , 𝜆 ∈ [1, 2] . (18)

The following variant of the Fountain theorems was estab-
lished in [3].

Theorem 7 (see [3,Theorem 2.1]). Assume that the functional
Φ

𝜆
defined above satisfies the following:
(𝐹

1
) Φ

𝜆
maps bounded sets to bounded sets uniformly for

𝜆 ∈ [1, 2]; furthermore, Φ
𝜆
(−𝑢) = Φ

𝜆
(𝑢) for all

(𝜆, 𝑢) ∈ [1, 2] × 𝐸;
(𝐹

2
) 𝐵(𝑢) ≥ 0 for all 𝑢 ∈ 𝐸; moreover, 𝐴(𝑢) → ∞ or
𝐵(𝑢) → ∞ as ‖𝑢‖ → ∞;

(𝐹

3
) there exists 𝑟

𝑘
> 𝜌

𝑘
> 0 such that

𝛼

𝑘 (
𝜆) := inf

𝑢∈𝑍
𝑘
, ‖𝑢‖=𝜌

𝑘

Φ

𝜆 (
𝑢) > 𝛽𝑘 (

𝜆)

:= max
𝑢∈𝑌
𝑘
, ‖𝑢‖=𝑟

𝑘

Φ

𝜆 (
𝑢) , ∀𝜆 ∈ [1, 2] .

(19)

Then
𝛼

𝑘 (
𝜆) ≤ 𝜁𝑘 (

𝜆) := inf
𝛾∈Γ
𝑘

max
𝑢∈𝐵
𝑘

Φ

𝜆
(𝛾 (𝑢)) , ∀𝜆 ∈ [1, 2] , (20)

where 𝐵
𝑘
= {𝑢 ∈ 𝑌

𝑘
: ‖𝑢‖ ≤ 𝑟

𝑘
} and Γ

𝑘
:= {𝛾 ∈

𝐶(𝐵

𝑘
, 𝐸) | 𝛾 is odd, 𝛾|

𝜕𝐵
𝑘

= 𝑖𝑑}. Moreover, for a.e.
𝜆 ∈ [1, 2], there exists a sequence {𝑢𝑘

𝑚
(𝜆)}

∞

𝑚=1
such that

sup
𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

𝑘

𝑚
(𝜆)

󵄩

󵄩

󵄩

󵄩

󵄩

< ∞, Φ

󸀠

𝜆
(𝑢

𝑘

𝑚
(𝜆)) 󳨀→ 0,

Φ

𝜆
(𝑢

𝑘

𝑚
(𝜆)) 󳨀→ 𝜁𝑘 (

𝜆) as m 󳨀→ ∞.
(21)

In order to apply the above theorem to prove our main
results, we define the functionals𝐴, 𝐵, and 𝐼

𝜆
on our working

space 𝐸 by

𝐴 (𝑢) =

1

2

‖𝑢‖

2
, 𝐵 (𝑢) = ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥, (22)

𝐼

𝜆 (
𝑢) = 𝐴 (𝑢) − 𝜆𝐵 (𝑢) =

1

2

‖𝑢‖

2
− 𝜆∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥, (23)

for all 𝑢 ∈ 𝐸 and 𝜆 ∈ [1, 2]. Note that 𝐼
1
= 𝐼, where 𝐼 is the

functional defined in (15).
From Lemma 5, we know that 𝐼

𝜆
∈ 𝐶

1
(𝐸, 𝑅), for all

𝜆 ∈ [1, 2]. It is known that −Δ is a selfadjoint operator with a
sequence of eigenvalues (counted with multiplicity)

0 < 𝜆

1
< 𝜆

2
≤ 𝜆

3
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑗
≤ ⋅ ⋅ ⋅ 󳨀→ ∞, (24)

and the corresponding system of eigenfunctions {𝑒
𝑗
: 𝑗 ∈

𝑁}(−Δ𝑒

𝑗
= 𝜆

𝑗
𝑒

𝑗
) forming an orthogonal basis in 𝐸. Let

𝑋

𝑗
= span{𝑒

𝑗
}, for all 𝑗 ∈ 𝑁.

3. Proof of Theorem 1

Lemma 8. Assume that (𝑆
1
)-(𝑆

2
) hold. Then there exists a

positive integer 𝑘
1
and two sequences 𝑟

𝑘
> 𝜌

𝑘
→ ∞ as

𝑘 → ∞ such that

𝛼

𝑘 (
𝜆) := inf

𝑢∈𝑍
𝑘
,‖𝑢‖=𝜌

𝑘

𝐼

𝜆 (
𝑢) > 0, ∀𝑘 ≥ 𝑘1

, (25)

𝛽

𝑘 (
𝜆) := max

𝑢∈𝑌
𝑘
,‖𝑢‖=𝑟

𝑘

𝐼

𝜆 (
𝑢) < 0, ∀𝑘 ∈ 𝑁, (26)

where 𝑌
𝑘
= ⨁

𝑘

𝑗=1
𝑋

𝑗
= span{𝑒

1
, . . . , 𝑒

𝑘
} and 𝑍

𝑘
= ⨁

∞

𝑗=𝑘
𝑋

𝑗
=

span{𝑒
𝑘
, . . .}, for all 𝑘 ∈ 𝑁.

Proof

Step 1. We first prove (25).
By (16) and (23), for all 𝜆 ∈ [1, 2] and 𝑢 ∈ 𝐸, we have

𝐼

𝜆 (
𝑢) ≥

1

2

‖𝑢‖

2
− 2∫

Ω

𝑎

1
(|𝑢| + |𝑢|

]
) 𝑑𝑥

=

1

2

‖𝑢‖

2
− 2𝑎

1
(|𝑢|1

+ |𝑢|

]
]) ,

(27)

where 𝑎
1
is the constant in (16). Let

𝜎] (𝑘) = sup
𝑢∈𝑍
𝑘
,‖𝑢‖=1

|𝑢|], ∀𝑘 ∈ 𝑁. (28)

Then

𝜎] (𝑘) 󳨀→ 0 as 𝑘 󳨀→ ∞, (29)

since𝐸 is compactly embedded into 𝐿]. Combining (14), (27),
and (28), we have

𝐼

𝜆
≥

1

2

‖𝑢‖

2
− 2𝑎

1
𝜏

1 ‖
𝑢‖ − 2𝑎1

𝜎

]
] (𝑘) ‖𝑢‖

]
,

∀ (𝜆, 𝑢) ∈ [1, 2] × 𝑍𝑘
.

(30)

By (29), there exists a positive integer 𝑘
1
> 0 such that

𝜌

𝑘
:= (16𝑎

1
𝜎

]
] (𝑘))

1/(2−])
> 16𝑎

1
𝜏

1
, ∀𝑘 ≥ 𝑘

1
,

(31)

since ] > 2. Evidently,

𝜌

𝑘
󳨀→ ∞ as 𝑘 󳨀→ ∞. (32)

Combining (30) and (31), direct computation shows

𝛼

𝑘
:= inf

𝑢∈𝑍
𝑘
,‖𝑢‖=𝜌

𝑘

𝐼

𝜆 (
𝑢) ≥

𝜌

2

𝑘

4

> 0, ∀𝑘 ≥ 𝑘

1
.

(33)

Step 2. We then verify (26).
We claim that for any finite-dimensional subspace 𝐹 ⊂ 𝐸,

there exists a constant 𝜖 > 0 such that

𝑚({𝑥 ∈ Ω : |𝑢 (𝑥)| ≥ 𝜖 ‖𝑢‖}) ≥ 𝜖, ∀𝑢 ∈ 𝐹 \ {0} . (34)

Here and in the sequel, 𝑚(⋅) always denotes the Lebesgue
measure in 𝑅.
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If not, for any 𝑛 ∈ 𝑁, there exists 𝑢
𝑛
∈ 𝐹 \ {0} such that

𝑚({𝑥 ∈ Ω :

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛 (
𝑥)

󵄨

󵄨

󵄨

󵄨

≥

1

𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

}) <

1

𝑛

. (35)

Let V
𝑛
= 𝑢

𝑛
/‖𝑢

𝑛
‖ ∈ 𝐹, for all 𝑛 ∈ 𝑁. Then ‖V

𝑛
‖ = 1, for all

𝑛 ∈ 𝑁, and

𝑚({𝑥 ∈ Ω :

󵄨

󵄨

󵄨

󵄨

V
𝑛 (
𝑥)

󵄨

󵄨

󵄨

󵄨

≥

1

𝑛

}) <

1

𝑛

, ∀𝑛 ∈ 𝑁. (36)

Passing to a subsequence if necessary, we may assume V
𝑛
→

V
0
in 𝐸, for some V

0
∈ 𝐹, since 𝐹 is of finite dimension.

Evidently, ‖V
0
‖ = 1. In view of Lemma 4 and the equivalence

of any two norms on 𝐹, we have

∫

Ω

󵄨

󵄨

󵄨

󵄨

V
𝑛
− V

0

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 󳨀→ 0 as 𝑛 󳨀→ ∞, (37)

and |V
0
|

∞
> 0.

By the definition of norm | ⋅ |
∞
, there exists a constant

𝛿

0
> 0 such that

𝑚({𝑥 ∈ Ω :

󵄨

󵄨

󵄨

󵄨

V
0 (
𝑥)

󵄨

󵄨

󵄨

󵄨

≥ 𝛿

0
}) ≥ 𝛿

0
. (38)

For any 𝑛 ∈ 𝑁, let

Λ

𝑛
= {𝑥 ∈ Ω :

󵄨

󵄨

󵄨

󵄨

V
𝑛 (
𝑥)

󵄨

󵄨

󵄨

󵄨

<

1

𝑛

} ,

Λ

𝑐

𝑛
= Ω \ Λ

𝑛
= {𝑥 ∈ Ω :

󵄨

󵄨

󵄨

󵄨

V
𝑛 (
𝑥)

󵄨

󵄨

󵄨

󵄨

≥

1

𝑛

} .

(39)

Set Λ
0
= {𝑥 ∈ Ω : |V

0
(𝑥)| ≥ 𝛿

0
}. Then for 𝑛 large enough, by

(36) and (38), we have

𝑚(Λ

𝑛
∩ Λ

0
) = 𝑚 (Λ

0
\ Λ

𝑐

𝑛
)

≥ 𝑚 (Λ

0
) − 𝑚 (Λ

𝑐

𝑛
) ≥ 𝛿

0
−

1

𝑛

≥

𝛿

0

2

.

(40)

Consequently, for 𝑛 large enough, there holds

∫

Ω

󵄨

󵄨

󵄨

󵄨

V
𝑛
− V

0

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 ≥ ∫

Λ
𝑛
∩Λ
0

󵄨

󵄨

󵄨

󵄨

V
𝑛
− V

0

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

≥ ∫

Λ
𝑛
∩Λ
0

(

󵄨

󵄨

󵄨

󵄨

V
0

󵄨

󵄨

󵄨

󵄨

−

󵄨

󵄨

󵄨

󵄨

V
𝑛

󵄨

󵄨

󵄨

󵄨

) 𝑑𝑥

≥ (𝛿

0
−

1

𝑛

)𝑚 (Λ

𝑛
∩ Λ

0
)

≥

𝛿

2

0

4

> 0.

(41)

This is in contradiction to (37). Therefore (34) holds.
Consequently, for any 𝑘 ∈ 𝑁, there exists a constant 𝜖

𝑘
>

0 such that

𝑚(Λ

𝑘

𝑢
) ≥ 𝜖

𝑘
, ∀𝑢 ∈ 𝑌

𝑘
\ {0} , (42)

where Λ𝑘

𝑢
:= {𝑥 ∈ Ω : |𝑢(𝑥)| ≥ 𝜖

𝑘
‖𝑢‖}, for all 𝑘 ∈ 𝑁, and

𝑢 ∈ 𝑌

𝑘
\ {0}. By (𝑆

2
), for any 𝑘 ∈ 𝑁, there exists a constant

𝑆

𝑘
> 0 such that

𝐹 (𝑥, 𝑢) ≥

|𝑢|

2

𝜖

3

𝑘

, ∀ |𝑢| ≥ 𝑆𝑘
. (43)

Combining (23), (42), (43), and (𝑆
2
), for any 𝑘 ∈ 𝑁 and 𝜆 ∈

[1, 2], we have

𝐼

𝜆 (
𝑢) ≤

1

2

‖𝑢‖

2
− ∫

Λ
𝑘

𝑢

|𝑢|

2

𝜖

3

𝑘

𝑑𝑥

≤

1

2

‖𝑢‖

2
−

1

𝜖

3

𝑘

𝜖

2

𝑘
‖𝑢‖

2
𝑚(Λ

𝑘

𝑢
)

≤

1

2

‖𝑢‖

2
− ‖𝑢‖

2

= −

1

2

‖𝑢‖

2

(44)

with ‖𝑢‖ ≥ 𝑆
𝑘
/𝜖

𝑘
. Now for any 𝑘 ∈ 𝑁, if we choose

𝑟

𝑘
> max{𝜌

𝑘
,

𝑆

𝑘

𝜖

𝑘

} , (45)

then (44) implies

𝛽

𝑘 (
𝜆) := max

𝑢∈𝑌
𝑘
,‖𝑢‖=𝑟

𝑘

𝐼

𝜆 (
𝑢) ≤ −

𝑟

2

𝑘

2

< 0, ∀𝑘 ∈ 𝑁,

(46)

ending the proof.

Proof of Theorem 1. It follows from (16), (23), and Lemma 5
that 𝐼

𝜆
maps bounded sets to bounded sets uniformly for

𝜆 ∈ [1, 2]. In view of the evenness of 𝐹(𝑥, 𝑢) in 𝑢, it holds that
𝐼

𝜆
(−𝑢) = 𝐼

𝜆
(𝑢) for all (𝜆, 𝑢) ∈ [1, 2] × 𝐸. Thus the condition

(𝐹
1
) of Theorem 7 holds. Besides, 𝐴(𝑢) = (1/2)‖𝑢‖2 → ∞

as ‖𝑢‖ → ∞ and 𝐵(𝑢) ≥ 0 since 𝐹(𝑥, 𝑢) ≥ 0. Thus
the condition (𝐹

2
) of Theorem 7 holds. And Lemma 8 shows

that the condition (𝐹
3
) holds for all 𝑘 ≥ 𝑘

1
. Therefore, by

Theorem 7, for any 𝑘 ≥ 𝑘
1
and a.e. 𝜆 ∈ [1, 2], there exists

a sequence {𝑢𝑘
𝑚
(𝜆)}

∞

𝑚=1
⊂ 𝐸 such that

sup
𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

𝑘

𝑚
(𝜆)

󵄩

󵄩

󵄩

󵄩

󵄩

< ∞, 𝐼

󸀠

𝜆
(𝑢

𝑘

𝑚
(𝜆)) 󳨀→ 0,

𝐼

𝜆
(𝑢

𝑘

𝑚
(𝜆)) 󳨀→ 𝜁𝑘 (

𝜆)

(47)

as𝑚 → ∞, where

𝜁

𝑘 (
𝜆) := inf

ℎ∈Γ
𝑘

max
𝑢∈𝐵
𝑘

𝐼

𝜆 (
ℎ (𝑢)) , ∀𝜆 ∈ [1, 2] , (48)

with 𝐵
𝑘
= {𝑢 ∈ 𝑌

𝑘
: ‖𝑢‖ ≤ 𝑟

𝑘
} and Γ

𝑘
:= {ℎ ∈ 𝐶(𝐵

𝑘
, 𝐸) |

ℎ is odd, ℎ|
𝜕𝐵
𝑘

= 𝑖𝑑}.
Furthermore, it follows from the proof of Lemma 8 that

𝜁

𝑘 (
𝜆) ∈ [𝛼𝑘

, 𝜁

𝑘
] , ∀𝑘 ≥ 𝑘

1
, (49)

where 𝜁
𝑘
:= max

𝑢∈𝐵
𝑘

𝐼

𝜆
(𝑢) and 𝛼

𝑘
:= 𝜌

2

𝑘
/4 → ∞ as 𝑘 → ∞

by (32).

Claim 1. {𝑢𝑘
𝑚
(𝜆)}

∞

𝑚=1
⊂ 𝐸 possesses a strong convergent

subsequence in 𝐸, for ∀𝜆 ∈ [1, 2] and 𝑘 ≥ 𝑘
1
.

In fact, by the boundedness of the {𝑢𝑘
𝑚
(𝜆)}

∞

𝑚=1
, passing to

a subsequence, as𝑚 → ∞, we may assume

𝑢

𝑘

𝑚
(𝜆) ⇀ 𝑢

𝑘
(𝜆) in 𝐸. (50)
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By the Sobolev embedding theorem,

𝑢

𝑘

𝑚
(𝜆) 󳨀→ 𝑢

𝑘
(𝜆) in 𝐿]. (51)

Lemma 6 implies that

𝑓 (𝑥, 𝑢

𝑘

𝑚
(𝜆)) 󳨀→ 𝑓(𝑥, 𝑢

𝑘
(𝜆)) in 𝐿]/(]−1). (52)

Observe that
󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

𝑘

𝑚
(𝜆) − 𝑢

𝑘
(𝜆)

󵄩

󵄩

󵄩

󵄩

󵄩

2

= (𝐼

󸀠

𝜆
(𝑢

𝑘

𝑚
(𝜆)) − 𝐼

󸀠

𝜆
(𝑢

𝑘
(𝜆)) , 𝑢

𝑘

𝑚
(𝜆) − 𝑢

𝑘
(𝜆))

+ 𝜆∫

Ω

(𝑓 (𝑥, 𝑢

𝑘

𝑚
(𝜆)) − 𝑓 (𝑥, 𝑢

𝑘
(𝜆)))

× (𝑢

𝑘

𝑚
(𝜆) − 𝑢

𝑘
(𝜆)) 𝑑𝑥.

(53)

By (47), it is clear that

(𝐼

󸀠

𝜆
(𝑢

𝑘

𝑚
(𝜆)) − 𝐼

󸀠

𝜆
(𝑢

𝑘
(𝜆)) , 𝑢

𝑘

𝑚
(𝜆) − 𝑢

𝑘
(𝜆)) 󳨀→ 0

as 𝑚 󳨀→ ∞.
(54)

It follows from the Hölder inequality, (51), and (52) that
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

Ω

(𝑓 (𝑥, 𝑢

𝑘

𝑚
(𝜆)) − 𝑓 (𝑥, 𝑢

𝑘
(𝜆))) (𝑢

𝑘

𝑚
(𝜆) − 𝑢

𝑘
(𝜆)) 𝑑𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑢

𝑘

𝑚
(𝜆)) − 𝑓 (𝑥, 𝑢

𝑘
(𝜆))

󵄨

󵄨

󵄨

󵄨

󵄨]/(]−1)

×

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝑘

𝑚
(𝜆) − 𝑢

𝑘
(𝜆)

󵄨

󵄨

󵄨

󵄨

󵄨]
󳨀→ 0

(55)

as𝑚 → ∞. Thus by (53), (54), and (55), we have proved that
󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

𝑘

𝑚
(𝜆) − 𝑢

𝑘
(𝜆)

󵄩

󵄩

󵄩

󵄩

󵄩

󳨀→ 0 as 𝑚 󳨀→ ∞, (56)

that is, 𝑢𝑘
𝑚
(𝜆) → 𝑢

𝑘
(𝜆) in 𝐸.

Thus, for each 𝑘 ≥ 𝑘

1
, we can choose 𝜆

𝑛
→ 1

such that the sequence {𝑢𝑘
𝑚
(𝜆

𝑛
)}

∞

𝑚=1
obtained a convergent

subsequence; passing again to a subsequence, wemay assume

lim
𝑚→∞

𝑢

𝑘

𝑚
(𝜆

𝑛
) = 𝑢

𝑘

𝑛
in 𝐸, ∀𝑛 ∈ 𝑁, 𝑘 ≥ 𝑘

1
. (57)

This together with (47) and (49) yields

𝐼

󸀠

𝜆
𝑛

(𝑢

𝑘

𝑛
) = 0, 𝐼

𝜆
𝑛

(𝑢

𝑘

𝑛
) ∈ [𝛼

𝑘
, 𝜁

𝑘
] , ∀𝑛 ∈ 𝑁, 𝑘 ≥ 𝑘

1
.

(58)

Claim 2. {𝑢𝑘
𝑛
}

∞

𝑛=1
is bounded in 𝐸 for all 𝑘 ≥ 𝑘

1
.

For notational simplicity, we will set 𝑢
𝑛
= 𝑢

𝑘

𝑛
for all 𝑛 ∈

𝑁 throughout this paragraph. If {𝑢
𝑛
} is unbounded in 𝐸, we

define V
𝑛
= 𝑢

𝑛
/‖𝑢

𝑛
‖. Since ‖V

𝑛
‖ = 1, without loss of generality

we suppose that there is V ∈ 𝐸 such that

V
𝑛
⇀ V in 𝐸,

V
𝑛
󳨀→ V in 𝐿] (Ω) ,

V
𝑛 (
𝑥) 󳨀→ V (𝑥) a.e. in Ω.

(59)

Let Ω
̸=
= {𝑥 ∈ Ω : V(𝑥) ̸= 0}. If 𝑥 ∈ Ω

̸=
, from (𝑆

2
) it follows

that

lim
𝑛→∞

𝐹 (𝑥, 𝑢

𝑛 (
𝑥))

𝑢

𝑛(
𝑥)

2
V
𝑛(
𝑥)

2
= ∞. (60)

On the other hand, after a simple calculation, we have

lim
𝑛→∞

∫

Ω

𝐹 (𝑥, 𝑢

𝑛 (
𝑥))

𝑢

𝑛(
𝑥)

2
V
𝑛(
𝑥)

2
=

1

2

. (61)

We conclude thatΩ
̸=
has zero measure and V ≡ 0 a.e. in Ω.

Moreover, from (49) and (58)

∫

Ω

(1/2) 𝑓 (𝑥, 𝑢𝑛
) 𝑢

𝑛
− 𝐹 (𝑥, 𝑢

𝑛
)

𝑢

2

𝑛

V
2

𝑛
𝑑𝑥 =

𝐼

𝜆
𝑛

(𝑢

𝑛
)

𝜆

𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2
> 0. (62)

By (𝑆
3
),

lim sup
𝑛→∞

(1/2) 𝑓 (𝑥, 𝑢𝑛
) 𝑢

𝑛
− 𝐹 (𝑥, 𝑢

𝑛
)

𝑢

2

𝑛

V2
𝑛

< lim sup
𝑛→∞

𝑏 (𝑢

2

𝑛
+ 1)

2𝑢

2

𝑛

V2
𝑛
= 0

(63)

which contradicts (62). Hence {𝑢
𝑛
} is bounded.

Claim 3. {𝑢𝑘
𝑛
} possesses a convergent subsequence with the

limit 𝑢𝑘 ∈ 𝐸 for all 𝑘 ≥ 𝑘
1
.

In fact, by Claim 2, without loss of generality, we have
assume

𝑢

𝑘

𝑛
⇀ 𝑢

𝑘 as 𝑛 󳨀→ ∞. (64)

By virtue of the Riesz Representation theorem, 𝐼󸀠
𝜆
: 𝐸 󳨃→ 𝐸

∗

and Ψ󸀠
: 𝐸 󳨃→ 𝐸

∗ can be viewed as 𝐼󸀠
𝜆
: 𝐸 󳨃→ 𝐸 and Ψ󸀠

: 𝐸 󳨃→

𝐸, respectively, where 𝐸∗ is the dual space of 𝐸. Note that

0 = 𝐼

󸀠

𝜆
𝑛

(𝑢

𝑘

𝑛
) = 𝑢

𝑘

𝑛
− 𝜆

𝑛
Ψ

󸀠
(𝑢

𝑘

𝑛
) , (65)

that is

𝑢

𝑘

𝑛
= 𝜆

𝑛
Ψ

󸀠
(𝑢

𝑘

𝑛
) . (66)

By Lemma 5, Ψ󸀠
: 𝐸 󳨃→ 𝐸 is also compact. Due to the

compactness of Ψ󸀠 and (64), the right-hand side of (66)
converges strongly in 𝐸 and hence 𝑢𝑘

𝑛
→ 𝑢

𝑘 in 𝐸.
Now for each 𝑘 ≥ 𝑘

1
, by (58), the limit 𝑢𝑘 is just a critical

point of 𝐼
1
= 𝐼 with 𝐼(𝑢𝑘) ∈ [𝛼

𝑘
, 𝜁

𝑘
]. Since 𝛼

𝑘
→ ∞ as

𝑘 → ∞ in (49), we get infinitely many nontrivial critical
points of 𝐼. Therefore (1) possesses infinitely many nontrivial
solutions by Lemma 5.
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