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We consider the problem of image recovery by the metric projections in a real Banach space. For a countable family of nonempty
closed convex subsets, we generate an iterative sequence converging weakly to a point in the intersection of these subsets. Our
convergence theorems extend the results proved by Bregman and Crombez.

1. Introduction

Let 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑟
be nonempty closed convex subsets of

a real Hilbert space 𝐻 such that ⋂
𝑟

𝑖=1
𝐶
𝑖

̸= 0. Then, the
problem of image recovery may be stated as follows: the
original unknown image 𝑧 is known a priori to belong to the
intersection of {𝐶

𝑖
}
𝑟

𝑖=1
; given only themetric projections𝑃

𝐶𝑖
of

𝐻 onto 𝐶
𝑖
for 𝑖 = 1, 2, . . . , 𝑟, recover 𝑧 by an iterative scheme.

Such a problem is connected with the convex feasibility
problem and has been investigated by a large number of
researchers.

Bregman [1] considered a sequence {𝑥
𝑛
} generated by

cyclic projections, that is, 𝑥
0

= 𝑥 ∈ 𝐻, 𝑥
1

= 𝑃
𝐶1

𝑥, 𝑥
2

=

𝑃
𝐶2

𝑥
1
, 𝑥
3
= 𝑃
𝐶3

𝑥
2
, . . . , 𝑥

𝑟
= 𝑃
𝐶𝑟
𝑥
𝑟−1

, 𝑥
𝑟+1

= 𝑃
𝐶1

𝑥
𝑟
, 𝑥
𝑟+2

=

𝑃
𝐶2

𝑥
𝑟+1

, . . .. It was proved that {𝑥
𝑛
} converges weakly to an

element of⋂𝑟
𝑖=1

𝐶
𝑖
for an arbitrary initial point 𝑥 ∈ 𝐻.

Crombez [2] proposed a sequence {𝑦
𝑛
} generated by 𝑦

0
=

𝑦 ∈ 𝐻, 𝑦
𝑛+1

= 𝛼
0
𝑦
𝑛
+ ∑
𝑟

𝑖=1
𝛼
𝑖
(𝑦
𝑛
+ 𝜆
𝑖
(𝑃
𝐶𝑖
𝑦
𝑛
− 𝑦
𝑛
)) for

𝑛 = 0, 1, 2, . . ., where 0 < 𝛼
𝑖
< 1 for all 𝑖 = 0, 1, 2, . . . , 𝑟 with

∑
𝑟

𝑖=0
𝛼
𝑖
= 1 and 0 < 𝜆

𝑖
< 2 for every 𝑖 = 1, 2, . . . , 𝑟. It was

proved that {𝑦
𝑛
} converges weakly to an element of ⋂𝑟

𝑖=1
𝐶
𝑖

for an arbitrary initial point 𝑦 ∈ 𝐻.
Later, Kitahara and Takahashi [3] and Takahashi and

Tamura [4] dealt with the problem of image recovery by con-
vex combinations of nonexpansive retractions in a uniformly
convex Banach space 𝐸. Alber [5] took up the problem of

image recovery by the products of generalized projections
in a uniformly convex and uniformly smooth Banach space
𝐸 whose duality mapping is weakly sequentially continuous
(see also [6, 7]).

On the other hand, using the hybrid projection method
proposed by Haugazeau [8] (see also [9–11] and references
therein) and the shrinking projection method proposed by
Takahashi et al. [12] (see also [13]), Nakajo et al. [14] and
Kimura et al. [15] considered this problem by the metric
projections and proved convergence of the iterative sequence
to a common point of countable nonempty closed convex
subsets in a uniformly convex and smooth Banach space 𝐸

and in a strictly convex, smooth, and reflexive Banach space
𝐸 having the Kadec-Klee property, respectively. Kohsaka
and Takahashi [16] took up this problem by the generalized
projections and obtained the strong convergence to a com-
mon point of a countable family of nonempty closed convex
subsets in a uniformly convex Banach space whose norm is
uniformly Gâteaux differentiable (see also [17, 18]). Although
these results guarantee the strong convergence, they need to
use metric or generalized projections onto different subsets
for each step, which are not given in advance.

In this paper, we consider this problem by the metric
projections, which are one of the most familiar projections
to deal with. The advantage of our results is that we use
projections onto the given family of subsets only, to generate
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the iterative scheme. Our convergence theorems extend the
results of [1, 2] to a Banach space 𝐸, and they deduce the
weak convergence to a common point of a countable family
of nonempty closed convex subsets of 𝐸.

There are a number of results dealing with the image
recovery problem from the aspects of engineering using
nonlinear functional analysis (see, e.g., [19]). Comparing
with these researches, we may say that our approach is
more abstract and theoretical; we adopt a general Banach
space with several conditions for an underlying space, and
therefore, the technique of the proofs can be applied to
various mathematical results related to nonlinear problems
defined on Banach spaces.

2. Preliminaries

Throughout this paper, letN be the set of all positive integers,
R the set of all real numbers,𝐸 a real Banach space with norm
‖⋅‖, and𝐸

∗ the dual of𝐸. For𝑥 ∈ 𝐸 and𝑥
∗
∈ 𝐸
∗, we denote by

⟨𝑥, 𝑥
∗
⟩ the value of 𝑥∗ at 𝑥. We write 𝑥

𝑛
→ 𝑥 to indicate that

a sequence {𝑥
𝑛
} converges strongly to 𝑥. Similarly, 𝑥

𝑛
⇀ 𝑥

and 𝑥
𝑛

∗

⇀ 𝑥 will symbolize weak and weak∗ convergence,
respectively. We define the modulus 𝛿

𝐸
of convexity of 𝐸 as

follows: 𝛿
𝐸
is a function of [0, 2] into [0, 1] such that

𝛿
𝐸
(𝜖) = inf {1 −

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
: 𝑥, 𝑦 ∈ 𝐸, ‖𝑥‖ = 1,

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 1,

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ≥ 𝜖}

(1)

for every 𝜖 ∈ [0, 2]. 𝐸 is called uniformly convex if 𝛿
𝐸
(𝜖) > 0

for each 𝜖 > 0. Let 𝑝 > 1. 𝐸 is said to be 𝑝-uniformly convex
if there exists a constant 𝑐 > 0 such that 𝛿

𝐸
(𝜖) ≥ 𝑐𝜖

𝑝 for every
𝜖 ∈ [0, 2]. It is obvious that a 𝑝-uniformly convex Banach
space is uniformly convex. 𝐸 is said to be strictly convex if
‖𝑥 + 𝑦‖/2 < 1 for all 𝑥, 𝑦 ∈ 𝐸 with ‖𝑥‖ = ‖𝑦‖ = 1 and 𝑥 ̸= 𝑦.
We know that a uniformly convex Banach space is strictly
convex and reflexive. For every 𝑝 > 1, the (generalized)
duality mapping 𝐽

𝑝
: 𝐸 → 2

𝐸
∗

of 𝐸 is defined by

𝐽
𝑝
𝑥 = {𝑦

∗
∈ 𝐸
∗
: ⟨𝑥, 𝑦

∗
⟩ = ‖𝑥‖

𝑝
,
󵄩󵄩󵄩󵄩𝑦
∗󵄩󵄩󵄩󵄩 = ‖𝑥‖

𝑝−1
} (2)

for all 𝑥 ∈ 𝐸. When 𝑝 = 2, 𝐽
2
is called the normalized duality

mapping. We have that for 𝑝, 𝑞 > 1, ‖𝑥‖𝑝𝐽
𝑞
𝑥 = ‖𝑥‖

𝑞
𝐽
𝑝
𝑥 for

all 𝑥 ∈ 𝐸. 𝐸 is said to be smooth if the limit

lim
𝑡→0

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝑦
󵄩󵄩󵄩󵄩 − ‖𝑥‖

𝑡

(3)

exists for every 𝑥, 𝑦 ∈ 𝐸 with ‖𝑥‖ = ‖𝑦‖ = 1. We know that
the dualitymapping 𝐽

𝑝
of𝐸 is single valued for each𝑝 > 1 if𝐸

is smooth. It is also known that if𝐸 is strictly convex, then the
duality mapping 𝐽

𝑝
of 𝐸 is one to one in the sense that 𝑥 ̸= 𝑦

implies that 𝐽
𝑝
𝑥 ∩ 𝐽
𝑝
𝑦 = 0 for all 𝑝 > 1. If 𝐸 is reflexive, then

𝐽
𝑝
is surjective, and 𝐽

−1

𝑝
is identical to the duality mapping

𝐽
∗

𝑞
: 𝐸
∗

→ 2
𝐸 defined by

𝐽
∗

𝑞
𝑦
∗
= {𝑥 ∈ 𝐸 : ⟨𝑥, 𝑦

∗
⟩ =

󵄩󵄩󵄩󵄩𝑦
∗󵄩󵄩󵄩󵄩

𝑞

, ‖𝑥‖ =
󵄩󵄩󵄩󵄩𝑦
∗󵄩󵄩󵄩󵄩

𝑞−1

} (4)

for every 𝑦
∗

∈ 𝐸
∗, where 𝑞 ∈ R satisfies 1/𝑝 + 1/𝑞 = 1. For

𝑝 > 1, the duality mapping 𝐽
𝑝
of a smooth Banach space 𝐸 is

said to be weakly sequentially continuous if 𝑥
𝑛
⇀ 𝑥 implies

that 𝐽
𝑝
𝑥
𝑛

∗

⇀ 𝐽
𝑝
𝑥 (see [20, 21] for details). The following is

proved by Xu [22] (see also [23]).

Theorem 1 (Xu [22]). Let 𝐸 be a smooth Banach space and
𝑝 > 1. Then, 𝐸 is 𝑝-uniformly convex if and only if there exists
a constant 𝑐 > 0 such that ‖𝑥 + 𝑦‖

𝑝
≥ ‖𝑥‖

𝑝
+𝑝⟨𝑦, 𝐽

𝑝
𝑥⟩+𝑐‖𝑦‖

𝑝

holds for every 𝑥, 𝑦 ∈ 𝐸.

Remark 2. For a 𝑝-uniformly convex and smooth Banach
space 𝐸, we have that the constant 𝑐 in the theorem above
satisfies 𝑐 ≤ 1. Let

𝑐
0
= sup {𝑐 > 0 :

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

𝑝

≥ ‖𝑥‖
𝑝
+ 𝑝⟨𝑦, 𝐽

𝑝
𝑥⟩

+ 𝑐
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

𝑝

∀𝑥, 𝑦 ∈ 𝐸} .

(5)

Then, there exists a positive real sequence {𝑐
𝑛
} such that

lim
𝑛→∞

𝑐
𝑛

= 𝑐
0
and ‖𝑥 + 𝑦‖

𝑝
≥ ‖𝑥‖

𝑝
+ 𝑝⟨𝑦, 𝐽

𝑝
𝑥⟩ + 𝑐

𝑛
‖𝑦‖
𝑝

for all 𝑥, 𝑦 ∈ 𝐸 and 𝑛 ∈ N. So, we get ‖𝑥 + 𝑦‖
𝑝

≥ ‖𝑥‖
𝑝
+

𝑝⟨𝑦, 𝐽
𝑝
𝑥⟩ + 𝑐

0
‖𝑦‖
𝑝 for every 𝑥, 𝑦 ∈ 𝐸. Therefore, 𝑐

0
is the

maximum of constants. In the case of Hilbert spaces, the
normalized duality mapping 𝐽

2
is the identity mapping and

𝑐
0
= 1.

Let 𝐸 be a smooth Banach space and 𝑝 > 1. The function
𝜙
𝑝
: 𝐸 × 𝐸 → R is defined by

𝜙
𝑝
(𝑦, 𝑥) =

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

𝑝

− 𝑝⟨𝑦, 𝐽
𝑝
𝑥⟩ + (𝑝 − 1) ‖𝑥‖

𝑝 (6)

for every 𝑥, 𝑦 ∈ 𝐸. We have 𝜙
𝑝
(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝐸

and 𝜙
𝑝
(𝑧, 𝑥) + 𝜙

𝑝
(𝑥, 𝑦) = 𝜙

𝑝
(𝑧, 𝑦) + 𝑝⟨𝑥 − 𝑧, 𝐽

𝑝
𝑥 − 𝐽
𝑝
𝑦⟩ for

every 𝑥, 𝑦, 𝑧 ∈ 𝐸. It is known that if 𝐸 is strictly convex and
smooth, then, for 𝑥, 𝑦 ∈ 𝐸, 𝜙

𝑝
(𝑦, 𝑥) = 𝜙

𝑝
(𝑥, 𝑦) = 0 if and

only if 𝑥 = 𝑦. Indeed, suppose that 𝜙
𝑝
(𝑦, 𝑥) = 𝜙

𝑝
(𝑥, 𝑦) = 0.

Then, since

0 = 𝜙
𝑝
(𝑦, 𝑥) + 𝜙

𝑝
(𝑥, 𝑦)

= 𝑝 (‖𝑥‖
𝑝
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

𝑝

− ⟨𝑥, 𝐽
𝑝
𝑦⟩ − ⟨𝑦, 𝐽

𝑝
𝑥⟩)

≥ 𝑝 (‖𝑥‖
𝑝
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

𝑝

− ‖𝑥‖
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

𝑝−1

−
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 ‖𝑥‖
𝑝−1

)

= 𝑝 (‖𝑥‖ −
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩) (‖𝑥‖
𝑝−1

−
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

𝑝−1

) ≥ 0,

(7)

we have ‖𝑥‖ = ‖𝑦‖. It follows that ⟨𝑦, 𝐽
𝑝
𝑥⟩ = 𝑝

−1
(‖𝑦‖
𝑝
+ (𝑝 −

1)‖𝑥‖
𝑝
− 𝜙
𝑝
(𝑦, 𝑥)) = ‖𝑦‖

𝑝 and ‖𝐽
𝑝
𝑥‖ = ‖𝑥‖

𝑝−1
= ‖𝑦‖

𝑝−1,
which implies that 𝐽

𝑝
𝑦 = 𝐽

𝑝
𝑥. Since 𝐽

𝑝
is one to one, we

have 𝑥 = 𝑦 (see also [17]). We have the following result from
Theorem 1.
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Lemma 3. Let 𝑝 > 1 and 𝐸 be a 𝑝-uniformly convex and
smooth Banach space. Then, for each 𝑥, 𝑦 ∈ 𝐸,

𝜙
𝑝
(𝑥, 𝑦) ≥ 𝑐

0

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

𝑝 (8)

holds, where 𝑐
0
is maximum in Remark 2.

Proof. Let 𝑥, 𝑦 ∈ 𝐸. By Theorem 1, we have

‖𝑥‖
𝑝
≥

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

𝑝

+ 𝑝⟨𝑥 − 𝑦, 𝐽
𝑝
𝑦⟩ + 𝑐

0

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

𝑝

, (9)

where 𝑐
0
is maximum in Remark 2. Hence, we get

𝜙
𝑝
(𝑥, 𝑦) = ‖𝑥‖

𝑝
−
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

𝑝

− 𝑝⟨𝑥 − 𝑦, 𝐽
𝑝
𝑦⟩

≥ 𝑐
0

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

𝑝

,

(10)

which is the desired result.

Let 𝐶 be a nonempty closed convex subset of a strictly
convex and reflexive Banach space 𝐸, and let 𝑥 ∈ 𝐸. Then,
there exists a unique element 𝑥

0
∈ 𝐶 such that ‖𝑥

0
− 𝑥‖ =

inf
𝑦∈𝐶

‖𝑦 − 𝑥‖. Putting 𝑥
0

= 𝑃
𝐶
𝑥, we call 𝑃

𝐶
the metric

projection onto𝐶 (see [24]).We have the following result [25,
p. 196] for the metric projection.

Lemma 4. Let 𝐶 be a nonempty closed convex subset of a
strictly convex, reflexive, and smooth Banach space 𝐸, and let
𝑥 ∈ 𝐸. Then, 𝑦 = 𝑃

𝐶
𝑥 if and only if ⟨𝑦 − 𝑧, 𝐽

2
(𝑥 − 𝑦)⟩ ≥ 0 for

all 𝑧 ∈ 𝐶, where 𝑃
𝐶
is the metric projection onto 𝐶.

Remark 5. For 𝑝 > 1, it holds that ‖𝑥‖𝐽
𝑝
𝑥 = ‖𝑥‖

𝑝−1
𝐽
2
𝑥

for every 𝑥 ∈ 𝐸. Therefore, under the same assumption as
Lemma 4, we have that 𝑦 = 𝑃

𝐶
𝑥 if and only if ⟨𝑦 − 𝑧, 𝐽

𝑝
(𝑥 −

𝑦)⟩ ≥ 0 for all 𝑧 ∈ 𝐶.

3. Main Results

Firstly, we consider the iteration of Crombez’s type and get
the following result.

Theorem 6. Let 𝑝, 𝑞 > 1 be such that 1/𝑝 + 1/𝑞 = 1. Let
{𝐶
𝑛
}
𝑛∈N be a family of nonempty closed convex subsets of a 𝑝-

uniformly convex and smooth Banach space 𝐸 whose duality
mapping 𝐽

𝑝
is weakly sequentially continuous. Suppose that

⋂
𝑛∈N 𝐶
𝑛

̸= 0. Let 𝜆
𝑛,𝑘

∈]0, (1+1/(𝑝−1))
𝑝−1

𝑐
0
[ and 𝛼

𝑛,𝑘
∈ [0, 1]

for all 𝑛 ∈ N and 𝑘 = 1, 2, . . . , 𝑛 with ∑
𝑛

𝑘=1
𝛼
𝑛,𝑘

= 1 for
every 𝑛 ∈ N, where 𝑐

0
is maximum in Remark 2. Let {𝑥

𝑛
} be

a sequence generated by 𝑥
1
= 𝑥 ∈ 𝐸 and

𝑥
𝑛+1

= 𝐽
∗

𝑞
(

𝑛

∑

𝑘=1

𝛼
𝑛,𝑘

(𝐽
𝑝
𝑥
𝑛
− 𝜆
𝑛,𝑘

𝐽
𝑝
(𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛
))) (11)

for every 𝑛 ∈ N. If 0 < lim inf
𝑛→∞

𝜆
𝑛,𝑘

≤ lim sup
𝑛→∞

𝜆
𝑛,𝑘

<

(1 + 1/(𝑝 − 1))
𝑝−1

𝑐
0
and lim inf

𝑛→∞
𝛼
𝑛,𝑘

> 0 for each 𝑘 ∈ N,
then {𝑥

𝑛
} converges weakly to a point in ⋂

∞

𝑛=1
𝐶
𝑛
.

Proof. Let 𝑦
𝑛,𝑘

= 𝐽
∗

𝑞
(𝐽
𝑝
𝑥
𝑛
− 𝜆
𝑛,𝑘

𝐽
𝑝
(𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛
)) for 𝑛 ∈ N and

𝑘 = 1, 2, . . . , 𝑛. Then, for 𝑧 ∈ ⋂
𝑛∈N 𝐶
𝑛
, we obtain

𝜙
𝑝
(𝑧, 𝑦
𝑛,𝑘

) − 𝜙
𝑝
(𝑧, 𝑥
𝑛
)

= −𝜙
𝑝
(𝑦
𝑛,𝑘

, 𝑥
𝑛
) + 𝑝 ⟨𝑦

𝑛,𝑘
− 𝑧, 𝐽
𝑝
𝑦
𝑛,𝑘

− 𝐽
𝑝
𝑥
𝑛
⟩

= −𝜙
𝑝
(𝑦
𝑛,𝑘

, 𝑥
𝑛
) − 𝑝𝜆

𝑛,𝑘
⟨𝑦
𝑛,𝑘

− 𝑧, 𝐽
𝑝
(𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛
)⟩

= −𝜙
𝑝
(𝑦
𝑛,𝑘

, 𝑥
𝑛
) − 𝑝𝜆

𝑛,𝑘
⟨𝑦
𝑛,𝑘

− 𝑥
𝑛
, 𝐽
𝑝
(𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛
)⟩

− 𝑝𝜆
𝑛,𝑘

⟨𝑥
𝑛
− 𝑧, 𝐽
𝑝
(𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛
)⟩

(12)

for all 𝑛 ∈ N and 𝑘 = 1, 2, . . . , 𝑛. Using Remark 5 with that
𝑧 ∈ 𝐶

𝑘
, we get

⟨𝑥
𝑛
− 𝑧, 𝐽
𝑝
(𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛
)⟩

= ⟨𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛
, 𝐽
𝑝
(𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛
)⟩

+ ⟨𝑃
𝐶𝑘

𝑥
𝑛
− 𝑧, 𝐽
𝑝
(𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛
)⟩

≥
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝

(13)

for every 𝑛 ∈ N and 𝑘 = 1, 2 . . . , 𝑛.Thus, by Lemma 3 we have

𝜙
𝑝
(𝑧, 𝑦
𝑛,𝑘

) − 𝜙
𝑝
(𝑧, 𝑥
𝑛
)

≤ −𝑐
0

󵄩󵄩󵄩󵄩𝑦𝑛,𝑘 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

𝑝

− 𝑝𝜆
𝑛,𝑘

⟨𝑦
𝑛,𝑘

− 𝑥
𝑛
, 𝐽
𝑝
(𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛
)⟩

− 𝑝𝜆
𝑛,𝑘

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝

≤ −𝑐
0

󵄩󵄩󵄩󵄩𝑦𝑛,𝑘 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

𝑝

+ 𝑝𝜆
𝑛,𝑘

󵄩󵄩󵄩󵄩𝑦𝑛,𝑘 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝−1

− 𝑝𝜆
𝑛,𝑘

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝

(14)

for each 𝑛 ∈ N and 𝑘 = 1, 2, . . . , 𝑛. Since it holds that

𝑠𝑡 ≤
1

𝛽

𝑠
𝑝

𝑝
+ 𝛽
𝑞−1 𝑡
𝑞

𝑞
(15)

for 𝑠, 𝑡 ≥ 0, 𝑝, 𝑞 > 1 with 1/𝑝 + 1/𝑞 = 1, and 𝛽 > 0, we have
󵄩󵄩󵄩󵄩𝑦𝑛,𝑘 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝−1

≤
1

𝛽
𝑘
𝑝

󵄩󵄩󵄩󵄩𝑦𝑛,𝑘 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

𝑝

+ 𝛽
1/(𝑝−1)

𝑘

𝑝 − 1

𝑝

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝

(16)

for every 𝑘 ∈ N, 𝛽
𝑘
> 0 and 𝑛 ≥ 𝑘. Therefore, it follows that

𝜙
𝑝
(𝑧, 𝑦
𝑛,𝑘

) − 𝜙
𝑝
(𝑧, 𝑥
𝑛
)

≤ (
𝜆
𝑛,𝑘

𝛽
𝑘

− 𝑐
0
)
󵄩󵄩󵄩󵄩𝑦𝑛,𝑘 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

𝑝

+ 𝜆
𝑛,𝑘

((𝑝 − 1) 𝛽
1/(𝑝−1)

𝑘
− 𝑝)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝

(17)
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for every 𝑛 ∈ N, 𝑘 = 1, 2, . . . , 𝑛, and 𝛽
𝑘
> 0. Since

𝜙
𝑝
(𝑧, 𝑥
𝑛+1

) = ‖𝑧‖
𝑝
− 𝑝⟨𝑧,

𝑛

∑

𝑘=1

𝛼
𝑛,𝑘

𝐽
𝑝
𝑦
𝑛,𝑘

⟩

+ (𝑝 − 1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑘=1

𝛼
𝑛,𝑘

𝐽
𝑝
𝑦
𝑛,𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝/(𝑝−1)

≤ ‖𝑧‖
𝑝
− 𝑝

𝑛

∑

𝑘=1

𝛼
𝑛,𝑘

⟨𝑧, 𝐽
𝑝
𝑦
𝑛,𝑘

⟩

+ (𝑝 − 1)

𝑛

∑

𝑘=1

𝛼
𝑛,𝑘

󵄩󵄩󵄩󵄩𝑦𝑛,𝑘
󵄩󵄩󵄩󵄩

𝑝

=

𝑛

∑

𝑘=1

𝛼
𝑛,𝑘

𝜙
𝑝
(𝑧, 𝑦
𝑛,𝑘

)

(18)

for every 𝑛 ∈ N, we have

𝜙
𝑝
(𝑧, 𝑥
𝑛+1

) − 𝜙
𝑝
(𝑧, 𝑥
𝑛
)

≤

𝑛

∑

𝑘=1

𝛼
𝑛,𝑘

(
𝜆
𝑛,𝑘

𝛽
𝑘

− 𝑐
0
)
󵄩󵄩󵄩󵄩𝑦𝑛,𝑘 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

𝑝

+

𝑛

∑

𝑘=1

𝛼
𝑛,𝑘

𝜆
𝑛,𝑘

((𝑝 − 1) 𝛽
1/(𝑝−1)

𝑘
− 𝑝)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝

(19)

for all 𝑛 ∈ N and 𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
> 0. Since 𝜆

𝑛,𝑘
∈]0, (1+1/(𝑝−

1))
𝑝−1

𝑐
0
[, 𝛼
𝑛,𝑘

∈ [0, 1] for all 𝑛 ∈ N and 𝑘 = 1, 2, . . . , 𝑛,

0 < lim inf
𝑛→∞

𝜆
𝑛,𝑘

≤ lim sup
𝑛→∞

𝜆
𝑛,𝑘

< (1 +
1

(𝑝 − 1)
)

𝑝−1

𝑐
0
,

lim inf
𝑛→∞

𝛼
𝑛,𝑘

> 0

(20)

for each 𝑘 ∈ N, we can choose 𝛽
𝑘
> 0 for every 𝑘 ∈ N such

that 𝛼
𝑛,𝑘

(𝜆
𝑛,𝑘

/𝛽
𝑘
− 𝑐
0
) ≤ 0, 𝛼

𝑛,𝑘
𝜆
𝑛,𝑘

((𝑝 − 1)𝛽
1/(𝑝−1)

𝑘
− 𝑝) ≤ 0

for all 𝑛 ≥ 𝑘 and

lim sup
𝑛→∞

𝛼
𝑛,𝑘

(
𝜆
𝑛,𝑘

𝛽
𝑘

− 𝑐
0
) < 0,

lim sup
𝑛→∞

𝛼
𝑛,𝑘

𝜆
𝑛,𝑘

((𝑝 − 1) 𝛽
1/(𝑝−1)

𝑘
− 𝑝) < 0

(21)

for each 𝑘 ∈ N. Hence, there exists lim
𝑛→∞

𝜙
𝑝
(𝑧, 𝑥
𝑛
) for every

𝑧 ∈ ⋂
𝑛∈N 𝐶
𝑛
and

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛,𝑘 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0 (22)

for all 𝑘 ∈ N. It follows from Lemma 3 that {𝑥
𝑛
} is bounded.

Let {𝑥
𝑛𝑖
} and {𝑥

𝑚𝑗
} be subsequences of {𝑥

𝑛
} such that𝑥

𝑛𝑖
⇀ 𝑢
1

and𝑥
𝑚𝑗

⇀ 𝑢
2
.Then, we get ‖𝑥

𝑛𝑖
−𝑃
𝐶𝑘

𝑥
𝑛𝑖
‖ → 0which implies

that 𝑢
1
∈ 𝐶
𝑘
for every 𝑘 ∈ N. In the same way, we also have

𝑢
2

∈ 𝐶
𝑘
for every 𝑘 ∈ N. Let lim

𝑛→∞
𝜙
𝑝
(𝑢
1
, 𝑥
𝑛
) = 𝜇

1
and

lim
𝑛→∞

𝜙
𝑝
(𝑢
2
, 𝑥
𝑛
) = 𝜇
2
. Since

𝜇
1
− 𝜇
2
= lim
𝑖→∞

(𝜙
𝑝
(𝑢
1
, 𝑥
𝑛𝑖
) − 𝜙
𝑝
(𝑢
2
, 𝑥
𝑛𝑖
))

=
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩

𝑝

−
󵄩󵄩󵄩󵄩𝑢2

󵄩󵄩󵄩󵄩

𝑝

+ 𝑝 lim
𝑖→∞

⟨𝑢
2
− 𝑢
1
, 𝐽
𝑝
𝑥
𝑛𝑖
⟩

(23)

and 𝐽
𝑝
is weakly sequentially continuous, we have

𝜇
1
− 𝜇
2
=

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩

𝑝

−
󵄩󵄩󵄩󵄩𝑢2

󵄩󵄩󵄩󵄩

𝑝

+ 𝑝⟨𝑢
2
− 𝑢
1
, 𝐽
𝑝
𝑢
1
⟩

= −𝜙
𝑝
(𝑢
2
, 𝑢
1
) .

(24)

Similarly, we obtain 𝜇
2

− 𝜇
1

= −𝜙
𝑝
(𝑢
1
, 𝑢
2
). So, we get

𝜙
𝑝
(𝑢
1
, 𝑢
2
) + 𝜙
𝑝
(𝑢
2
, 𝑢
1
) = 0, that is, 𝑢

1
= 𝑢
2
. Therefore, {𝑥

𝑛
}

converges weakly to a point in⋂
𝑛∈N 𝐶
𝑛
.

Using the idea of [9, p. 256], we also have the following
result by the iteration of Bregman’s type.

Theorem 7. Let 𝑝, 𝑞 > 1 be such that 1/𝑝 + 1/𝑞 = 1. Let 𝐼 be
a countable set and {𝐶

𝑗
}
𝑗∈𝐼

a family of nonempty closed convex
subsets of a 𝑝-uniformly convex and smooth Banach space 𝐸

whose duality mapping 𝐽
𝑝
is weakly sequentially continuous.

Suppose that ⋂
𝑗∈𝐼

𝐶
𝑗

̸= 0. Let 𝜆
𝑛
∈]0, (1 + 1/(𝑝 − 1))

𝑝−1
𝑐
0
[ for

all 𝑛 ∈ N, where 𝑐
0
is maximum in Remark 2, and let {𝑥

𝑛
} be a

sequence generated by 𝑥
1
= 𝑥 ∈ 𝐸 and

𝑥
𝑛+1

= 𝐽
∗

𝑞
(𝐽
𝑝
𝑥
𝑛
− 𝜆
𝑛
𝐽
𝑝
(𝑥
𝑛
− 𝑃
𝐶𝑖(𝑛)

𝑥
𝑛
)) (25)

for every 𝑛 ∈ N, where the index mapping 𝑖 : N → 𝐼 satisfies
that, for every 𝑗 ∈ 𝐼, there exists 𝑀

𝑗
∈ N such that 𝑗 ∈

{𝑖(𝑛), . . . , 𝑖(𝑛+𝑀
𝑗
−1)} for each 𝑛 ∈ N. If 0 < lim inf

𝑛→∞
𝜆
𝑛
≤

lim sup
𝑛→∞

𝜆
𝑛

< (1 + 1/(𝑝 − 1))
𝑝−1

𝑐
0
, then, {𝑥

𝑛
} converges

weakly to a point in ⋂
𝑗∈𝐼

𝐶
𝑗
.

Proof. Let 𝑧 ∈ ⋂
𝑗∈𝐼

𝐶
𝑗
. As in the proof ofTheorem 6, we have

𝜙
𝑝
(𝑧, 𝑥
𝑛+1

) − 𝜙
𝑝
(𝑧, 𝑥
𝑛
)

≤ (
𝜆
𝑛

𝛽
− 𝑐
0
)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

𝑝

+ 𝜆
𝑛
((𝑝 − 1) 𝛽

1/(𝑝−1)
− 𝑝)

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑃
𝐶𝑖(𝑛)

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝

(26)

for all 𝑛 ∈ N and 𝛽 > 0. Since 𝜆
𝑛
∈]0, (1 + 1/(𝑝 − 1))

𝑝−1
𝑐
0
[

for all 𝑛 ∈ N and 0 < lim inf
𝑛→∞

𝜆
𝑛

≤ lim sup
𝑛→∞

𝜆
𝑛

<

(1 + 1/(𝑝 − 1))
𝑝−1

𝑐
0
, we can find that 𝛽 > 0 such that

lim sup
𝑛→∞

(
𝜆
𝑛

𝛽
− 𝑐
0
) < 0,

lim sup
𝑛→∞

𝜆
𝑛
((𝑝 − 1) 𝛽

1/(𝑝−1)
− 𝑝) < 0.

(27)

Then, there exists lim
𝑛→∞

𝜙
𝑝
(𝑧, 𝑥
𝑛
) for every 𝑧 ∈ ⋂

𝑖∈𝐼
𝐶
𝑖
and

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑃
𝐶𝑖(𝑛)

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (28)
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So, we have that {𝑥
𝑛
} is bounded from Lemma 3. Let {𝑥

𝑛𝑘
} be

a subsequence of {𝑥
𝑛
} such that 𝑥

𝑛𝑘
⇀ 𝑢. For fixed 𝑗 ∈ 𝐼,

there exists a strictly increasing sequence {𝑚
𝑘
} ⊂ N such that

𝑛
𝑘

≤ 𝑚
𝑘

≤ 𝑛
𝑘
+ 𝑀
𝑗
− 1 and 𝑖(𝑚

𝑘
) = 𝑗 for every 𝑘 ∈ N. It

follows that

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝑥
𝑛𝑘

󵄩󵄩󵄩󵄩󵄩
≤

𝑛𝑘+𝑀𝑗−1

∑

𝑙=𝑛𝑘

󵄩󵄩󵄩󵄩𝑥𝑙+1 − 𝑥
𝑙

󵄩󵄩󵄩󵄩 (29)

for all 𝑘 ∈ N which implies that 𝑥
𝑚𝑘

⇀ 𝑢. Since
lim
𝑘→∞

‖𝑥
𝑚𝑘

− 𝑃
𝐶𝑗
𝑥
𝑚𝑘

‖ = 0, 𝑢 ∈ 𝐶
𝑗
for every 𝑗 ∈ 𝐼. So, we

get 𝑢 ∈ ⋂
𝑗∈𝐼

𝐶
𝑗
. As in the proof of Theorem 6, using that 𝐽

𝑝

is weakly sequentially continuous, we get that {𝑥
𝑛
} converges

weakly to a point in ⋂
𝑗∈𝐼

𝐶
𝑗
.

Suppose that the index set 𝐼 is a finite set {0, 1, 2, . . . , 𝑁 −

1}. For the cyclic iteration, the index mapping 𝑖 is defined
by 𝑖(𝑗) = 𝑗 mod 𝑁 for each 𝑗 ∈ 𝐼. Clearly it satisfies the
assumption inTheorem 7. In the case where the index set 𝐼 is
countably infinite, that is, 𝐼 = N, one of the simplest examples
of 𝑖 : N → N can be defined as follows:

𝑖 (𝑛) =

{{{{{{{{{

{{{{{{{{{

{

1 (𝑛 = 2𝑚 − 1 for some 𝑚 ∈ N) ,

2 (𝑛 = 2 (2𝑚 − 1) for some 𝑚 ∈ N) ,

3 (𝑛 = 4 (2𝑚 − 1) for some 𝑚 ∈ N) ,

. . . ,

𝑘 (𝑛 = 2
𝑘−1

(2𝑚 − 1) for some 𝑚 ∈ N) ,

. . . .

(30)

Then, the assumption in Theorem 7 is satisfied by letting
𝑀
𝑗
= 2
𝑗 for each 𝑗 ∈ 𝐼 = N.

4. Deduced Results

Since a real Hilbert space 𝐻 is 2-uniformly convex and
the maximum 𝑐

0
in Remark 2 is equal to 1, we get the

following results. At first, we have the following theorem
which generalizes the results of [2] byTheorem 6.

Theorem8. Let {𝐶
𝑛
}
𝑛∈N be a family of nonempty closed convex

subsets of 𝐻 such that ⋂
𝑛∈N 𝐶
𝑛

̸= 0. Let 𝜆
𝑛,𝑘

∈]0, 2[ and 𝛼
𝑛,𝑘

∈

[0, 1] for all 𝑛 ∈ N and 𝑘 = 1, 2, . . . , 𝑛 with ∑
𝑛

𝑘=1
𝛼
𝑛,𝑘

= 1 for
every 𝑛 ∈ N. Let {𝑥

𝑛
} be a sequence generated by 𝑥

1
= 𝑥 ∈ 𝐻

and

𝑥
𝑛+1

=

𝑛

∑

𝑘=1

𝛼
𝑛,𝑘

(𝑥
𝑛
− 𝜆
𝑛,𝑘

(𝑥
𝑛
− 𝑃
𝐶𝑘

𝑥
𝑛
)) (31)

for every 𝑛 ∈ N. If it holds that 0 < lim inf
𝑛→∞

𝜆
𝑛,𝑘

≤

lim sup
𝑛→∞

𝜆
𝑛,𝑘

< 2 and lim inf
𝑛→∞

𝛼
𝑛,𝑘

> 0 for each 𝑘 ∈ N,
then, {𝑥

𝑛
} converges weakly to a point in ⋂

∞

𝑛=1
𝐶
𝑛
.

Next, we have the following theorem which extends the
result of [1] by Theorem 7.

Theorem 9. Let 𝐼 be a countable set and {𝐶
𝑗
}
𝑗∈𝐼

a family of
nonempty closed convex subsets of𝐻 such that⋂

𝑗∈𝐼
𝐶
𝑗

̸= 0. Let

𝜆
𝑛
∈]0, 2[ for all 𝑛 ∈ N, and let {𝑥

𝑛
} be a sequence generated

by 𝑥
1
= 𝑥 ∈ 𝐻 and

𝑥
𝑛+1

= 𝑥
𝑛
− 𝜆
𝑛
(𝑥
𝑛
− 𝑃
𝐶𝑖(𝑛)

𝑥
𝑛
) (32)

for every 𝑛 ∈ N, where the index mapping 𝑖 : N → 𝐼 satisfies
that, for every 𝑗 ∈ 𝐼, there exists 𝑀

𝑗
∈ N such that 𝑗 ∈

{𝑖(𝑛), . . . , 𝑖(𝑛+𝑀
𝑗
−1)} for each 𝑛 ∈ N. If 0 < lim inf

𝑛→∞
𝜆
𝑛
≤

lim sup
𝑛→∞

𝜆
𝑛
< 2, then, {𝑥

𝑛
} converges weakly to a point in

⋂
𝑗∈𝐼

𝐶
𝑗
.
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