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We discuss some existence results for various types of functional, differential, and integral equations which can be obtained with
the help of argumentations based on compactness conditions. We restrict ourselves to some classical compactness conditions
appearing in fixed point theorems due to Schauder, Krasnosel’skii-Burton, and Schaefer. We present also the technique associated
withmeasures of noncompactness and we illustrate its applicability in proving the solvability of some functional integral equations.
Apart from this, we discuss the application of the mentioned technique to the theory of ordinary differential equations in Banach
spaces.

1. Introduction

The concept of the compactness plays a fundamental role in
several branches of mathematics such as topology, mathe-
matical analysis, functional analysis, optimization theory, and
nonlinear analysis [1–5]. Numerous mathematical reasoning
processes depend on the application of the concept of com-
pactness or relative compactness. Let us indicate only such
fundamental and classical theorems as the Weierstrass the-
orem on attaining supremum by a continuous function on a
compact set, the Fredholm theory of linear integral equations,
and its generalization involving compact operators as well
as a lot of fixed point theorems depending on compactness
argumentations [6, 7]. It is also worthwhile mentioning such
an important property saying that a continuous mapping
transforms a compact set onto compact one.

Let us pay a special attention to the fact that several
reasoning processes and constructions applied in nonlinear
analysis depend on the use of the concept of the compactness
[6]. Since theorems and argumentations of nonlinear anal-
ysis are used very frequently in the theories of functional,
differential, and integral equations, we focus in this paper
on the presentation of some results located in these theories

which can be obtained with the help of various compactness
conditions.

We restrict ourselves to present and describe some results
obtained in the last four decades which are related to
some problems considered in the theories of differential,
integral, and functional integral equations. Several results
using compactness conditions were obtained with the help
of the theory of measures of noncompactness. Therefore, we
devote one section of the paper to present briefly some basic
background of that theory.

Nevertheless, there are also successfully used argumen-
tations not depending of the concept of a measure on
noncompactness such as Schauder fixed point principle,
Krasnosel’skii-Burton fixed point theorem, and Schaefer fixed
point theorem.

Let us notice that our presentation is far to be complete.
The reader is advised to follow the most expository mono-
graphs in which numerous topics connected with compact-
ness conditions are broadly discussed [6, 8–10].

Finally, let us mention that the presented paper has a
review form. It discusses some results described in details in
the papers which will be cited in due course.
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2. Selected Results of Nonlinear Analysis
Involving Compactness Conditions

In order to solve an equation having the form

𝑥 = 𝐹𝑥, (1)

where 𝐹 is an operator being a self-mapping of a Banach
space 𝐸, we apply frequently an approach through fixed
point theorems. Such an approach is rather natural and, in
general, very efficient. Obviously, there exists a huge number
of miscellaneous fixed point theorems [6, 7, 11] depending
both on order, metric, and topological argumentations.

The most efficient and useful theorems seem to be
fixed point theorems involving topological argumentations,
especially those based on the concept of compactness. The
reader can make an acquaintance with the large theory of
fixed point-theorems involving compactness conditions in
the above, mentionedmonographs, but it seems that themost
important and expository fixed point theorem in this fashion
is the famous Schauder fixed point principle [12]. Obviously,
that theorem was generalized in several directions but till
now it is very frequently used in application to the theories
of differential, integral, and functional equations.

At the beginning of our considerations we recall two
well-known versions of the mentioned Schauder fixed point
principle (cf. [13]). To this end assume that (𝐸, || ⋅ ||) is a given
Banach space.

Theorem 1. LetΩ be a nonempty, bounded, closed, and convex
subset of 𝐸 and let 𝐹 : Ω → Ω be a completely continuous
operator (i.e., 𝐹 is continuous and the image 𝐹Ω is relatively
compact). Then 𝐹 has at least one fixed point in the set Ω (this
means that the equation 𝑥 = 𝐹𝑥 has at least one solution in the
set Ω).

Theorem 2. IfΩ is a nonempty, convex, and compact subset of
𝐸 and𝐹 : Ω → Ω is continuous on the setΩ, then the operator
𝐹 has at least one fixed point in the set Ω.

Observe thatTheorem 1 can be treated as a particular case
of Theorem 2 if we apply the well-known Mazur theorem
asserting that the closed convex hull of a compact subset of
a Banach space 𝐸 is compact [14]. The basic problem arising
in applying the Schauder theorem in the version presented
in Theorem 2 depends on finding a convex and compact
subset of 𝐸 which is transformed into itself by operator 𝐹

corresponding to an investigated operator equation.
In numerous situations, we are able to overcome the

above-indicated difficulty and to obtain an interesting result
on the existence of solutions of the investigated equations
(cf. [7, 15–17]). Below we provide an example justifying our
opinion [18].

To do this, let us denote by R the real line and put R
+
=

[0, +∞). Further, let Δ = {(𝑡, 𝑠) ∈ R2 : 0 ≤ 𝑠 ≤ 𝑡}.
Next, fix a function 𝑝 = 𝑝(𝑡) defined and continuous on

R
+
with positive real values. Denote by 𝐶

𝑝
= 𝐶(R

+
, 𝑝(𝑡)) the

space consisting of all real functions defined and continuous
on R

+
and such that

sup {|𝑥 (𝑡)| 𝑝 (𝑡) : 𝑡 ≥ 0} < ∞. (2)

It can be shown that 𝐶
𝑝
forms the Banach space with respect

to the norm

‖𝑥‖ = sup {|𝑥 (𝑡)| 𝑝 (𝑡) : 𝑡 ≥ 0} . (3)

For our further purposes, we recall the following criterion for
relative compactness in the space 𝐶

𝑝
[10, 15].

Theorem 3. Let 𝑋 be a bounded set in the space 𝐶
𝑝
. If all

functions belonging to 𝑋 are locally equicontinuous on the
interval R

+
and if lim

𝑇→∞
{sup{|𝑥(𝑡)|𝑝(𝑡) : 𝑡 ≥ 𝑇}} = 0

uniformly with respect to𝑋, then𝑋 is relatively compact in𝐶
𝑝
.

In what follows, if 𝑥 is an arbitrarily fixed function from
the space𝐶

𝑝
and if 𝑇 > 0 is a fixed number, we will denote by

𝜈
𝑇
(𝑥, 𝜀) the modulus of continuity of 𝑥 on the interval [0, 𝑇];

that is,

𝜈
𝑇

(𝑥, 𝜀) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : 𝑡, 𝑠 ∈ [0, 𝑇] , |𝑡 − 𝑠| ≤ 𝜀} .

(4)

Further on, we will investigate the solvability of the
nonlinear Volterra integral equation with deviated argument
having the form

𝑥 (𝑡) = 𝑑 (𝑡) + ∫

𝑡

0

𝑣 (𝑡, 𝑠, 𝑥 (𝜑 (𝑠))) 𝑑𝑠, (5)

where 𝑡 ∈ R
+
. Equation (5) will be investigated under the

following formulated assumptions.

(i) 𝑣 : Δ × R → R is a continuous function and there
exist continuous functions 𝑛 : Δ → R

+
, 𝑎 : R

+
→

(0,∞), 𝑏 : R
+
→ R
+
such that

|𝑣 (𝑡, 𝑠, 𝑥)| ≤ 𝑛 (𝑡, 𝑠) + 𝑎 (𝑡) 𝑏 (𝑠) |𝑥| (6)

for all (𝑡, 𝑠) ∈ Δ and 𝑥 ∈ R.

In order to formulate other assumptions, let us put

𝐿 (𝑡) = ∫

𝑡

0

𝑎 (𝑠) 𝑏 (𝑠) 𝑑𝑠, 𝑡 ≥ 0. (7)

Next, take an arbitrary number 𝑀 > 0 and consider the
space 𝐶

𝑝
, where 𝑝(𝑡) = [𝑎(𝑡) exp(𝑀𝐿(𝑡) + 𝑡)]

−1. Then, we can
present other assumptions.

(ii) The function 𝑑 : R
+

→ R is continuous and there
exists a nonnegative constant 𝐷 such that |𝑑(𝑡)| ≤

𝐷𝑎(𝑡) exp(𝑀𝐿(𝑡)) for 𝑡 ≥ 0.

(iii) There exists a constant𝑁 ≥ 0 such that

∫

𝑡

0

𝑛 (𝑡, 𝑠) 𝑑𝑠 ≤ 𝑁𝑎 (𝑡) exp (𝑀𝐿 (𝑡)) (8)

for 𝑡 ≥ 0.
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(iv) 𝜑 : R
+
→ R
+
is a continuous function satisfying the

condition

𝐿 (𝜑 (𝑡)) − 𝐿 (𝑡) ≤ 𝐾 (9)

for 𝑡 ∈ R
+
, where 𝐾 ≥ 0 is a constant.

(v) 𝐷+𝑁 < 1 and 𝑎(𝜑(𝑡))/𝑎(𝑡) ≤ 𝑀(1−𝐷−𝑁) exp(−𝑀𝐾)

for all 𝑡 ≥ 0.

Now, we can formulate the announced result.

Theorem 4. Under assumptions (i)–(v), (5) has at least one
solution 𝑥 in the space 𝐶

𝑝
such that |𝑥(𝑡)| ≤ 𝑎(𝑡) exp(𝑀𝐿(𝑡))

for 𝑡 ∈ R
+
.

Wegive the sketch of the proof (cf. [18]). First, let us define
the transformation 𝐹 on the space 𝐶

𝑝
by putting

(𝐹𝑥) (𝑡) = 𝑑 (𝑡) + ∫

𝑡

0

𝑣 (𝑡, 𝑠, 𝑥 (𝜑 (𝑠))) 𝑑𝑠, 𝑡 ≥ 0. (10)

In view of our assumptions, the function (𝐹𝑥)(𝑡) is continu-
ous on R

+
.

Further, consider the subset 𝐺 of the space 𝐶
𝑝
consisting

of all functions 𝑥 such that |𝑥(𝑡)| ≤ 𝑎(𝑡) exp(𝑀𝐿(𝑡)) for 𝑡 ∈

R
+
. Obviously, 𝐺 is nonempty, bounded, closed, and convex

in the space 𝐶
𝑝
. Taking into account our assumptions, for an

arbitrary fixed 𝑥 ∈ 𝐺 and 𝑡 ∈ R
+
, we get

|(𝐹𝑥) (𝑡)| ≤ |𝑑 (𝑡)| + ∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑣 (𝑡, 𝑠, 𝑥 (𝜑 (𝑠)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ 𝐷𝑎 (𝑡) exp (𝑀𝐿 (𝑡))

+ ∫

𝑡

𝑜

[𝑛 (𝑡, 𝑠) + 𝑎 (𝑡) 𝑏 (𝑠)
󵄨
󵄨
󵄨
󵄨
𝑥 (𝜑 (𝑠))

󵄨
󵄨
󵄨
󵄨
] 𝑑𝑠

≤ 𝐷𝑎 (𝑡) exp (𝑀𝐿 (𝑡)) + 𝑁𝑎 (𝑡) exp (𝑀𝐿 (𝑡))

+ 𝑎 (𝑡) ∫

𝑡

0

𝑏 (𝑠) 𝑎 (𝜑 (𝑠)) exp (𝑀𝐿 (𝜑 (𝑠))) 𝑑𝑠

≤ (𝐷 + 𝑁) 𝑎 (𝑡) exp (𝑀𝐿 (𝑡))

+ (1 − 𝐷 − 𝑁) 𝑎 (𝑡) ∫

𝑡

0

𝑀𝑎 (𝑠) 𝑏 (𝑠)

× exp (𝑀𝐿 (𝑠)) exp (−𝑀𝐾) exp (𝑀𝐾) 𝑑𝑠

≤ (𝐷 + 𝑁) 𝑎 (𝑡) exp (𝑀𝐿 (𝑡))

+ (1 − 𝐷 − 𝑁) 𝑎 (𝑡) exp (𝑀𝐿 (𝑡))

= 𝑎 (𝑡) exp (𝑀𝐿 (𝑡)) .

(11)

This shows that 𝐹 transforms the set 𝐺 into itself.
Next we show that 𝐹 is continuous on the set 𝐺.
To this end, fix 𝜀 > 0 and take 𝑥, 𝑦 ∈ 𝐺 such that ||𝑥 −

𝑦|| ≤ 𝜀. Next, choose arbitrary 𝑇 > 0. Using the fact that the
function 𝑣(𝑡, 𝑠, 𝑥) is uniformly continuous on the set [0, 𝑇]2 ×

[−𝛼(𝑇), 𝛼(𝑇)], where 𝛼(𝑇) = max{𝑎(𝜑(𝑡)) exp(𝑀𝐿(𝜑(𝑡))) :

𝑡 ∈ [0, 𝑇]}, for 𝑡 ∈ [0, 𝑇], we obtain
󵄨
󵄨
󵄨
󵄨
(𝐹𝑥) (𝑡) − (𝐹𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑣 (𝑡, 𝑠, 𝑥 (𝜑 (𝑠))) − 𝑣 (𝑡, 𝑠, 𝑦 (𝜑 (𝑠)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ 𝛽 (𝜀) ,

(12)

where 𝛽(𝜀) is a continuous function with the property
lim
𝜀→0

𝛽(𝜀) = 0.
Now, take 𝑡 ≥ 𝑇. Then we get

󵄨
󵄨
󵄨
󵄨
(𝐹𝑥) (𝑡) − (𝐹𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨
[𝑎 (𝑡) exp (𝑀𝐿 (𝑡) + 𝑡)]

−1

≤ {|(𝐹𝑥) (𝑡)| +
󵄨
󵄨
󵄨
󵄨
(𝐹𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨
}

× [𝑎 (𝑡) exp (𝑀𝐿 (𝑡))]
−1

⋅ 𝑒
−𝑡

≤ 2𝑒
−𝑡

.

(13)

Hence, for 𝑇 sufficiently large, we have
󵄨
󵄨
󵄨
󵄨
(𝐹𝑥) (𝑡) − (𝐹𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡) ≤ 𝜀 (14)

for 𝑡 ≥ 𝑇. Linking (12) and (14), we deduce that 𝐹 is
continuous on the set 𝐺.

The next essential step in our proof which enables us to
apply the Schauder fixed point theorem (Theorem 1) is to
show that the set 𝐹𝐺 is relatively compact in the space 𝐶

𝑝
.

To this end let us first observe that the inclusion 𝐹𝐺 ⊂ 𝐺 and
the description of 𝐺 imply the following estimate:

|(𝐹𝑥) (𝑡)| 𝑝 (𝑡) ≤ 𝑒
−𝑡

. (15)

This yields that

lim
𝑇→∞

{sup {|(𝐹𝑥) (𝑡)| 𝑝 (𝑡) : 𝑡 ≥ 𝑇}} = 0 (16)

uniformly with respect to the set 𝐺.
On the other hand, for fixed 𝜀 > 0, 𝑇 > 0 and for 𝑡, 𝑠 ∈

[0, 𝑇] such that |𝑡 − 𝑠| ≤ 𝜀, in view of our assumptions, for
𝑥 ∈ 𝐺, we derive the following estimate:

|(𝐹𝑥) (𝑡) − (𝐹𝑥) (𝑠)|

≤ |𝑑 (𝑡) − 𝑑 (𝑠)|

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

𝑣 (𝑡, 𝜏, 𝑥 (𝜑 (𝜏))) 𝑑𝜏 − ∫

𝑠

0

𝑣 (𝑡, 𝜏, 𝑥 (𝜑 (𝜏))) 𝑑𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑠

0

𝑣 (𝑡, 𝜏, 𝑥 (𝜑 (𝜏))) 𝑑𝜏 − ∫

𝑠

0

𝑣 (𝑠, 𝜏, 𝑥 (𝜑 (𝜏))) 𝑑𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜈
𝑇

(𝑑, 𝜀) + 𝜀max {𝑛 (𝑡, 𝜏) + 𝑎 (𝜏) 𝑏 (𝜏)

×𝑝 (𝜑 (𝜏)) : 0 ≤ 𝜏 ≤ 𝑡 ≤ 𝑇}

+ 𝑇𝜈
𝑇

(𝑣 (𝜀, 𝑇, 𝛼 (𝑇))) ,

(17)

where we denoted
𝜈
𝑇

(𝑣 (𝜀, 𝑇, 𝛼 (𝑇)))

= sup {|𝑣 (𝑡, 𝑢, 𝑣) − 𝑣 (𝑠, 𝑢, 𝑣)| : 𝑡, 𝑠 ∈ [0, 𝑇] ,

|𝑡 − 𝑠| ≤ 𝜀, 𝑢 ∈ [0, 𝑇] , |𝑣| ≤ 𝛼 (𝑇)} .

(18)
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Taking into account the fact that lim
𝜀→0

𝜈
𝑇
(𝑑, 𝜀) =

lim
𝜀→0

𝜈
𝑇
(𝑣(𝜀, 𝑇, 𝛼(𝑇))) = 0, we infer that functions belong-

ing to the set 𝐹𝐺 are equicontinuous on each interval [0, 𝑇].
Combining this fact with (16), in view of Theorem 3, we
conclude that the set 𝐹𝐺 is relatively compact. Applying
Theorem 1, we complete the proof.

Another very useful fixed point theorem using the com-
pactness conditions is the well-known Krasnosel’skii fixed
point theorem [19].That theoremwas frequently modified by
researchers working in the fixed point theory (cf. [6, 7, 20]),
but it seems that the version due to Burton [21] is the most
appropriate to be used in applications.

Below we formulate that version.

Theorem 5. Let 𝑆 be a nonempty, closed, convex, and bounded
subset of the Banach space𝑋 and let𝐴 : 𝑋 → 𝑋 and 𝐵 : 𝑆 →

𝑋 be two operators such that

(a) 𝐴 is a contraction, that is, there exists a constant 𝑘 ∈

[0, 1) such that ||𝐴𝑥 − 𝐴𝑦|| ≤ 𝑘||𝑥 − 𝑦|| for 𝑥, 𝑦 ∈ 𝑋,
(b) 𝐵 is completely continuous,
(c) 𝑥 = 𝐴𝑥 + 𝐵𝑦 ⇒ 𝑥 ∈ 𝑆 for all 𝑦 ∈ 𝑆.

Then the equation 𝐴𝑥 + 𝐵𝑥 = 𝑥 has a solution in 𝑆.

In order to show the applicability of Theorem 5, we will
consider the following nonlinear functional integral equation
[22]:

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝛼
1
(𝑡)) , . . . , 𝑥 (𝛼

𝑛
(𝑡)))

+ ∫

𝛽(𝑡)

0

𝑔 (𝑡, 𝑠, 𝑥 (𝛾
1
(𝑠)) , . . . , 𝑥 (𝛾

𝑚
(𝑠))) 𝑑𝑠,

(19)

where 𝑡 ∈ R
+
. Here we assume that 𝑓 and 𝑔 are given

functions.
The above equation will be studied in the space 𝐵𝐶(R

+
)

consisting of all real functions defined, continuous, and
bounded on the interval R

+
and equipped with the usual

supremum norm

‖𝑥‖ = sup {|𝑥 (𝑡)| : 𝑡 ∈ R
+
} . (20)

Observe that the space 𝐵𝐶(R
+
) is a special case of the

previously considered space 𝐶
𝑝
with 𝑝(𝑡) = 1 for 𝑡 ∈

R
+
. This fact enables us to adapt the relative compactness

criterion contained inTheorem 3 for our further purposes.
In what follows we will impose the following require-

ments concerning the components involved in (19):

(i) The function 𝑓 : R
+
× R𝑛 → R is continuous and

there exist constants 𝑘
𝑖
∈ [0, 1) (𝑖 = 1, 2, . . . , 𝑛) such

that

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) − 𝑓 (𝑡, 𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)
󵄨
󵄨
󵄨
󵄨
≤

𝑛

∑

𝑖=1

𝑘
𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
− 𝑦
𝑖

󵄨
󵄨
󵄨
󵄨

(21)

for all 𝑡 ∈ R
+
and for all (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), (𝑦
1
, 𝑦
2
,

. . . , 𝑦
𝑛
) ∈ R𝑛.

(ii) The function 𝑡 → 𝑓(𝑡, 0, . . . , 0) is bounded on R
+

with 𝐹
0
= sup{|𝑓(𝑡, 0, . . . , 0)| : 𝑡 ∈ R

+
}.

(iii) The functions 𝛼
𝑖
, 𝛾
𝑗

: R
+

→ R
+
are continuous

and 𝛼
𝑖
(𝑡) → ∞ as 𝑡 → ∞ (𝑖 = 1, 2, . . . , 𝑛; 𝑗 =

1, 2, . . . , 𝑚).
(iv) The function 𝛽 : R

+
→ R
+
is continuous.

(v) The function 𝑔 : R2
+
× R𝑚 → R is continuous and

there exist continuous functions 𝑞 : R2
+

→ R
+
and

𝑎, 𝑏 : R
+
→ R
+
such that

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡, 𝑠, 𝑥

1
, . . . , 𝑥

𝑚
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑞 (𝑡, 𝑠) + 𝑎 (𝑡) 𝑏 (𝑠)

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

(22)

for all 𝑡, 𝑠 ∈ R
+
and (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
) ∈ R𝑚. Moreover,

we assume that

lim
𝑡→∞

∫

𝛽(𝑡)

0

𝑞 (𝑡, 𝑠) 𝑑𝑠 = 0, lim
𝑡→∞

𝑎 (𝑡) ∫

𝛽(𝑡)

0

𝑏 (𝑠) 𝑑𝑠 = 0.

(23)

Now, let us observe that based on assumption (v), we
conclude that the functions 𝑣

1
, 𝑣
2
: R
+

→ R
+
defined by

the formulas

𝑣
1
(𝑡) = ∫

𝛽(𝑡)

0

𝑞 (𝑡, 𝑠) 𝑑𝑠, 𝑣
2
(𝑡) = 𝑎 (𝑡) ∫

𝛽(𝑡)

0

𝑏 (𝑠) 𝑑𝑠 (24)

are continuous and bounded on R
+
. Obviously this implies

that the constants𝑀
1
,𝑀
2
defined as:

𝑀
𝑖
= sup {𝑣

𝑖
(𝑡) : 𝑡 ∈ R

+
} (𝑖 = 1, 2) (25)

are finite.
In order to formulate our last assumption, let us denote

𝑘 = ∑
𝑛

𝑖=1
𝑘
𝑖
, where the constants 𝑘

𝑖
(𝑖 = 1, 2, . . . , 𝑛) appear in

assumption (i).

(vi) 𝑘 + 𝑚𝑀
2
< 1.

Then we have the following result [22] which was announced
above.

Theorem 6. Under assumptions (i)–(vi), (19) has at least one
solution in the space 𝐵𝐶(R

+
). Moreover, solutions of (19) are

globally attractive.

Remark 7. In order to recall the concept of the global attrac-
tivitymentioned in the above theorem (cf. [22]), suppose that
Ω is a nonempty subset of the space 𝐵𝐶(R

+
) and 𝑄 : Ω →

𝐵𝐶(R
+
) is an operator. Consider the operator equation

𝑥 (𝑡) = (𝑄𝑥) (𝑡) , 𝑡 ∈ R
+
. (26)

We say that solutions of (26) are globally attractive if for
arbitrary solutions 𝑥, 𝑦 of this equation, we have that

lim
𝑡→∞

(𝑥 (𝑡) − 𝑦 (𝑡)) = 0. (27)

Let us mention that the above-defined concept was intro-
duced in [23, 24].



Abstract and Applied Analysis 5

Proof of Theorem 6. We provide only the sketch of the proof.
Consider the ball 𝐵

𝑟
in the space𝑋 = 𝐵𝐶(R

+
) centered at the

zero function 𝜃 andwith radius 𝑟 = (𝐹
0
+𝑀
1
)/[1−(𝑘+𝑚𝑀

2
)].

Next, define two mappings 𝐴 : 𝑋 → 𝑋 and 𝐵 : 𝐵
𝑟
→ 𝑋 by

putting

(𝐴𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝛼
1
(𝑡)) , . . . , 𝑥 (𝛼

𝑛
(𝑡))) ,

(𝐵𝑥) (𝑡) = ∫

𝛽(𝑡)

0

𝑔 (𝑡, 𝑠, 𝑥 (𝛾
1
(𝑠)) , . . . , 𝑥 (𝛾

𝑚
(𝑠))) 𝑑𝑠,

(28)

for 𝑡 ∈ R
+
. Then (19) can be written in the form

𝑥 (𝑡) = (𝐴𝑥) (𝑡) + (𝐵𝑥) (𝑡) , 𝑡 ∈ R
+
. (29)

Notice that in view of assumptions (i)–(iii), the mapping
𝐴 is well defined, and for arbitrarily fixed function 𝑥 ∈ 𝑋,
the function 𝐴𝑥 is continuous and bounded on R

+
. Thus

𝐴 transforms 𝑋 into itself. Similarly, applying assumptions
(iii)–(v), we deduce that the function 𝐵𝑥 is continuous and
bounded onR

+
.Thismeans that𝐵 transforms the ball𝐵

𝑟
into

𝑋.
Now, we check that operators𝐴 and𝐵 satisfy assumptions

imposed in Theorem 5. To this end take 𝑥, 𝑦 ∈ 𝑋. Then, in
view of assumption (i), for a fixed 𝑡 ∈ R

+
, we get

󵄨
󵄨
󵄨
󵄨
(𝐴𝑥) (𝑡) − (𝐴𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨
≤

𝑛

∑

𝑖=1

𝑘
𝑖

󵄨
󵄨
󵄨
󵄨
𝑥 (𝛼
𝑖
(𝑡)) − 𝑦 (𝛼

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨

≤ 𝑘
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
.

(30)

This implies that ||𝐴𝑥 − 𝐴𝑦|| ≤ 𝑘||𝑥 − 𝑦||, and in view of
assumption (vi), we infer that 𝐴 is a contraction on𝑋.

Next, we prove that𝐵 is completely continuous on the ball
𝐵
𝑟
. In order to show the indicated property of 𝐵, we fix 𝜀 > 0

and we take 𝑥, 𝑦 ∈ 𝐵
𝑟
with ||𝑥 − 𝑦|| ≤ 𝜀. Then, taking into

account our assumptions, we obtain

󵄨
󵄨
󵄨
󵄨
(𝐵𝑥) (𝑡) − (𝐵𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ ∫

𝛽(𝑡)

0

[
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡, 𝑠, 𝑥 (𝛾

1
(𝑠)) , . . . , 𝑥 (𝛾

𝑚
(𝑠)))

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡, 𝑠, 𝑦 (𝛾

1
(𝑠)) , . . . , 𝑦 (𝛾

𝑚
(𝑠)))

󵄨
󵄨
󵄨
󵄨
] 𝑑𝑠

≤ 2 (𝑣
1
(𝑡) + 𝑟𝑚𝑣

2
(𝑡)) .

(31)

Hence, keeping inmind assumption (v), we deduce that there
exists 𝑇 > 0 such that 𝑣

1
(𝑡) + 𝑟𝑚𝑣

2
(𝑡) ≤ 𝜀/2 for 𝑡 ≥ 𝑇.

Combining this fact with (31), we get
󵄨
󵄨
󵄨
󵄨
(𝐵𝑥) (𝑡) − (𝐵𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝜀 (32)

for 𝑡 ≥ 𝑇.
Further, for an arbitrary 𝑡 ∈ [0, 𝑇], in the similar way, we

obtain

󵄨
󵄨
󵄨
󵄨
(𝐵𝑥) (𝑡) − (𝐵𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ ∫

𝛽(𝑡)

0

𝜔
𝑇

𝑟
(𝑔, 𝜀) 𝑑𝑠 ≤ 𝛽

𝑇
𝜔
𝑇

𝑟
(𝑔, 𝜀) ,

(33)

where we denoted 𝛽
𝑇
= sup{𝛽(𝑡) : 𝑡 ∈ [0, 𝑇]} and

𝜔
𝑇

𝑟
(𝑔, 𝜀) = sup {󵄨󵄨󵄨

󵄨
𝑔 (𝑡, 𝑠, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
)

−𝑔 (𝑡, 𝑠, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
)
󵄨
󵄨
󵄨
󵄨
: 𝑡 ∈ [0, 𝑇] ,

𝑠 ∈ [0, 𝛽
𝑇
] , 𝑥
𝑖
, 𝑦
𝑖
∈ [−𝑟, 𝑟] ,

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
− 𝑦
𝑖

󵄨
󵄨
󵄨
󵄨
≤ 𝜀 (𝑖 = 1, 2, . . . , 𝑚)} .

(34)

Keeping in mind the uniform continuity of the function 𝑔 on
the set [0, 𝑇]×[0, 𝛽

𝑇
]×[−𝑟, 𝑟]

𝑚, we deduce that𝜔𝑇
𝑟
(𝑔, 𝜀) → 0

as 𝜀 → 0. Hence, in view of (32) and (33), we conclude that
the operator 𝐵 is continuous on the ball 𝐵

𝑟
.

The boundedness of the operator 𝐵 is a consequence of
the inequality

|(𝐵𝑥) (𝑡)| ≤ 𝑣
1
(𝑡) + 𝑟𝑚𝑣

2
(𝑡) (35)

for 𝑡 ∈ R
+
. To verify that the operator 𝐵 satisfies assumptions

of Theorem 3 adapted to the case of the space 𝐵𝐶(R
+
), fix

arbitrarily 𝜀 > 0. In view of assumption (v), we can choose
𝑇 > 0 such that 𝑣

1
(𝑡) + 𝑟𝑚𝑣

2
(𝑡) ≤ 𝜀 for 𝑡 ≥ 𝑇. Further, take

an arbitrary function 𝑥 ∈ 𝐵
𝑟
. Then, keeping in mind (35), for

𝑡 ≥ 𝑇, we infer that

|(𝐵𝑥) (𝑡)| ≤ 𝜀. (36)

Next, take arbitrary numbers 𝑡, 𝜏 ∈ [0, 𝑇] with |𝑡 − 𝜏| ≤ 𝜀.
Then we obtain the following estimate:

|(𝐵𝑥) (𝑡) − (𝐵𝑥) (𝜏)|

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝛽(𝑡)

𝛽(𝜏)

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡, 𝑠, 𝑥 (𝛾

1
(𝑠)) , . . . , 𝑥 (𝛾

𝑚
(𝑠)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ ∫

𝛽(𝜏)

0

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡, 𝑠, 𝑥 (𝛾

1
(𝑠)) , . . . , 𝑥 (𝛾

𝑚
(𝑠)))

−𝑔 (𝜏, 𝑠, 𝑥 (𝛾
1
(𝑠)) , . . . , 𝑥 (𝛾

𝑚
(𝑠)))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝛽(𝑡)

𝛽(𝜏)

[𝑞 (𝑡, 𝑠) + 𝑎 (𝑡) 𝑏 (𝑠)

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥 (𝛾
𝑖
(𝑠))

󵄨
󵄨
󵄨
󵄨
] 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ ∫

𝛽(𝜏)

0

𝜔
𝑇

1
(𝑔, 𝜀; 𝑟) 𝑑𝑠

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝛽(𝑡)

𝛽(𝜏)

𝑞 (𝑡, 𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑎 (𝑡)𝑚𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝛽(𝑡)

𝛽(𝜏)

𝑏 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝛽
𝑇
𝜔
𝑇

1
(𝑔, 𝜀; 𝑟) ,

(37)

where we denoted

𝜔
𝑇

1
(𝑔, 𝜀; 𝑟) = sup {󵄨󵄨󵄨

󵄨
𝑔 (𝑡, 𝑠, 𝑥

1
, . . . , 𝑥

𝑚
)

−𝑔 (𝜏, 𝑠, 𝑥
1
, . . . , 𝑥

𝑚
)
󵄨
󵄨
󵄨
󵄨
: 𝑡, 𝜏 ∈ [0, 𝑇] ,

|𝑡 − 𝑠| ≤ 𝜀, 𝑠 ∈ [0, 𝛽
𝑇
] ,

󵄨
󵄨
󵄨
󵄨
𝑥
1

󵄨
󵄨
󵄨
󵄨
≤ 𝑟, . . . ,

󵄨
󵄨
󵄨
󵄨
𝑥
𝑚

󵄨
󵄨
󵄨
󵄨
≤ 𝑟} .

(38)
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From estimate (37), we get

|(𝐵𝑥) (𝑡) − (𝐵𝑥) (𝜏)|

≤ 𝑞
𝑇
𝜈
𝑇

(𝛽, 𝜀) + 𝑟𝑚𝑎
𝑇
𝑏
𝑇
𝜈
𝑇

(𝛽, 𝜀) + 𝛽
𝑇
𝜔
𝑇

1
(𝑔, 𝜀; 𝑟) ,

(39)

where 𝑞
𝑇

= max{𝑞(𝑡, 𝑠) : 𝑡 ∈ [0, 𝑇], 𝑠 ∈ [0, 𝛽
𝑇
]}, 𝑎
𝑇

=

max{𝑎(𝑡) : 𝑡 ∈ [0, 𝑇]}, 𝑏
𝑇

= max{𝑏(𝑡) : 𝑡 ∈ [0, 𝛽
𝑇
]},

and 𝜈
𝑇
(𝛽, 𝜀) denotes the usual modulus of continuity of the

function 𝛽 on the interval [0, 𝑇].
Now, let us observe that in view of the standard properties

of the functions 𝛽 = 𝛽(𝑡), 𝑔 = 𝑔(𝑡, 𝑠, 𝑥
1
, . . . , 𝑥

𝑚
), we infer

that 𝜈𝑇(𝛽, 𝜀) → 0 and 𝜔
𝑇

1
(𝑔, 𝜀; 𝑟) → 0 as 𝜀 → 0. Hence,

taking into account the boundedness of the image 𝐵𝐵
𝑟
and

estimates (36) and (39), in view of Theorem 3, we conclude
that the set 𝐵𝐵

𝑟
is relatively compact in the space 𝐵𝐶(R

+
);

that is, 𝐵 is completely continuous on the ball 𝐵
𝑟
.

In what follows fix arbitrary 𝑥 ∈ 𝐵𝐶(R
+
) and assume

that the equality 𝑥 = 𝐴𝑥 + 𝐵𝑦 holds for some 𝑦 ∈ 𝐵
𝑟
. Then,

utilizing our assumptions, for a fixed 𝑡 ∈ R
+
, we get

|𝑥 (𝑡)| ≤ |(𝐴𝑥) (𝑡)| +
󵄨
󵄨
󵄨
󵄨
(𝐵𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥 (𝛼

1
(𝑡)) , . . . , 𝑥 (𝛼

𝑛
(𝑡))) − 𝑓 (𝑡, 0, . . . , 0)

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 0, . . . , 0)

󵄨
󵄨
󵄨
󵄨

+ ∫

𝛽(𝑡)

0

𝑞 (𝑡, 𝑠) 𝑑𝑠 + 𝑚
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
𝑎 (𝑡) ∫

𝛽(𝑡)

0

𝑏 (𝑠) 𝑑𝑠

≤ 𝑘 ‖𝑥‖ + 𝐹
0
+𝑀
1
+ 𝑚𝑟𝑀

2
.

(40)

Hence we obtain

‖𝑥‖ ≤

𝐹
0
+𝑀
1
+ 𝑚𝑟𝑀

2

1 − 𝑘

. (41)

On the other hand, we have that 𝑟 = (𝐹
0
+𝑀
1
+ 𝑚𝑟𝑀

2
)/(1 −

𝑘). Thus ||𝑥|| ≤ 𝑟 or, equivalently, 𝑥 ∈ 𝐵
𝑟
. This shows that

assumption (c) of Theorem 5 is satisfied.
Finally, combining all of the above-established facts and

applying Theorem 5, we infer that there exists at least one
solution 𝑥 = 𝑥(𝑡) of (19).

The proof of the global attractivity of solutions of (19) is a
consequence of the estimate

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨

≤

𝑛

∑

𝑖=1

𝑘
𝑖
max {󵄨󵄨󵄨

󵄨
𝑥 (𝛼
𝑖
(𝑡)) − 𝑦 (𝛼

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
: 𝑖 = 1, 2, . . . , 𝑛}

+ 2∫

𝛽(𝑡)

0

𝑞 (𝑡, 𝑠) 𝑑𝑠

+ 𝑎 (𝑡) ∫

𝛽(𝑡)

0

(𝑏 (𝑠)

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥 (𝛾
𝑖
(𝑠))

󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠

+ 𝑎 (𝑡) ∫

𝛽(𝑡)

0

(𝑏 (𝑠)

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑦 (𝛾
𝑖
(𝑠))

󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠

≤ 𝑘max {󵄨󵄨󵄨
󵄨
𝑥 (𝛼
𝑖
(𝑡)) − 𝑦 (𝛼

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
: 𝑖 = 1, 2, . . . , 𝑛}

+ 2𝑣
1
(𝑡) + 𝑚 (‖𝑥‖ +

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
) 𝑣
2
(𝑡) ,

(42)

which is satisfied for arbitrary solutions 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) of
(19).

Hence we get

lim sup
𝑡→∞

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ 𝑘max
1≤𝑖≤𝑛

{lim sup
𝑡→∞

󵄨
󵄨
󵄨
󵄨
𝑥 (𝛼
𝑖
(𝑡) − 𝑦 (𝛼

𝑖
(𝑡)))

󵄨
󵄨
󵄨
󵄨
}

+ 2lim sup
𝑡→∞

𝑣
1
(𝑡) + 𝑚 (‖𝑥‖ +

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
) lim sup
𝑡→∞

𝑣
2
(𝑡)

= 𝑘lim sup
𝑡→∞

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨

(43)

which implies that lim sup
𝑡→∞

|𝑥(𝑡) − 𝑦(𝑡)| = lim
𝑡→∞

|𝑥(𝑡) −

𝑦(𝑡)| = 0. This means that the solutions of (19) are globally
attractive (cf. Remark 7).

It is worthwhile mentioning that in the literature one can
encounter other formulations of the Krasnosel’skii-Burton
fixed point theorem (cf. [6, 7, 20, 21]). In some of those
formulations and generalizations, there is used the concept
of a measure of noncompactness (both in strong and in weak
sense) and, simultaneously, the requirement of continuity
is replaced by the assumption of weak continuity or weak
sequential continuity of operators involved (cf. [6, 20], for
instance).

In what follows we pay our attention to another fixed
point theorem which uses the compactness argumentation.
Namely, that theorem was obtained by Schaefer in [25].

Subsequently that theorem was formulated in other ways
and we are going here to present two versions of that theorem
(cf. [11, 26]).

Theorem8. Let (𝐸, ||⋅||) be a normed space and let𝑇 : 𝐸 → 𝐸

be a continuous mapping which transforms bounded subsets of
𝐸 onto relatively compact ones. Then either

(i) the equation 𝑥 = 𝑇𝑥 has a solution

or

(ii) the set⋃
0≤𝜆≤1

{𝑥 ∈ 𝐸 : 𝑥 = 𝜆𝑇𝑥} is unbounded.

The below presented version of Schaefer fixed point
theorem seems to be more convenient in applications.

Theorem 9. Let 𝐸, || ⋅ || be a Banach space and let 𝑇 : 𝐸 → 𝐸

be a continuous compact mapping (i.e., 𝑇 is continuous and
𝑇 maps bounded subsets of 𝐸 onto relatively compact ones).
Moreover, one assumes that the set

⋃

0≤𝜆≤1

{𝑥 ∈ 𝐸 : 𝑥 = 𝜆𝑇𝑥} (44)

is bounded. Then 𝑇 has a fixed point.
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It is easily seen that Theorem 9 is a particular case of
Theorem 8.

Observe additionally, that Schaefer fixed point theorem
seems to be less convenient in applications than Schauder
fixed point theorem (cf. Theorems 1 and 2). Indeed, Schaefer
theorem requires a priori bound on utterly unknown solu-
tions of the operator equation 𝑥 = 𝜆𝑇𝑥 for 𝜆 ∈ [0, 1]. On the
other hand, the proof of Schaefer theorem requires the use of
the Schauder fixed point principle (cf. [27], for details).

It is worthwhile mentioning that an interesting result on
the existence of periodic solutions of an integral equation,
based on a generalization of Schaefer fixed point theorem,
may be found in [26].

3. Measures of Noncompactness and
Their Applications

Let us observe that in order to apply the fundamental fixed
point theorem based on compactness conditions, that is, the
Schauder fixed point theorem, say, the version of Theorem 2,
we are forced to find a convex and compact subset of a Banach
space 𝐸 which is transformed into itself by an operator 𝐹.
In general, it is a hard task to encounter a set of such a type
[16, 28]. On the other hand, if we apply Schauder fixed point
theorem formulated as Theorem 1, we have to prove that an
operator 𝐹 is completely continuous. This causes, in general,
that we have to impose rather strong assumptions on terms
involved in a considered operator equation.

In view of the above-mentioned difficulties starting from
seventies of the past century mathematicians working on
fixed point theory created the concept of the so-called
measure of noncompactness which allowed to overcome the
above-indicated troubles. Moreover, it turned out that the
use of the technique of measures of noncompactness allows
us also to obtain a certain characterization of solutions of
the investigated operator equations (functional, differential,
integral, etc.). Such a characterization is possible provided we
use the concept of a measure of noncompactness defined in
an appropriate axiomatic way.

It is worthwhile noticing that up to now there have
appeared a lot of various axiomatic definitions of the concept
of a measure of noncompactness. Some of those definitions
are very general and not convenient in practice. More
precisely, in order to apply such a definition, we are often
forced to impose some additional conditions on a measure
of noncompactness involved (cf. [8, 29]).

By these reasons it seems that the axiomatic definition of
the concept of a measure of noncompactness should be not
very general and should require satisfying such conditions
which enable the convenience of their use in concrete
applications.

Below we present axiomatics which seems to satisfy the
above-indicated requirements. That axiomatics was intro-
duced by Banaś and Goebel in 1980 [10].

In order to recall that axiomatics, let us denote by M
𝐸

the family of all nonempty and bounded subsets of a Banach
space 𝐸 and by N

𝐸
its subfamily consisting of relatively

compact sets. Moreover, let 𝐵(𝑥, 𝑟) stand for the ball with the

center at 𝑥 and with radius 𝑟. We write 𝐵
𝑟
to denote the ball

𝐵(𝜃, 𝑟), where 𝜃 is the zero element in 𝐸. If 𝑋 is a subset of
𝐸, we write 𝑋, Conv𝑋 to denote the closure and the convex
closure of 𝑋, respectively. The standard algebraic operations
on sets will be denoted by𝑋 + 𝑌 and 𝜆𝑋, for 𝜆 ∈ R.

As we announced above, we accept the following defini-
tion of the concept of a measure of noncompactness [10].

Definition 10. A function 𝜇 : M
𝐸

→ R
+
= [0,∞) is said to

be ameasure of noncompactness in the space𝐸 if the following
conditions are satisfied.

(1
𝑜
) The family ker 𝜇 = {𝑋 ∈ M

𝐸
: 𝜇(𝑋) = 0} is nonempty

and ker 𝜇 ⊂ N.

(2
𝑜
) 𝑋 ⊂ 𝑌 ⇒ 𝜇(𝑋) ≤ 𝜇(𝑌).

(3
𝑜
) 𝜇(𝑋) = 𝜇(Conv𝑋) = 𝜇(𝑋).

(4
𝑜
) 𝜇(𝜆𝑋+(1−𝜆)𝑌) ≤ 𝜆𝜇(𝑋)+(1−𝜆)𝜇(𝑋) for 𝜆 ∈ [0, 1].

(5
𝑜
) If (𝑋

𝑛
) is a sequence of closed sets fromM

𝐸
such that

𝑋
𝑛+1

⊂ 𝑋
𝑛
for 𝑛 = 1, 2, . . . and if lim

𝑛→∞
𝜇(𝑋
𝑛
) = 0,

then the set𝑋
∞

= ⋂
∞

𝑛=1
𝑋
𝑛
is nonempty.

Let us pay attention to the fact that from axiom (5
𝑜
)

we infer that 𝜇(𝑋
∞
) ≤ 𝜇(𝑋

𝑛
) for any 𝑛 = 1, 2, . . .. This

implies that 𝜇(𝑋
∞
) = 0. Thus𝑋

∞
belongs to the family ker 𝜇

described in axiom (1
𝑜
). The family ker 𝜇 is called the kernel

of the measure of noncompactness 𝜇.
The property of the measure of noncompactness 𝜇 men-

tioned above plays a very important role in applications.
With the help of the concept of a measure of noncom-

pactness, we can formulate the following useful fixed point
theorem [10] which is called the fixed point theoremofDarbo
type.

Theorem 11. Let Ω be a nonempty, bounded, closed, and
convex subset of a Banach space 𝐸 and let 𝐹 : Ω → Ω be
a continuous operator which is a contraction with respect to a
measure of noncompactness 𝜇; that is, there exists a constant 𝑘,
𝑘 ∈ [0, 1), such that 𝜇(𝐹𝑋) ≤ 𝑘𝜇(𝑋) for any nonempty subset
𝑋 of the setΩ. Then the operator 𝐹 has at least one fixed point
in the set Ω.

In the sequel we show an example of the applicability
of the technique of measures of noncompactness expressed
by Theorem 11 in proving the existence of solutions of the
operator equations.

Namely, we will work on the Banach space 𝐶[𝑎, 𝑏]

consisting of real functions defined and continuous on the
interval [𝑎, 𝑏] and equipped with the standard maximum
norm. For sake of simplicity, we will assume that [𝑎, 𝑏] =

[0, 1] = 𝐼, so the space on question can be denoted by 𝐶(𝐼).
One of the most important and handy measures of

noncompactness in the space 𝐶(𝐼) can be defined in the way
presented below [10].

In order to present this definition, take an arbitrary set
𝑋 ∈ M

𝐶(𝐼)
. For 𝑥 ∈ 𝑋 and for a given 𝜀 > 0, let us put

𝜔 (𝑥, 𝜀) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : 𝑡, 𝑠 ∈ 𝐼, |𝑡 − 𝑠| ≤ 𝜀} . (45)
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Next, let us define

𝜔 (𝑋, 𝜀) = sup {𝜔 (𝑥, 𝜀) : 𝑥 ∈ 𝑋} ,

𝜔
0
(𝑋) = lim

𝜀→0

𝜔 (𝑋, 𝜀) .

(46)

It may be shown that the function 𝜔
0
(𝑋) is the measure of

noncompactness in the space 𝐶(𝐼) (cf. [10]). This measure
has also some additional properties. For example, 𝜔

0
(𝜆𝑋) =

|𝜆|𝜔
0
(𝑋) and 𝜔

0
(𝑋 + 𝑌) ≤ 𝜔

0
(𝑋) + 𝜔

0
(𝑌) provided 𝑋,𝑌 ∈

M
𝐶(𝐼)

and 𝜆 ∈ R [10].
In what follows we will consider the nonlinear Volterra

singular integral equation having the form

𝑥 (𝑡) = 𝑓
1
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑎 (𝑡))) + (𝐺𝑥) (𝑡) ∫

𝑡

0

𝑓
2
(𝑡, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠,

(47)

where 𝑡 ∈ 𝐼 = [0, 1], 𝑎 : 𝐼 → 𝐼 is a continuous function, and
𝐺, 𝑄 are operators acting continuously from the space 𝐶(𝐼)

into itself. Apart from this, we assume that the function 𝑓
2

has the form

𝑓
2
(𝑡, 𝑠) = 𝑘 (𝑡, 𝑠) 𝑔 (𝑡, 𝑠) , (48)

where 𝑘 : Δ → R is continuous and 𝑔 is monotonic with
respect to the first variable and may be discontinuous on the
triangle Δ = {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 1}.

Equation (47) will be considered in the space 𝐶(𝐼) under
the following assumptions (cf. [30]).

(i) 𝑎 : 𝐼 → 𝐼 is a continuous function.
(ii) The function 𝑓

1
: 𝐼 ×R ×R → R is continuous and

there exists a nonnegative constant 𝑝 such that

󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑡, 𝑥
1
, 𝑦
1
) − 𝑓
1
(𝑡, 𝑥
2
, 𝑦
2
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑝max {󵄨󵄨󵄨

󵄨
𝑥
1
− 𝑥
2

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑦
1
− 𝑦
2

󵄨
󵄨
󵄨
󵄨
}

(49)

for any 𝑡 ∈ 𝐼 and for all 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
∈ R.

(iii) The operator 𝐺 transforms continuously the space
𝐶(𝐼) into itself and there exists a nonnegative constant
𝑞 such that 𝜔

0
(𝐺𝑋) ≤ 𝑞𝜔

0
(𝑋) for any set 𝑋 ∈ M

𝐶(𝐼)
,

where 𝜔
0
is the measure of noncompactness defined

by (46).
(iv) There exists a nondecreasing function 𝜑 : R

+
→ R
+

such that ||𝐺𝑥|| ≤ 𝜑(||𝑥||) for any 𝑥 ∈ 𝐶(𝐼).
(v) The operator𝑄 acts continuously from the space𝐶(𝐼)

into itself and there exists a nondecreasing function
Ψ : R

+
→ R

+
such that ||𝑄𝑥|| ≤ Ψ(||𝑥||) for any

𝑥 ∈ 𝐶(𝐼).
(vi) 𝑓

2
: Δ → R has the form (48), where the function

𝑘 : Δ → R is continuous.
(vii) The function 𝑔(𝑡, 𝑠) = 𝑔 : Δ → R

+
occurring in

the decomposition (48) is monotonic with respect to
𝑡 (on the interval [𝑠, 1]), and for any fixed 𝑡 ∈ 𝐼, the
function 𝑠 → 𝑔(𝑡, 𝑠) is Lebesgue integrable over the
interval [0, 𝑡]. Moreover, for every 𝜀 > 0, there exists

𝛿 > 0 such that for all 𝑡
1
, 𝑡
2
∈ 𝐼 with 𝑡

1
< 𝑡
2
and

𝑡
2
− 𝑡
1
≤ 𝛿 the following inequalities are satisfied:

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
1

0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)] 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜀,

∫

𝑡
2

𝑡
1

𝑔 (𝑡
2
, 𝑠) 𝑑𝑠 ≤ 𝜀.

(50)

The main result concerning (47), which we are going to
present now, will be preceded by a few remarks and lemmas
(cf. [30]). In order to present these remarks and lemmas, let
us consider the function ℎ : 𝐼 → R

+
defined by the formula

ℎ (𝑡) = ∫

𝑡

0

𝑔 (𝑡, 𝑠) 𝑑𝑠. (51)

In view of assumption (vii), this function is well defined.

Lemma 12. Under assumption (vii), the function ℎ is continu-
ous on the interval 𝐼.

For proof, we refer to [30].
In order to present the last assumptions needed further

on, let us define the constants 𝑘, 𝑓
1
, ℎ by putting

𝑘 = sup {|𝑘 (𝑡, 𝑠)| : (𝑡, 𝑠) ∈ Δ} ,

𝑓
1
= sup {󵄨󵄨󵄨

󵄨
𝑓
1
(𝑡, 0, 0)

󵄨
󵄨
󵄨
󵄨
: 𝑡 ∈ 𝐼} ,

ℎ = sup {ℎ (𝑡) : 𝑡 ∈ 𝐼} .

(52)

The constants 𝑘 and 𝑓
1
are finite in view of assumptions (vi)

and (ii), while the fact that ℎ < ∞ is a consequence of
assumption (vii) and Lemma 12.

Now, we formulate the announced assumption.

(viii) There exists a positive solution 𝑟
0
of the inequality

𝑝𝑟 + 𝑓
1
+ 𝑘ℎ𝜑 (𝑟)Ψ (𝑟) ≤ 𝑟 (53)

such that 𝑝 + 𝑘ℎ𝑞Ψ(𝑟
0
) < 1.

For further purposes, we definite operators correspond-
ing to (47) and defined on the space𝐶(𝐼) in the followingway:

(𝐹
1
𝑥) (𝑡) = 𝑓

1
(𝑡, 𝑥 (𝑡) , 𝑥 (𝛼 (𝑡))) ,

(𝐹
2
𝑥) (𝑡) = ∫

𝑡

0

𝑓
2
(𝑡, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠,

(𝐹𝑥) (𝑡) = (𝐹
1
𝑥) (𝑡) + (𝐺𝑥) (𝑡) (𝐹

2
𝑥) (𝑡) ,

(54)
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for 𝑡 ∈ 𝐼. Apart from this, we introduce two functions𝑀 and
𝑁 defined on R

+
by the formulas

𝑀(𝜀) = sup{
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
1

0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑔)] 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

: 𝑡
1
, 𝑡
2
∈ 𝐼,

𝑡
1
< 𝑡
2
, 𝑡
2
− 𝑡
1
≤ 𝜀} ,

(55)

𝑁(𝜀) = sup{∫
𝑡
2

𝑡
1

𝑔 (𝑡
2
, 𝑠) 𝑑𝑠 : 𝑡

1
, 𝑡
2
∈ 𝐼, 𝑡
1
< 𝑡
2
, 𝑡
2
− 𝑡
1
≤ 𝜀} .

(56)

Notice that in view of assumption (vii), we have that𝑀(𝜀) →

0 and𝑁(𝜀) → 0 as 𝜀 → 0.
Now, we can state the following result.

Lemma 13. Under assumptions (i)–(vii), the operator 𝐹 trans-
forms continuously the space 𝐶(𝐼) into itself.

Proof. Fix a function 𝑥 ∈ 𝐶(𝐼). Then 𝐹
1
𝑥 ∈ 𝐶(𝐼), which is a

consequence of the properties of the so-called superposition
operator [9]. Further, for arbitrary functions 𝑥, 𝑦 ∈ 𝐶(𝐼), in
virtue of assumption (ii), for a fixed 𝑡 ∈ 𝐼, we obtain

󵄨
󵄨
󵄨
󵄨
(𝐹
1
𝑥) (𝑡) − (𝐹

1
𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ 𝑝max {󵄨󵄨󵄨
󵄨
𝑥 (𝑡) − 𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑎 (𝑡)) − 𝑦 (𝑎 (𝑡))

󵄨
󵄨
󵄨
󵄨
} .

(57)

This estimate in combination with assumption (i) yields

󵄩
󵄩
󵄩
󵄩
𝐹
1
𝑥 − 𝐹
1
𝑦
󵄩
󵄩
󵄩
󵄩
≤ 𝑝

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
. (58)

Hence we conclude that 𝐹
1
acts continuously from the space

𝐶(𝐼) into itself.
Next, fix 𝑥 ∈ 𝐶(𝐼) and 𝜀 > 0. Take 𝑡

1
, 𝑡
2
∈ 𝐼 such that

|𝑡
2
− 𝑡
1
| ≤ 𝜀. Without loss of generality, we may assume that

𝑡
1
≤ 𝑡
2
. Then, based on the imposed assumptions, we derive

the following estimate:

󵄨
󵄨
󵄨
󵄨
(𝐹
2
𝑥) (𝑡
2
) − (𝐹

2
𝑥) (𝑡
1
)
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
2

0

𝑘 (𝑡
2
, 𝑠) 𝑔 (𝑡

2
, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠

−∫

𝑡
1

0

𝑘 (𝑡
2
, 𝑠) 𝑔 (𝑡

2
, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
1

0

𝑘 (𝑡
2
, 𝑠) 𝑔 (𝑡

2
, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠

−∫

𝑡
1

0

𝑘 (𝑡
1
, 𝑠) 𝑔 (𝑡

2
, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
1

0

𝑘 (𝑡
1
, 𝑠) 𝑔 (𝑡

2
, s) (𝑄𝑥) (𝑠) 𝑑𝑠

−∫

𝑡
1

0

𝑘 (𝑡
1
, 𝑠) 𝑔 (𝑡

1
, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡
2

𝑡
1

󵄨
󵄨
󵄨
󵄨
𝑘 (𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡
2
, 𝑠) |(𝑄𝑥) (𝑠)| 𝑑𝑠

+ ∫

𝑡
1

0

󵄨
󵄨
󵄨
󵄨
𝑘 (𝑡
2
, 𝑠) − 𝑘 (𝑡

1
, 𝑠)

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡
2
, 𝑠) |(𝑄𝑥) (𝑠)| 𝑑𝑠

+ ∫

𝑡
1

0

󵄨
󵄨
󵄨
󵄨
𝑘 (𝑡
1
, 𝑠)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)

󵄨
󵄨
󵄨
󵄨
|(𝑄𝑥) (𝑠)| 𝑑𝑠

≤ 𝑘Ψ (‖𝑥‖)𝑁 (𝜀) + 𝜔
1
(𝑘, 𝜀) Ψ (‖𝑥‖) ∫

𝑡
2

0

𝑔 (𝑡
2
, 𝑠) 𝑑𝑠

+ 𝑘Ψ (‖𝑥‖) ∫

𝑡
1

0

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠,

(59)

where we denoted

𝜔
1
(𝑘, 𝜀) = sup {󵄨󵄨󵄨

󵄨
𝑘 (𝑡
2
, 𝑠) − 𝑘 (𝑡

1
, 𝑠)

󵄨
󵄨
󵄨
󵄨
:

(𝑡
1
, 𝑠) , (𝑡

2
, 𝑠) ∈ Δ,

󵄨
󵄨
󵄨
󵄨
𝑡
2
− 𝑡
1

󵄨
󵄨
󵄨
󵄨
≤ 𝜀} .

(60)

Since the function 𝑡 → 𝑔(𝑡, 𝑠) is assumed to be monotonic,
by assumption (vii) we get

∫

𝑡
1

0

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠 =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
1

0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)] 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(61)

This fact in conjunction with the above-obtained estimate
yields

𝜔 (𝐹
2
𝑥, 𝜀) ≤ 𝑘Ψ (‖𝑥‖)𝑁 (𝜀) + ℎΨ (‖𝑥‖) 𝜔

1
(𝑘, 𝜀)

+ 𝑘Ψ (‖𝑥‖)𝑀 (𝜀) ,

(62)

where the symbol 𝜔(𝑦, 𝜀) denotes the modulus of continuity
of a function 𝑦 ∈ 𝐶(𝐼).

Further observe that 𝜔
1
(𝑘, 𝜀) → 0 as 𝜀 → 0, which is

an immediate consequence of the uniform continuity of the
function 𝑘 on the triangle Δ. Combining this fact with the
properties of the functions 𝑀(𝜀) and 𝑁(𝜀) and taking into
account (62), we infer that𝐹

2
𝑥 ∈ 𝐶(𝐼). Consequently, keeping

in mind that 𝐹
1

: 𝐶(𝐼) → 𝐶(𝐼) and assumption (iii), we
conclude that the operator 𝐹 is a self-mapping of the space
𝐶(𝐼).

In order to show that 𝐹 is continuous on 𝐶(𝐼), fix
arbitrarily 𝑥

0
∈ 𝐶(𝐼) and 𝜀 > 0. Next, take 𝑥 ∈ 𝐶(𝐼) such

that ||𝑥 − 𝑥
0
|| ≤ 𝜀. Then, for a fixed 𝑡 ∈ 𝐼, we get

󵄨
󵄨
󵄨
󵄨
(𝐹𝑥) (𝑡) − (𝐹𝑥

0
) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
(𝐹
1
𝑥) (𝑡) − (𝐹

1
𝑥
0
) (𝑡)

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
(𝐺𝑥) (𝑡) (𝐹

2
𝑥) (𝑡) − (𝐺𝑥

0
) (𝑡) (𝐹

2
𝑥
0
) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤
󵄩
󵄩
󵄩
󵄩
𝐹
1
𝑥 − 𝐹
1
𝑥
0

󵄩
󵄩
󵄩
󵄩
+ ‖𝐺𝑥‖

󵄨
󵄨
󵄨
󵄨
(𝐹
2
𝑥) (𝑡) − (𝐹

2
𝑥
0
) (𝑡)

󵄨
󵄨
󵄨
󵄨

+
󵄩
󵄩
󵄩
󵄩
𝐹
2
𝑥
0

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝐺𝑥 − 𝐺𝑥

0

󵄩
󵄩
󵄩
󵄩
.

(63)
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On the other hand, we have the following estimate:
󵄨
󵄨
󵄨
󵄨
(𝐹
2
𝑥) (𝑡) − (𝐹

2
𝑥
0
) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡

0

|𝑘 (𝑡, 𝑠)| 𝑔 (𝑡, 𝑠)
󵄨
󵄨
󵄨
󵄨
(𝑄𝑥) (𝑠) − (𝑄𝑥

0
) (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ 𝑘 (∫

𝑡

0

𝑔 (𝑡, 𝑠) 𝑑𝑠)
󵄩
󵄩
󵄩
󵄩
𝑄𝑥 − 𝑄𝑥

0

󵄩
󵄩
󵄩
󵄩

≤ 𝑘ℎ
󵄩
󵄩
󵄩
󵄩
𝑄𝑥 − 𝑄𝑥

0

󵄩
󵄩
󵄩
󵄩
.

(64)

Similarly, we obtain

󵄨
󵄨
󵄨
󵄨
(𝐹
2
𝑥
0
) (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝑘 (∫

𝑡

0

𝑔 (𝑡, 𝑠) 𝑑𝑠)
󵄩
󵄩
󵄩
󵄩
𝑄𝑥
0

󵄩
󵄩
󵄩
󵄩
≤ 𝑘ℎ

󵄩
󵄩
󵄩
󵄩
𝑄𝑥
0

󵄩
󵄩
󵄩
󵄩
, (65)

and consequently

󵄩
󵄩
󵄩
󵄩
𝐹
2
𝑥
0

󵄩
󵄩
󵄩
󵄩
≤ 𝑘ℎ

󵄩
󵄩
󵄩
󵄩
𝑄𝑥
0

󵄩
󵄩
󵄩
󵄩
. (66)

Next, linking (63)–(66) and (58), we obtain the following
estimate:

󵄩
󵄩
󵄩
󵄩
𝐹𝑥 − 𝐹𝑥

0

󵄩
󵄩
󵄩
󵄩
≤ 𝑝

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑥
0

󵄩
󵄩
󵄩
󵄩
+ ‖𝐺𝑥‖ 𝑘ℎ

󵄩
󵄩
󵄩
󵄩
𝑄𝑥 − 𝑄𝑥

0

󵄩
󵄩
󵄩
󵄩

+ 𝑘ℎ
󵄩
󵄩
󵄩
󵄩
𝐺𝑥 − 𝐺𝑥

0

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑄𝑥
0

󵄩
󵄩
󵄩
󵄩
.

(67)

Further, taking into account assumptions (iv) and (v), we
derive the following inequality

󵄩
󵄩
󵄩
󵄩
𝐹𝑥 − 𝐹𝑥

0

󵄩
󵄩
󵄩
󵄩
≤ 𝑝𝜀 + 𝜑 (

󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
+ 𝜀) 𝑘ℎ

󵄩
󵄩
󵄩
󵄩
𝑄𝑥 − 𝑄𝑥

0

󵄩
󵄩
󵄩
󵄩

+ 𝑘ℎΨ (
󵄩
󵄩
󵄩
󵄩
𝑥
0

󵄩
󵄩
󵄩
󵄩
)
󵄩
󵄩
󵄩
󵄩
𝐺𝑥 − 𝐺𝑥

0

󵄩
󵄩
󵄩
󵄩
.

(68)

Finally, in view of the continuity of the operators 𝐺 and 𝑄

(cf. assumptions (iii) and (v)), we deduce that operator 𝐹 is
continuous on the space 𝐶(𝐼). The proof is complete.

Now, we can formulate the last result concerning (47) (cf.
[30]).

Theorem 14. Under assumptions (i)–(viii), (47) has at least
one solution in the space 𝐶(𝐼).

Proof. Fix 𝑥 ∈ 𝐶(𝐼) and 𝑡 ∈ 𝐼. Then, evaluating similarly as in
the proof of Lemma 13, we get

|(𝐹𝑥) (𝑡)| ≤
󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑎 (𝑡))) − 𝑓

1
(𝑡, 0, 0)

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑡, 0, 0)

󵄨
󵄨
󵄨
󵄨

+ |𝐺𝑥 (𝑡)|

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑔 (𝑡, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑓
1
+ 𝑝 ‖𝑥‖ + 𝑘ℎ𝜑 (‖𝑥‖)Ψ (‖𝑥‖) .

(69)

Hence, we obtain

‖𝐹𝑥‖ ≤ 𝑓
1
+ 𝑝 ‖𝑥‖ + 𝑘ℎ𝜑 (‖𝑥‖)Ψ (‖𝑥‖) . (70)

From the above inequality and assumption (viii), we infer that
there exists a number 𝑟

0
> 0 such that the operator 𝐹 maps

the ball 𝐵
𝑟
0

into itself and 𝑝 + 𝑘ℎ𝑞Ψ(𝑟
0
) < 1. Moreover, by

Lemma 13, we have that 𝐹 is continuous on the ball 𝐵
𝑟
0

.
Further on, take a nonempty subset𝑋 of the ball𝐵

𝑟
0

and a
number 𝜀 > 0.Then, for an arbitrary 𝑥 ∈ 𝑋 and 𝑡

1
, 𝑡
2
∈ 𝐼with

|𝑡
2
−𝑡
1
| ≤ 𝜀, in view of (66) and the imposed assumptions, we

obtain
󵄨
󵄨
󵄨
󵄨
(𝐹𝑥) (𝑡

2
) − (𝐹𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑡
2
, 𝑥 (𝑡
2
) , 𝑥 (𝑎 (𝑡

2
)))

−𝑓
1
(𝑡
1
, 𝑥 (𝑡
2
) , 𝑥 (𝑎 (𝑡

2
)))

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑡
1
, 𝑥 (𝑡
2
) , 𝑥 (𝑎 (𝑡

2
)))

−𝑓
1
(𝑡
1
, 𝑥 (𝑡
1
) , 𝑥 (𝑎 (𝑡

1
)))

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
(𝐹
2
𝑥) (𝑡
2
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
(𝐺𝑥) (𝑡

2
) − (𝐺𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
(𝐺𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
(𝐹
2
𝑥) (𝑡
2
) − (𝐹

2
𝑥) (𝑡
1
)
󵄨
󵄨
󵄨
󵄨

≤ 𝜔
𝑟
0

(𝑓
1
, 𝜀) + 𝑝max {󵄨󵄨󵄨

󵄨
𝑥 (𝑡
2
) − 𝑥 (𝑡

1
)
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑎 (𝑡

2
)) − 𝑥 (𝑎 (𝑡

1
))
󵄨
󵄨
󵄨
󵄨
}

+ 𝑘ℎΨ (𝑟
0
) 𝜔 (𝐺𝑥, 𝜀) + 𝜑 (𝑟

0
) 𝜔 (𝐹

2
𝑥, 𝜀) ,

(71)

where we denoted

𝜔
𝑟
0

(𝑓
1
, 𝜀) = sup {󵄨󵄨󵄨

󵄨
𝑓
1
(𝑡
2
, 𝑥, 𝑦) − 𝑓

1
(𝑡
1
, 𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
: 𝑡
1
, 𝑡
2
∈ 𝐼,

󵄨
󵄨
󵄨
󵄨
𝑡
2
− 𝑡
1

󵄨
󵄨
󵄨
󵄨
≤ 𝜀, 𝑥, 𝑦 ∈ [−𝑟

0
, 𝑟
0
]} .

(72)

Hence, in virtue of (62), we deduce the estimate

𝜔 (𝐹𝑥, 𝜀) ≤ 𝜔
𝑟
0

(𝑓
1
, 𝜀) + 𝑝max {𝜔 (𝑥, 𝜀) , 𝜔 (𝑥, 𝜔 (𝑎, 𝜀))}

+ 𝑘ℎΨ (𝑟
0
) 𝜔 (𝐺𝑥, 𝜀)

+ 𝜑 (𝑟
0
) Ψ (𝑟
0
) [𝑘𝑁 (𝜀) + ℎ𝜔

1
(𝑘, 𝜀) + 𝑘𝑀 (𝜀)] .

(73)

Finally, taking into account the uniform continuity of the
function 𝑓

1
on the set 𝐼 × [−𝑟

0
, 𝑟
0
]
2 and the properties of the

functions 𝑘(𝑡, 𝑠), 𝑎(𝑡), 𝑀(𝜀), and 𝑁(𝜀) and keeping in mind
(46), we obtain

𝜔
0
(𝐹𝑋) ≤ 𝑝𝜔

0
(𝑋) + 𝑘ℎΨ (𝑟

0
) 𝜔
0
(𝐺𝑋) . (74)

Linking this estimate with assumption (iii), we get

𝜔
0
(𝐹𝑋) ≤ (𝑝 + 𝑘ℎ𝑞Ψ (𝑟

0
)) 𝜔
0
(𝑋) . (75)

The use of Theorem 11 completes the proof.

4. Existence Results Concerning the Theory of
Differential Equations in Banach Spaces

In this section, we are going to present some classical results
concerning the theory of ordinary differential equations in
Banach space. We focus on this part of that theory in a which
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the technique associated with measures of noncompactness
is used as the main tool in proving results on the existence of
solutions of the initial value problems for ordinary differential
equations.Our presentation is basedmainly on the papers [31,
32] and the monograph [33].

The theory of ordinary differential equations in Banach
spaces was initiated by the famous example of Dieudonné
[34], who showed that in an infinite-dimensional Banach
space, the classical Peano existence theorem is no longer true.
More precisely, Dieudonné showed that if we consider the
ordinary differential equation

𝑥
󸀠

= 𝑓 (𝑡, 𝑥) (76)

with the initial condition

𝑥 (0) = 𝑥
0
, (77)

where 𝑓 : [0, 𝑇] × 𝐵(𝑥
0
, 𝑟) → 𝐸 and 𝐸 is an infinite-dimen-

sional Banach space, then the continuity of 𝑓 (and even
uniform continuity) does not guarantee the existence of
solutions of problem (76)-(77).

In light of the example of Dieudonné, it is clear that in
order to ensure the existence of solutions of (76)-(77), it is
necessary to add some extra conditions. The first results in
this direction were obtained by Kisyński [35], Olech [36], and
Wa ̇zewski [37] in the years 1959-1960. In order to formulate
those results, we need to introduce the concept of the so-
called Kamke comparison function (cf. [38, 39]).

To this end, assume that 𝑇 is a fixed number and denote
𝐽 = [0, 𝑇], 𝐽

0
= (0, 𝑇]. Further, assume that Ω is a nonempty

open subset of R𝑛 and 𝑥
0
is a fixed element of Ω. Let 𝑓 : 𝐽 ×

Ω → R𝑛 be a given function.

Definition 15. A function 𝑤 : 𝐽 × R
+

→ R
+
(or 𝑤 : 𝐽

0
×

R
+

→ R
+
) is called a Kamke comparison function provided

the inequality
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

󵄩
󵄩
󵄩
󵄩
≤ 𝑤 (𝑡,

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
) (78)

for 𝑥, 𝑦 ∈ Ω and 𝑡 ∈ 𝐽 (or 𝑡 ∈ 𝐽
0
), together with some

additional assumptions concerning the function 𝑤, guaran-
tees that problem (76)-(77) has at most one local solution.

In the literature, one can encounter miscellaneous classes
of Kamke comparison functions (cf. [33, 39]). We will not
describe those classes, but let us only mention that they are
mostly associated with the differential equation 𝑢

󸀠
= 𝑤(𝑡, 𝑢)

with initial condition 𝑢(0) = 0 or the integral inequality
𝑢(𝑡) ≤ ∫

𝑡

0
𝑤(𝑠, 𝑢(𝑠))𝑑𝑠 for 𝑡 ∈ 𝐽

0
with initial condition

lim
𝑡→0

𝑢(𝑡)/𝑡 = lim
𝑡→0

𝑢(𝑡) = 0. It is also worthwhile
recalling that the classical Lipschitz or Nagumo conditions
may serve as Kamke comparison functions [39].

The above-mentioned results due to Kisyński et al. [35–
37] assert that if 𝑓 : 𝐽 × 𝐵(𝑥

0
, 𝑟) → 𝐸 is a continuous

function satisfying condition (78) with an appropriate Kamke
comparison function, then problem (76)-(77) has exactly one
local solution.

Observe that the natural translation of inequality (78) in
terms of measures of noncompactness has the form

𝜇 (𝑓 (𝑡, 𝑋)) ≤ 𝑤 (𝑡, 𝜇 (𝑋)) , (79)

where 𝑋 denotes an arbitrary nonempty subset of the ball
𝐵(𝑥
0
, 𝑟). The first result with the use of condition (79) for

𝑤(𝑡, 𝑢) = 𝐶𝑢 (𝐶 is a constant) was obtained by Ambrosetti
[40]. After the result of Ambrosetti, there have appeared a
lot of papers containing existence results concerning problem
(76)-(77) (cf. [41–44]) with the use of condition (79) and
involving various types of Kamke comparison functions. It
turned out that generalizations of existence results concern-
ing problem (76)-(77) with the use of more and more general
Kamke comparison functions are, in fact, only apparent gen-
eralizations [45], since the so-called Bompiani comparison
function is sufficient to give the most general result in the
mentioned direction.

On the other hand, we can generalize existence results
involving a condition like (79) taking general measures of
noncompactness [31, 32]. Below we present a result coming
from [32] which seems to be the most general with respect to
taking the most general measure of noncompactness.

In the beginning, let us assume that 𝜇 is a measure of
noncompactness defined on a Banach space 𝐸. Denote by 𝐸

𝜇

the set defined by the equality

𝐸
𝜇
= {𝑥 ∈ 𝐸 : {𝑥} ∈ ker 𝜇} . (80)

The set 𝐸
𝜇
will be called the kernel set of a measure 𝜇. Taking

into account Definition 10 and some properties of a measure
of noncompactness (cf. [10]), it is easily seen that𝐸

𝜇
is a closed

and convex subset of the space 𝐸.
In the case when we consider the so-called sublinear

measure of noncompactness [10], that is, a measure of non-
compactness 𝜇 which additionally satisfies the following two
conditions:

(6
𝑜
) 𝜇(𝑋 + 𝑌) ≤ 𝜇(𝑋) + 𝜇(𝑌),

(7
𝑜
) 𝜇(𝜆𝑋) = |𝜆|𝜇(𝑋) for 𝜆 ∈ R,

then the kernel set 𝐸
𝜇
forms a closed linear subspace of the

space 𝐸.
Further on, assume that 𝜇 is an arbitrary measure of

noncompactness in the Banach space 𝐸. Let 𝑟 > 0 be a
fixed number and let us fix 𝑥

0
∈ 𝐸
𝜇
. Next, assume that

𝑓 : 𝐽 × 𝐵(𝑥
0
, 𝑟) → 𝐸 (where 𝐽 = [0, 𝑇]) is a given uniformly

continuous and bounded function; say, ||𝑓(𝑡, 𝑥)|| ≤ 𝐴.
Moreover, assume that 𝑓 satisfies the following compari-

son condition of Kamke type:

𝜇 (𝑥
0
+ 𝑓 (𝑡, 𝑋)) ≤ 𝑤 (𝑡, 𝜇 (𝑋)) (81)

for any nonempty subset𝑋 of the ball 𝐵(𝑥
0
, 𝑟) and for almost

all 𝑡 ∈ 𝐽.
Here we will assume that the function 𝑤(𝑡, 𝑢) = 𝑤 :

𝐽
0
× R
+

→ R
+
(𝐽
0
= (0, 𝑇]) is continuous with respect to

𝑢 for any 𝑡 and measurable with respect to 𝑡 for each 𝑢. Apart
from this, 𝑤(𝑡, 0) = 0 and the unique solution of the integral
inequality

𝑢 (𝑡) ≤ ∫

𝑡

0

𝑤 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 (𝑡 ∈ 𝐽
0
) (82)

such that lim
𝑡→0

𝑢(𝑡)/𝑡 = lim
𝑡→0

𝑢(𝑡) = 0, is 𝑢 ≡ 0.
The following formulated result comes from [32].



12 Abstract and Applied Analysis

Theorem 16. Under the above assumptions, if additionally
sup{𝑡+𝑎(𝑡) : 𝑡 ∈ 𝐽} ≤ 1, where 𝑎(𝑡) = sup{||𝑓(0, 𝑥

0
)−𝑓(𝑠, 𝑥)|| :

𝑠 ≤ 𝑡, ||𝑥 − 𝑥
0
|| ≤ 𝐴𝑠} and 𝐴 is a positive constant such that

𝐴𝑇 ≤ 𝑟, the initial value problem (76)-(77) has at least one
local solution 𝑥 = 𝑥(𝑡) such that 𝑥(𝑡) ∈ 𝐸

𝜇
for 𝑡 ∈ 𝐽.

The proof of the above theorem is very involved and is
therefore omitted (cf. [32, 33]). We restrict ourselves to give a
few remarks.

At first, let us notice that in the case when 𝜇 is a sublinear
measure of noncompactness, condition (81) is reduced to the
classical one expressed by (79) provided we assume that 𝑥

0
∈

𝐸
𝜇
. In such a case, Theorem 16 was proved in [10].
The most frequently used type of a comparison function

𝑤 is this having the form 𝑤(𝑡, 𝑢) = 𝑝(𝑡)𝑢, where 𝑝(𝑡) is
assumed to be Lebesgue integrable over the interval 𝐽. In such
a case comparison, condition (81) has the form

𝜇 (𝑥
0
+ 𝑓 (𝑡, 𝑋)) ≤ 𝑝 (𝑡) 𝜇 (𝑋) . (83)

An example illustratingTheorem 16 under condition (83) will
be given later.

Further, observe that in the case when 𝜇 is a sublinear
measure of noncompactness such that 𝑥

0
∈ 𝐸
𝜇
, condition

(83) can be written in the form

𝜇 (𝑓 (𝑡, 𝑋)) ≤ 𝑝 (𝑡) 𝜇 (𝑋) . (84)

Condition (84) under additional assumption ||𝑓(𝑡, 𝑥)|| ≤ 𝑃+

𝑄||𝑥||, with some nonnegative constants 𝑃 and 𝑄, is used
frequently in considerations associated with infinite systems
of ordinary differential equations [46–48].

Now, we present the above-announced example coming
from [33].

Example 17. Consider the infinite system of differential equa-
tions having the form

𝑥
󸀠

𝑛
= 𝑎
𝑛
(𝑡) 𝑥
𝑛
+ 𝑓
𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

, . . .) , (85)

where 𝑛 = 1, 2, . . . and 𝑡 ∈ 𝐽 = [0, 𝑇]. System (85) will be
considered together with the system of initial conditions

𝑥
𝑛
(0) = 𝑥

𝑛

0
(86)

for 𝑛 = 1, 2, . . .. We will assume that there exists the limit
lim
𝑛→∞

𝑥
𝑛

0
= 𝑎(𝑎 ∈ R).

Problem (85)-(86) will be considered under the following
conditions.

(i) 𝑎
𝑛
: 𝐽 → R (𝑛 = 1, 2, . . .) are continuous functions

such that the sequence (𝑎
𝑛
(𝑡)) converges uniformly

on the interval 𝐽 to the function which vanishes
identically on 𝐽.

(ii) There exists a sequence of real nonnegative numbers
(𝛼
𝑛
) such that lim

𝑛→∞
𝛼
𝑛
= 0 and |𝑓

𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

, . . .)| ≤

𝛼
𝑛
for 𝑛 = 1, 2, . . . and for all 𝑥 = (𝑥

1
, 𝑥
2
, 𝑥
3
, . . .) ∈ 𝑙

∞.
(iii) The function 𝑓 = (𝑓

1
, 𝑓
2
, 𝑓
3
, . . .) transforms the space

𝑙
∞ into itself and is uniformly continuous.

Let usmention that the symbol 𝑙∞ used above denotes the
classical Banach sequence space consisting of all real bounded
sequences (𝑥

𝑛
) with the supremum norm; that is, ||(𝑥

𝑛
)|| =

sup{|𝑥
𝑛
| : 𝑛 = 1, 2, . . .}.

Under the above hypotheses, the initial value problem
(85)-(86) has at least one solution 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥
2
(𝑡), . . .)

such that 𝑥(𝑡) ∈ 𝑙
∞ for 𝑡 ∈ 𝐽 and lim

𝑛→∞
𝑥
𝑛
(𝑡) = 𝑎 uniformly

with respect to 𝑡 ∈ 𝐽, provided 𝑇 ≤ 1(𝐽 = [0, 𝑇]).
As a proof, let us take into account the measure of

noncompactness in the space 𝑙∞ defined in the followingway:

𝜇 (𝑋) = lim sup
𝑛→∞

{sup
𝑥∈𝑋

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛
− 𝑎

󵄨
󵄨
󵄨
󵄨
} (87)

for 𝑋 ∈ M
𝑙
∞ (cf. [10]). The kernel ker𝜇 of this measure is

the family of all bounded subsets of the space 𝑙∞ consisting
of sequences converging to the limit equal to 𝑎 with the same
rate.

Further, take an arbitrary set𝑋 ∈ M
𝑙
∞ . Then we have

𝜇 (𝑥
0
+ 𝑓 (𝑡, 𝑋))

= lim sup
𝑛→∞

{sup
𝑥∈𝑋

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

0
+ 𝑎
𝑛
(𝑡) 𝑥
𝑛

+𝑓
𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

, . . .) − 𝑎
󵄨
󵄨
󵄨
󵄨
}

≤ lim sup
𝑛→∞

{sup
𝑥∈𝑋

[
󵄨
󵄨
󵄨
󵄨
𝑎
𝑛
(𝑡)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑓
𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

, . . .) + 𝑥
𝑛

0
− 𝑎

󵄨
󵄨
󵄨
󵄨
] }

≤ lim sup
𝑛→∞

{sup
𝑥∈𝑋

𝑝 (𝑡)
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛
− 𝑎

󵄨
󵄨
󵄨
󵄨
}

+ lim sup
𝑛→∞

{sup
𝑥∈𝑋

󵄨
󵄨
󵄨
󵄨
𝑎
𝑛
(𝑡)

󵄨
󵄨
󵄨
󵄨
|𝑎|}

+ lim sup
𝑛→∞

{sup
𝑥∈𝑋

󵄨
󵄨
󵄨
󵄨
𝑓
𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

, . . .)
󵄨
󵄨
󵄨
󵄨
}

+ lim sup
𝑛→∞

{sup
𝑥∈𝑋

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

0
− 𝑎

󵄨
󵄨
󵄨
󵄨
} ,

(88)

where we denoted 𝑝(𝑡) = sup{|𝑎
𝑛
(𝑡)| : 𝑛 = 1, 2, . . .} for 𝑡 ∈ 𝐽.

Hence we get

𝜇 (𝑥
0
+ 𝑓 (𝑡, 𝑋)) ≤ 𝑝 (𝑡) 𝜇 (𝑋) , (89)

which means that the condition (84) is satisfied.
Combining this fact with assumption (iii) and taking into

account Theorem 16, we complete the proof.
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problèmes classiques relatifs à l’équation 𝑠 = 𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞),”
vol. 11, pp. 73–112, 1957.

[17] P. P. Zabrejko, A. I. Koshelev,M.A. Krasnosel’skii, S. G.Mikhlin,
L. S. Rakovschik, and V. J. Stetsenko, Integral Equations, Nord-
hoff, Leyden, Mass, USA, 1975.
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