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This paper presents a hybrid spectral conjugate gradient method for large-scale unconstrained optimization, which possesses a
self-adjusting property. Under the standard Wolfe conditions, its global convergence result is established. Preliminary numerical
results are reported on a set of large-scale problems in CUTEr to show the convergence and efficiency of the proposed method.

1. Introduction

Consider the following unconstrained optimization problem:

min {𝑓 (𝑥) | 𝑥 ∈ R
𝑛} , (1)

where 𝑓 : R𝑛 → R is a nonlinear smooth function and
its gradient is available. Conjugate gradient methods are very
efficient for solving (1), especially when the dimension 𝑛 is
large, and have the following iterative form:

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, (2)

where 𝛼
𝑘
> 0 is a steplength obtained by a line search, and 𝑑

𝑘

is the search direction defined by

𝑑
𝑘
= {

−𝑔
𝑘
, for 𝑘 = 1,

−𝑔
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

, for 𝑘 ≥ 2,
(3)

where 𝛽
𝑘
is a scalar and 𝑔

𝑘
denotes the gradient of 𝑓 at point

𝑥
𝑘
.

There are at least six formulas for 𝛽
𝑘
, which are given

below:

𝛽FR
𝑘

=
𝑔𝑇
𝑘
𝑔
𝑘

𝑔𝑇
𝑘−1

𝑔
𝑘−1

, 𝛽CD
𝑘

= −
𝑔𝑇
𝑘
𝑔
𝑘

𝑑𝑇
𝑘−1

𝑦
𝑘−1

,

𝛽DY
𝑘

=
𝑔𝑇
𝑘
𝑔
𝑘

𝑑𝑇
𝑘−1

𝑦
𝑘−1

, 𝛽PR
𝑘

=
𝑔𝑇
𝑘
𝑦
𝑘−1

𝑔𝑇
𝑘−1

𝑔
𝑘−1

,

𝛽HS
𝑘

=
𝑔𝑇
𝑘
𝑦
𝑘−1

𝑑𝑇
𝑘−1

𝑦
𝑘−1

, 𝛽LS
𝑘
= −

𝑔𝑇
𝑘
𝑦
𝑘−1

𝑑𝑇
𝑘−1

𝑔
𝑘−1

,

(4)

where𝑦
𝑘−1

= 𝑔
𝑘
−𝑔
𝑘−1

and ‖⋅‖ denotes the Euclidean norm. In
the above sixmethods, HS, PR, and LSmethods are especially
efficient in real computations, but one may not globally
converge for general functions. FR, CD, and DY methods
are globally convergent, but they perform much worse. To
combine the good numerical performance of HSmethod and
the nice global convergence property of DYmethod, Dai and
Yuan [1] proposed an efficient hybrid formula for 𝛽

𝑘
which is

defined as the following form:

𝛽HSDY
𝑘

= max {0,min {𝛽DY
𝑘
, 𝛽HS
𝑘
}} . (5)

Their studies suggested that theHSDYmethod (5) has the
same advantage of avoiding the propensity of short steps as
the HS method [1]. They also proved that the HSDY method
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with the standard wolfe line search produces a descent search
direction at each iteration and converges globally. Descent
condition may be crucial for the convergence analysis of
conjugate gradient methods with inexact line searches [2, 3].
Further, there are somemodified conjugate gradientmethods
[4–7] which possess the sufficiently descent property without
any line search condition. Recently, Yu [8] proposed a spectral
version of HSDY method:

𝛽S-HSDY
𝑘

= max {0,min {𝛽SDY
𝑘

, 𝛽SHS
𝑘

}} , (6)

where

𝛽SDY
𝑘

=
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

𝛿
𝑘
𝑦𝑇
𝑘−1

𝑑
𝑘−1

, 𝛽SHS
𝑘

=
𝑔𝑇
𝑘
𝑦
𝑘−1

𝛿
𝑘
𝑦𝑇
𝑘−1

𝑑
𝑘−1

, (7)

with 𝛿
𝑘
= 𝑦𝑇
𝑘−1

𝑠
𝑘−1

/‖𝑠
𝑘−1

‖2, 𝑠
𝑘−1

= 𝑥
𝑘
− 𝑥
𝑘−1

. The numerical
experiments show that this simple preconditioning technique
benefits to its performance.

In this paper, based on a new conjugate condition [9],
we propose a new hybrid spectral conjugate gradient method
with 𝛽

𝑘
defined by

𝛽DS-HSDY
𝑘

= max {0,min {𝛽DSDY
𝑘

, 𝛽DSHS
𝑘

}} , (8)

where

𝛽DSDY
𝑘

=
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

𝛿
𝑘
𝑦∗
𝑘−1

𝑇𝑑
𝑘−1

, 𝛽DSHS
𝑘

=
𝑔𝑇
𝑘
𝑦∗
𝑘−1

𝛿
𝑘
𝑦∗
𝑘−1

𝑇𝑑
𝑘−1

,

𝑦∗
𝑘−1

= 𝑦
𝑘−1

+
max {𝜗

𝑘
, 0}

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩
2

𝑠
𝑘−1

,

𝜗
𝑘
= 2 {𝑓 (𝑥

𝑘
) − 𝑓 (𝑥

𝑘−1
)} + [𝑔 (𝑥

𝑘
) + 𝑔 (𝑥

𝑘−1
)]
𝑇

𝑠
𝑘−1

.

(9)

A full description of DS-HSDY method is formally given
as follows.

Algorithm 1 (DS-HSDY conjugate gradient method).
Data. Choose constants 0 < 𝜌 < 𝜎 < 1, 𝜇 > 1, and 0 ≤ 𝜖 ≪ 1.
Given an initial point 𝑥

1
∈ 𝑅𝑛, set 𝑑

1
= −𝑔
1
. Let 𝑘 := 1.

Step 1. If ‖𝑔
𝑘
‖ ≤ 𝜀, then stop.

Step 2. Determine 𝛼
𝑘
satisfying the standard Wolfe condi-

tion:

𝑔(𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘
> 𝜎𝑔𝑇
𝑘
𝑑
𝑘
, (10)

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝑓 (𝑥

𝑘
) ≤ 𝜌𝛼

𝑘
𝑔𝑇
𝑘
𝑑
𝑘
. (11)

Then update 𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
.

Step 3. Compute 𝑔
𝑘+1

, 𝛿
𝑘+1

and 𝛽DS-HSDY
𝑘+1

. Then update 𝑑
𝑘+1

such as

𝑑
𝑘+1

= −
1

𝛿
𝑘+1

𝑔
𝑘+1

+ 𝛽DS-HSDY
𝑘+1

𝑑
𝑘
. (12)

Set 𝑘 := 𝑘 + 1 and go to Step 1.

The rest of the paper is organized as follows. In the next
section, we show that the DS-HSDY method possesses a
self-adjusting property. In Section 3, we establish its global
convergence result under the standard Wolfe line search
conditions. Section 4 gives some numerical results on a set
of large-scale unconstrained test problems in CUTEr to
illustrate the convergence and efficiency of the proposed
method. Finally we have a Conclusion section.

2. Self-Adjusting Property

In this section, we prove that theDS-HSDYmethod possesses
a self-adjusting property. To begin with, we assume that

𝑔
𝑘
̸= 0, ∀𝑘 ≥ 1, (13)

otherwise, a stationary point has been found, and define the
two following important quantities:

𝑞
𝑘
=

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

(𝑔𝑇
𝑘
𝑑
𝑘
)
2
,

𝛾
𝑘
= −

𝛿
𝑘
𝑔𝑇
𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
.

(14)

The quantity 𝑞
𝑘
shows the size of 𝑑

𝑘
, where 𝛾

𝑘
is a quantity

showing the descent degree of 𝑑
𝑘
. In fact, if 𝛾

𝑘
> 0, 𝑑

𝑘
is a

descent direction. Furthermore, if 𝛾
𝑘
≥ 𝐶 for some constant

𝐶 > 0, then we have the sufficient descent condition

𝑔𝑇
𝑘
𝑑
𝑘
≤ −𝐶󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

. (15)

On the other hand, it follows from (12) that

𝑑
𝑘
+
1

𝛿
𝑘

𝑔
𝑘
= 𝛽DS-HSDY
𝑘

𝑑
𝑘−1

. (16)

Hence

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

= (𝛽DS-HSDY
𝑘

)
2󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩
2

−
2

𝛿
𝑘

𝑔𝑇
𝑘
𝑑
𝑘
−
1

𝛿2
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

. (17)

Combining |𝛽DS-HSDY
𝑘

| ≤ |𝛽DSDY
𝑘

| ≤ |𝛽SDY
𝑘

| with (17) yields

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

= (𝛽DS-HSDY
𝑘

)
2󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩
2

−
2

𝛿
𝑘

𝑔𝑇
𝑘
𝑑
𝑘
−
1

𝛿2
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

≤ (𝛽SDY
𝑘

)
2󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩
2

−
2

𝛿
𝑘

𝑔𝑇
𝑘
𝑑
𝑘
−
1

𝛿2
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

.

(18)

Dividing both sides of (18) by (𝑔𝑇
𝑘
𝑑
𝑘
)2 and using (7), we

obtain
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2

(𝑔𝑇
𝑘
𝑑
𝑘
)
2
≤

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

(𝑔𝑇
𝑘−1

𝑑
𝑘−1

)
2
−
2

𝛿
𝑘

1

𝑔𝑇
𝑘
𝑑
𝑘

−
1

𝛿2
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

(𝑔𝑇
𝑘
𝑑
𝑘
)
2
. (19)

It follows from (19) and the definitions of 𝑞
𝑘
and 𝛾
𝑘
that

𝑞
𝑘
≤ 𝑞
𝑘−1

+
1

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

2

𝛾
𝑘

−
1

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

1

𝛾2
𝑘

. (20)
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Additionally, we assume that there exist positive constants
𝛾 and 𝛾 such that

0 < 𝛾 ≤ 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≤ 𝛾, ∀𝑘 ≥ 1, (21)

then we have the following result.

Theorem2. Consider the method (2), (8) and (12), where 𝑑
𝑘
is

a descent direction. If (21) holds, there exist positive constants
𝜉
1
, 𝜉
2
, and 𝜉

3
such that relations

−𝑔𝑇
𝑘
𝑑
𝑘
≥

𝜉
1

√𝑘
, (22)

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

≥
𝜉
2

𝑘
, (23)

𝛾
𝑘
≥

𝜉
3

√𝑘
(24)

hold for all 𝑘 ≥ 1.

Proof. Summing (20) over the iterates and noting that 𝑑
1
=

−𝑔
1
, we get

𝑞
𝑘
≥
𝑘

∑
𝑖=1

1
󵄩󵄩󵄩󵄩𝑔𝑖

󵄩󵄩󵄩󵄩
2
(
2

𝛾
𝑖

−
1

𝛾2
𝑖

) . (25)

Since 𝑞
𝑘
≥ 0, it follows from (25) that

1
󵄩󵄩󵄩󵄩𝑔𝑖

󵄩󵄩󵄩󵄩
2
(
2

𝛾
𝑖

−
1

𝛾2
𝑖

) ≤
𝑘−1

∑
𝑖=1

1
󵄩󵄩󵄩󵄩𝑔𝑖

󵄩󵄩󵄩󵄩
2
(
2

𝛾
𝑖

−
1

𝛾2
𝑖

) . (26)

Equations (21), (26), and 2/𝛾
𝑖
− 1/𝛾2
𝑖
≤ 1 yield

1

𝛾2
𝑘

−
2

𝛾
𝑘

−
𝛾2

𝛾2
(𝑘 − 1) ≤ 0. (27)

Furthermore, we have

1

𝛾
𝑘

≤ 1 + √1 +
𝛾2

𝛾2
(𝑘 − 1) ≤ 1 +

𝛾2

𝛾2
√𝑘 ≤

2𝛾

𝛾
√𝑘. (28)

Thus (24) holds with 𝜉
3
= 𝛾/2𝛾.

Noting that −𝑔𝑇
𝑘
𝑑
𝑘
= ‖𝑔
𝑘
‖2𝛾
𝑘
and ‖𝑑

𝑘
‖ ≥ ‖𝑔

𝑘
‖𝛾
𝑘
, it is easy

to derive that (22) and (23) hold with 𝜉
1
= 𝜉
3
𝛾2 and 𝜉

2
= 𝜉2
3
𝛾2,

respectively. Hence the proof is complete.

Theorem 3. Consider the method (2), (8), and (12), where 𝑑
𝑘

is a descent direction. If (21) holds, then for any 𝑝 ∈ (0, 1),
there exist constants 𝜉

4
, 𝜉
5
, and 𝜉

6
> 0 such that, for any k, the

relations

−𝑔𝑇
𝑖
𝑑
𝑖
≥ 𝜉
4
,

󵄩󵄩󵄩󵄩𝑑𝑖
󵄩󵄩󵄩󵄩
2

≥ 𝜉
5
,

𝛾
𝑖
≥

𝜉
6

√𝑘

(29)

hold for at least [𝑝𝑘] values of 𝑖 ∈ [1, 𝑘].
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Figure 1: Performance profiles for CPU time.

Proof. The proof is similar to the Theorem 2 in [10], so we
omit it here.

Therefore, by Theorems 2 and 3, it was shown that DS-
HSDY method possesses a self-adjusting property which is
independent of the line search and the function convexity.

3. Global Convergence

Throughout the paper, we assume that the following assump-
tions hold.

Assumption 1. (1) 𝑓 is bounded below in the level set L =
{𝑥 ∈ 𝑅𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑥

1
)};

(2) in a neighborhood N of L, 𝑓 is differentiable and
its gradient 𝑔 is Lipschitz continuous; namely, there exists a
constant 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ N. (30)

Under Assumption 1 on 𝑓, we could get a useful lemma.

Lemma 4. Suppose that 𝑥
1
is a starting point for which

Assumption 1 holds. Consider any method in the form (2),
where 𝑑

𝑘
is a descent direction and 𝛼

𝑘
satisfies the weak Wolfe

conditions; then one has that

∑
𝑘≥1

(𝑔𝑇
𝑘
𝑑
𝑘
)
2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

< +∞. (31)

For DS-HSDY method, one has the following global conver-
gence result.

Theorem 5. Suppose that 𝑥
1
is a starting point for which

Assumption 1 hold. Consider DS-HSDY method; if 𝑔
𝑘
̸= 0 for

all 𝑘 ≥ 1, then one has that

𝑔𝑇
𝑘
𝑑
𝑘
< 0 ∀𝑘 ≥ 1. (32)
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Table 1: Numerical results for PRP+ method.

Function 𝑛 NI Nfg 𝑇 (0.01 S) ‖𝑔(𝑥)‖
∞

Quadratic QF2 10000 2227 2885 2016 9.98𝐸 − 07

Extended EP1 10000 4 7 3 6.09𝐸 − 13

Extended Tridiagonal 2 10000 39 98 47 9.29𝐸 − 07

ARGLINA 10000 5 15 4 1.95𝐸 − 07

ARWHEAD 10000 7 14 21 3.10𝐸 − 07

BDQRTIC 5000 157 720 526 1.47𝐸 − 04

BDEXP 5000 6 8 7 1.72𝐸 − 07

BRYBND 5000 5 11 1215 2.60𝐸 − 07

COSINE 10000 21 45 39 9.60𝐸 − 07

CRAGGLVY 10000 129 250 444 5.35𝐸 − 06

DIXMAANA 10000 6 12 19 4.20𝐸 − 07

DIXMAANB 10000 8 16 26 6.72𝐸 − 07

DIXMAANC 10000 11 23 38 3.38𝐸 − 08

DIXMAAND 10000 13 29 44 1.32𝐸 − 07

DIXMAANE 5000 558 799 712 9.96𝐸 − 07

DIXMAANF 5000 558 598 525 8.65𝐸 − 07

DIXMAANG 5000 519 784 684 5.99𝐸 − 07

DIXMAANH 5000 379 3488 2469 8.97𝐸 − 07

DIXMAANI 5000 593 854 755 7.51𝐸 − 07

DIXMAANJ 5000 492 751 651 5.08𝐸 − 07

DIXMAANK 5000 653 979 863 9.61𝐸 − 07

DQDRTIC 10000 11 23 19 9.59𝐸 − 08

DQRTIC 10000 33 57 42 3.44𝐸 − 07

EDENSCH 10000 26 90 78 9.10𝐸 − 06

EG2 10000 209 1426 473 1.10𝐸 − 03

ENGVAL1 10000 30 93 21 1.37𝐸 − 06

EXTROSNB 10000 29 63 25 3.77𝐸 − 08

FREUROTH 10000 61 145 81 2.33𝐸 − 07

LIARWHD 10000 25 49 36 6.54𝐸 − 09

NONDIA 10000 9 17 17 1.03𝐸 − 09

NONDQUAR 5000 1786 3258 1752 7.96𝐸 − 07

NONSCOMP 10000 5001 6799 9751 3.47𝐸 − 06

Further, the method converges in the sense that

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (33)

Proof. Since 𝑑
1
= −𝑔
1
, it is obvious that 𝑔𝑇

1
𝑑
1
< 0. Assume

that 𝑔𝑇
𝑘−1

𝑑
𝑘−1

< 0. By (10) and the definition of the 𝑦∗
𝑘
, we

have 𝑑𝑇
𝑘−1

𝑦∗
𝑘−1

≥ 𝑑𝑇
𝑘−1

𝑦
𝑘−1

> 0, then 𝛽DSDY
𝑘

> 0. In addition,
from (8), we have

0 ≤ 𝛽DS-HSDY
𝑘

≤ 𝛽DSDY
𝑘

≤ 𝛽SDY
𝑘

. (34)

Let 𝜆
𝑘
= 𝛽DS-HSDY
𝑘

/𝛽SDY
𝑘

, then we have 0 ≤ 𝜆
𝑘
≤ 1. By (12)

with 𝑘 + 1 replaced by 𝑘, and multiplying it by 𝑔
𝑘
, we have

𝑔𝑇
𝑘
𝑑
𝑘
=
𝑔𝑇
𝑘−1

𝑑
𝑘−1

+ (𝜆
𝑘
− 1) 𝑔𝑇

𝑘
𝑑
𝑘−1

𝛿
𝑘
𝑑𝑇
𝑘−1

𝑦
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

. (35)

From this and the formula for 𝛽SDY
𝑘

, we get

𝛽DS-HSDY
𝑘

= 𝜆
𝑘
𝛽SDY
𝑘

=
𝜆
𝑘
𝑔𝑇
𝑘
𝑑
𝑘

𝑔𝑇
𝑘−1

𝑑
𝑘−1

+ (𝜆
𝑘
− 1) 𝑔𝑇

𝑘
𝑑
𝑘−1

= 𝜉
𝑘

𝑔𝑇
𝑘
𝑑
𝑘

𝑔𝑇
𝑘−1

𝑑
𝑘−1

,

(36)

where

𝜉
𝑘
=

𝜆
𝑘

1 + (𝜆
𝑘
− 1) 𝑙
𝑘−1

, (37)

𝑙
𝑘−1

=
𝑔𝑇
𝑘
𝑑
𝑘−1

𝑔𝑇
𝑘−1

𝑑
𝑘−1

. (38)

At the same time, if we define

𝜁
𝑘
=
1 + (𝜆

𝑘
− 1) 𝑙
𝑘−1

𝑙
𝑘−1

− 1
, (39)
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Table 2: Numerical results for HSDY method.

Function 𝑛 NI Nfg 𝑇 (0.01 S) ‖𝑔(𝑥)‖
∞

Quadratic QF2 10000 1593 1902 1876 7.11𝐸 − 07

Extended EP1 10000 4 7 4 6.09𝐸 − 13

Extended Tridiagonal 2 10000 34 55 32 9.40𝐸 − 07

ARGLINA 10000 5 15 4 1.95𝐸 − 07

ARWHEAD 10000 13 58 71 4.42𝐸 − 07

BDQRTIC 5000 171 567 422 6.31𝐸 − 04

BDEXP 5000 6 8 6 1.72𝐸 − 07

BRYBND 5000 5 11 1222 2.60𝐸 − 07

COSINE 10000 21 46 41 8.02𝐸 − 07

CRAGGLVY 10000 109 255 434 1.45𝐸 − 06

DIXMAANA 10000 5 10 16 5.13𝐸 − 07

DIXMAANB 10000 9 18 29 2.21𝐸 − 07

DIXMAANC 10000 10 21 33 5.42𝐸 − 07

DIXMAAND 10000 13 29 45 1.14𝐸 − 07

DIXMAANE 5000 446 541 493 9.24𝐸 − 07

DIXMAANF 5000 389 876 690 9.60𝐸 − 07

DIXMAANG 5000 552 660 602 9.85𝐸 − 07

DIXMAANH 5000 202 5106 3417 4.05𝐸 − 04

DIXMAANI 5000 365 450 409 9.95𝐸 − 07

DIXMAANJ 5000 444 532 484 4.95𝐸 − 07

DIXMAANK 5000 367 452 410 9.77𝐸 − 07

DQDRTIC 10000 8 17 14 6.35𝐸 − 07

DQRTIC 10000 37 68 48 3.40𝐸 − 07

EDENSCH 10000 30 99 85 7.97𝐸 − 07

EG2 10000 305 2811 879 2.08𝐸 − 03

ENGVAL1 10000 30 52 21 8.62𝐸 − 07

EXTROSNB 10000 27 54 21 6.20𝐸 − 09

FREUROTH 10000 143 283 177 8.01𝐸 − 07

LIARWHD 10000 32 62 44 1.75𝐸 − 07

NONDIA 10000 7 14 14 4.57𝐸 − 07

NONDQUAR 5000 2049 3730 2011 6.68𝐸 − 07

NONSCOMP 10000 58 100 98 5.03𝐸 − 07

it follows from (39) that

𝑔𝑇
𝑘
𝑑
𝑘
=
𝜁
𝑘

𝛿
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

. (40)

Then we have by (10), with 𝑘 replaced by 𝑘 − 1, that

𝑙
𝑘−1

≤ 𝜎. (41)

Furthermore, we have

1 + (𝜆
𝑘
− 1) 𝑙
𝑘−1

≥ 1 + (−
1 − 𝜎

1 + 𝜎
− 1) 𝜎 =

1 − 𝜎

1 + 𝜎
. (42)

The above relation, (40), (41), and the fact that 𝜎 < 1 imply
that 𝑔𝑇

𝑘
𝑑
𝑘
< 0. Thus by induction, (32) holds.

We now prove (33) by contradiction and assume that
there exists some constant 𝛾 > 0 such that

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≥ 𝛾 ∀𝑘 ≥ 1. (43)

Since 𝑑
𝑘
+ (1/𝛿

𝑘
)𝑔
𝑘
= 𝛽DS-HSDY
𝑘

𝑑
𝑘−1

, we have that

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

= (𝛽DS-HSDY
𝑘

)
2󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩
2

−
2

𝛿
𝑘

𝑔𝑇
𝑘
𝑑
𝑘
−
1

𝛿2
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

. (44)

Dividing both sides of (44) by (𝑔𝑇
𝑘
𝑑
𝑘
)2 and using (36) and

(40), we obtain

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

(𝑔𝑇
𝑘
𝑑
𝑘
)
2
= 𝜉2
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

(𝑔
𝑘−1

𝑑
𝑘−1

)
2
−

1
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2
(
2

𝜁
𝑘

+
1

𝜁2
𝑘

)

= 𝜉2
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

(𝑔
𝑘−1

𝑑
𝑘−1

)
2
+

1
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2
[1 − (1 +

1

𝜁
𝑘

)
2

] .

(45)

In addition, since 𝑙
𝑘−1

< 1 and𝜆
𝑘
≤ 1, we have that (1−𝜆

𝑘
)(1−

𝑙
𝑘−1

) ≥ 0, or equivalently

1 + (𝜆
𝑘
− 1) 𝑙
𝑘−1

≥ 𝜆
𝑘
, (46)
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Table 3: Numerical results for S-HSDY method.

Function 𝑛 NI Nfg 𝑇 (0.01 S) ‖𝑔(𝑥)‖
∞

Quadratic QF2 10000 1582 1941 1836 6.58𝐸 − 07

Extended EP1 10000 4 7 3 6.09𝐸 − 13

Extended Tridiagonal 2 10000 34 55 34 9.40𝐸 − 07

ARGLINA 10000 5 15 3 1.95𝐸 − 07

ARWHEAD 10000 13 58 75 5.60𝐸 − 07

BDQRTIC 5000 111 526 377 3.39𝐸 − 04

BDEXP 5000 6 8 5 1.72𝐸 − 07

BRYBND 5000 5 11 1179 2.60𝐸 − 07

COSINE 10000 21 46 39 9.72𝐸 − 07

CRAGGLVY 10000 103 189 332 1.94𝐸 − 06

DIXMAANA 10000 5 10 15 5.13𝐸 − 07

DIXMAANB 10000 9 18 30 2.21𝐸 − 07

DIXMAANC 10000 10 21 33 5.42𝐸 − 07

DIXMAAND 10000 13 29 43 1.14𝐸 − 07

DIXMAANE 5000 422 514 468 9.73𝐸 − 07

DIXMAANF 5000 310 792 618 6.77𝐸 − 07

DIXMAANG 5000 410 495 449 9.83𝐸 − 07

DIXMAANH 5000 217 6957 4642 4.13𝐸 − 04

DIXMAANI 5000 380 450 417 9.96𝐸 − 07

DIXMAANJ 5000 359 438 402 9.95𝐸 − 07

DIXMAANK 5000 404 485 448 6.67𝐸 − 07

DQDRTIC 10000 8 17 14 6.35𝐸 − 07

DQRTIC 10000 37 68 49 3.41𝐸 − 07

EDENSCH 10000 30 99 84 1.54𝐸 − 06

EG2 10000 242 1731 570 4.25𝐸 − 04

ENGVAL1 10000 29 124 22 1.78𝐸 − 06

EXTROSNB 10000 27 54 22 3.98𝐸 − 09

FREUROTH 10000 214 408 260 8.08𝐸 − 07

LIARWHD 10000 27 54 37 4.45𝐸 − 12

NONDIA 10000 7 14 14 4.58𝐸 − 07

NONDQUAR 5000 1782 3210 1738 8.99𝐸 − 07

NONSCOMP 10000 58 100 100 5.03𝐸 − 07

which with (37) yields
󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨 ≤ 1. (47)

By (45) and (47), we obtain
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2

(𝑔𝑇
𝑘
𝑑
𝑘
)
2
≤

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩
2

(𝑔
𝑘−1

𝑑
𝑘−1

)
2
+

1
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2
. (48)

Using (48) recursively and noting that ‖𝑑
1
‖2 = −𝑔𝑇

1
𝑑
1
=

‖𝑔
1
‖2,

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

(𝑔𝑇
𝑘
𝑑
𝑘
)
2
≤
𝑘

∑
𝑖=1

1
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2
. (49)

Then we get from this and (43) that

(𝑔𝑇
𝑘
𝑑
𝑘
)
2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

≥
𝜆2

𝑘
, (50)

which indicates

∑
𝑘≥1

(𝑔𝑇
𝑘
𝑑
𝑘
)
2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

= +∞. (51)

This contradicts the Zoutendijk condition (31). Hence we
complete the proof.

4. Numerical Result

In this section, we compare the performance of DS-HSDY
method to PRP+ method [11], HSDY method [1], and S-
HSDY method [8]. The test problems are taken from CUTEr
(http://hsl.rl.ac.uk/cuter-www/problems.html)with the stan-
dard initial points. All codes are written in double precision
Fortran and complied with f77 (default compiler settings)
on a PC (AMD Athlon XP 2500 + CPU 1.84GHz). Our
line search subroutine computes 𝛼

𝑘
such that the Wolfe

conditions (10) and (11) hold with 𝜌 = 10−4 and 𝜎 = 0.5. We
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Table 4: Numerical results for DS-HSDY method.

Function 𝑛 NI Nfg 𝑇 (0.01 S) ‖𝑔(𝑥)‖
∞

Quadratic QF2 10000 1623 1978 1783 9.81𝐸 − 07

Extended EP1 10000 4 7 3 6.09𝐸 − 13

Extended Tridiagonal 2 10000 34 55 30 1.95𝐸 − 07

ARGLINA 10000 5 15 3 5.60𝐸 − 07

ARWHEAD 10000 13 58 70 5.60𝐸 − 07

BDQRTIC 5000 165 448 324 2.93𝐸 − 03

BDEXP 5000 6 8 4 1.72𝐸 − 07

BRYBND 5000 5 11 990 2.60𝐸 − 07

COSINE 10000 14 38 28 5.78𝐸 − 07

CRAGGLVY 10000 110 150 266 8.92𝐸 − 07

DIXMAANA 10000 5 10 16 5.17𝐸 − 07

DIXMAANB 10000 9 18 27 2.21𝐸 − 07

DIXMAANC 10000 10 21 31 5.42𝐸 − 07

DIXMAAND 10000 13 29 44 1.10𝐸 − 07

DIXMAANE 5000 410 493 430 9.57𝐸 − 07

DIXMAANF 5000 432 546 469 3.65𝐸 − 07

DIXMAANG 5000 476 582 505 5.89𝐸 − 07

DIXMAANH 5000 442 1204 7792 4.05𝐸 − 04

DIXMAANI 5000 397 467 408 9.45𝐸 − 07

DIXMAANJ 5000 445 594 503 9.66𝐸 − 07

DIXMAANK 5000 403 507 438 9.05𝐸 − 07

DQDRTIC 10000 10 21 17 1.19𝐸 − 07

DQRTIC 10000 35 62 43 9.73𝐸 − 07

EDENSCH 10000 29 87 70 5.74𝐸 − 06

EG2 10000 251 1121 381 4.02𝐸 − 03

ENGVAL1 10000 29 50 19 4.26𝐸 − 07

EXTROSNB 10000 65 122 44 7.11𝐸 − 07

FREUROTH 10000 50 133 67 1.59𝐸 − 07

LIARWHD 10000 47 94 61 1.16𝐸 − 08

NONDIA 10000 7 14 12 4.60𝐸 − 07

NONDQUAR 5000 1831 3262 1665 9.66𝐸 − 07

NONSCOMP 10000 73 126 119 5.10𝐸 − 07

use the condition ‖𝑔(𝑥
𝑘
)‖
∞
≤ 10−6 or 𝛼

𝑘
𝑔𝑇
𝑘
𝑑
𝑘
< 10−20|𝑓(𝑥

𝑘
)|

as the stopping criterion.The numerical results are presented
in Tables 1, 2, 3, and 4 with the form NI/Nfg/T, where we
report the dimension of the problem (𝑛), the number of
iteration (NI), the number of function evaluations (Nfg), and
the CPU time (𝑇) in 0.01 seconds.

Figure 1 shows the performance of these test methods
relative to the CPU time, which were evaluated using the
profiles of Dolan and Moré [12]. That is, for each method,
we plot the fraction 𝑃 of problems for which the method
is within a factor 𝑡 of the best time. The top curve is the
method that solved the most problems in a time that was
within a factor 𝑡 of the best time. Clearly, the left side of the
figure gives the percentage of the test problems for which a
method is the fastest. As we can see from Figure 1, DS-HSDY
method has the best performancewhich performs better than
S-HSDY method, HSDY method, and the well-known PRP+
method.

5. Conclusion

In this paper, we proposed an efficient hybrid spectral con-
jugate gradient method with self-adjusting property. Under
some suitable assumptions, we established the global con-
vergence result for the DS-HSDY method. Numerical results
indicated that the proposedmethod is efficient for large-scale
unconstrained optimization problems.
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[12] E. D. Dolan and J. J. Moré, “Benchmarking optimization soft-
ware with performance profiles,” Mathematical Programming,
vol. 91, no. 2, pp. 201–213, 2002.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


