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We formulate a pest management model with periodically releasing infective pests, immature and mature natural enemies, and
harvesting pests and crops at two different fixed moments. Sufficient conditions ensuring the locally and globally asymptotical
stability of the susceptible pest-eradication period solution are found by means of Floquet theory, small amplitude perturbation
techniques, and multicomparison results. Furthermore, the permanence of system is also derived. By numerical analysis, we also
show that impulsive releasing and harvesting at two different fixed moments can bring obvious effects on the dynamics of system,

which also corroborates our theoretical results.

1. Introduction

As is known to all, pest outbreaks often cause serious eco-
logical and economic problems. Therefore, how to effectively
control insects and other arthropods has become an increas-
ingly complex issue. Usually, chemical pesticides were taken
as a relatively simple way to solve the pest-related problems,
and some mathematical models on pest management with
toxin (pesticide) input were studied in [1-4]. However, the
overuse of chemical pesticides may create new ecological and
sociological harm such as pesticide pollution and pesticide-
resistant pest varieties and inflicts harmful effects on humans
and so forth. Therefore, nonchemical use instead for pest
control has become a hot topic in order to reduce pest density
to tolerable levels and minimize the damage caused. For
instance, biological control methods by periodically releasing
infective pests or their natural enemies are often taken due to
their advantage in the aspects of self-sustainable mechanism,
lower environmental impact, and cost effectiveness.
Recently, some biocontrol models on pest management
described by impulsive differential equation were proposed
and the dynamics such as stability, permanence, periodicity,
and bifurcation are deeply investigated (see also, e.g., [2-12]).
In [5], an impulsive system to model the process of periodic
releasing natural enemies and harvesting pest at different
fixed time for pest control is considered, and the sufficient
conditions on the existence and global stability of the periodic

solution are derived for the given model. Georgescu et al.
[6, 7] construct an integrated pest management model which
relies on the simultaneous periodic release of infective pest
individuals and of natural predators with age structure and
obtain some sufficient conditions on the local and global sta-
bility, permanence, and bifurcation of the systems. However,
most of the existing models on pest management scarcely take
into account the factor on the relation between pest and its
food (e.g., crop). In fact, farmers may harvest crops several
times in process of its growth, which should cause a great
impact on the density of the pest.

Motived by the above discussion, we construct a model
of pest control by periodically releasing infective pests,
immature and mature natural enemies, and harvesting pests
and crops. To account for the discontinuity of release and
harvest at different fixed moments, our model is based on
impulsive differential equations. We analyze the dynamical
behavior of the system by using the theory of impulsive
differential equation introduced in [13-15].

The rest of this paper is organized as follows. A pest
management model with impulsive releasing and harvesting
is introduced in Section 2 and some useful preliminaries
are given in Section 3. Section 4 deals with stability and
permanence analysis of system. In this section, two sufficient
conditions are deduced including the locally and globally
asymptotical stability of the susceptible pest-eradication



period solution, the permanence of system is also discussed.
A simple example and conclusions are given in Section 5.
2. Model Description

In the following, to establish our pest management model, we
rely on the following biological assumptions.

(A1) The pest population is divided into two classes, the
susceptible and infective. The infective pests neither
recover nor reproduce and infective pests cannot
damage crops. The disease is transmitted from infec-
tive pests to susceptible pests and does not propagate
to predators.

(A2) In the absence of susceptible pests, the crops have
a logistic growth rate with intrinsic birth rate r and
carrying capacity K.

(A3) The predators (natural enemies) have an age struc-
ture, that is, immature and mature. Only the mature
predators have the ability to feed on susceptible pests,
but do not prey on infective pests and crops.

(A4) The functional response of the susceptible pest is
described by the abstract function P,, the functional
response of the mature predator is described by
the abstract function P,, and the infection rate is
described by the abstract function g, where P}, P,, and
g satisfy certain assumptions outlined below.

On the basis of the above assumptions, we establish the
following impulsively controlled system:

<=0 (1-22) - @)s o,

S (t) = BP, (x (1)) S(t) — g (I (1)) S(£)
— P, (S(1) yp (1) = dgS (1),
I'(t)=gI@®)SE) —dI(t),
yy (£) = AP, (S(1)) s (B) — dyy; (£) = my; (1),
yar (8) = my; (£) = dpyyp (),
t+(n+7-1)T,
t #nT,
Ax (t) = =Ox (1),
AS(t) = -PS (1),
AI(t) = -PI (1),
Ay; (t) = =Pry; (),
Ayp () = =Ppyp (£),
t=(n+7-1)T,
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Ax (t) = 0,
AS(t) =0,
INOETS
Ayy (t) = 6y,
Ayy () = 8y

t=nT, neN,
(1)

where x(t) represents the density of the crop at time ¢, S(t)
represents the density of the susceptible pest at time ¢, I(f)
represents the density of the infective pest at time ¢, y;(¢)
and y,,(t) represent the density of the immature and mature
predator at time ¢, respectively; r is the logistic intrinsic
growth rate of the crop in the absence of the susceptible
pest, K is its carrying capacity; 0 < f, A < 1 represent
the conversion rate at which ingested preys in excess of
what is needed for maintenance is translated into predator
population increase; m is the rate at which the immature
predators become the mature predators. dg, dy, dj, dy; > 0
are the death rates of the susceptible pest population, infective
pest population, and of the immature and mature predator
population, respectively; Ax(t) = x(t*) — x(t), AS(t) =
S(t") = S(t), AI(t) = I(t") — 1(t), Ay;(t) = y;(t7) — y; (D),
Ayy(@®) = yu(t") = yp(1); T is the period of the impulsive
effect; 6 (0 < & < (1 —e"1)/2) is the harvesting rate of
crop population; 0 < Py, P;, P}, Py, < 1 denote the transfer
rate of susceptible pest population, infective pest population,
immature and mature predator population at every impulsive
period (n + 7 - )T (n € N,0 < 7 < 1), respectively; &, &,
Oy > 0 represents the amount of infective pests, immature
and mature predators, respectively, which are released at
every impulsive period nT' (n € N), respectively; Also, P,(:),
P,(-),g(-) e Hyhere H = {f: R — R| f(0) =0, f'(x) >0
and f"(x) < 0forall x > 0}.

Some familiar examples of functions f € H in the
biological literature include

(F1) fi(x) = ax, witha > 0;
(F2) f,(x) = ax/(1 + bx), witha,b > 0;
(F3) f5(x) = a(1 - e™®), with a,b > 0,

where functions (F1) and (F2) are known as Holling type
functional responses (see, [16-26]), and (F3) belongs to Ivlev
type functional responses (see, [27-30]).

3. Preliminaries

In this section, we will give some definitions and lemmas,
which will be useful for our main results. Let R, =
[0, 00) and IRfr = {X = (x(0),8(t), I(t), y;(t), yas(t)) €
R> | x(t), S(t), I(t), y;(t), yp(t) = 0} Denote f =
(foo foo f1o f1s fa)" the map defined by the right hand of the

first five equations in system (1). Let V: R, x R> — R,,
then V € Vj if
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(1) V is continuous in ((n — )T, (n + 7 — 1)T] X Ri,
(n+71-1T,nT] x [Rfr and for each x € Ri, nenN,
lim, ), ety V(6 Y) = V(i + 7~ T*, x) and
lim, ) _, i+ )V (E, y) = V(nT™, x) exist.

(2) V is locally Lipschitzian x.

Definition 1. Letting V' € V,, one defines the upper right
derivative of V with respect to the impulsive differential
system (1) at (t,x) € ((n - DT, (n + 7 — 1)T] x [Ri and
(n+71-1T,nT] x [Ri by

D'V (t,x) = lim sup% [V (t+h,x+hf(t,x)-V(tx)].

h—o0*
2

Definition 2. The system (1) is said to be permanent if there
are positive constants m, M > 0 and a finite time T, such
that all solutions of (1) with initial values x(0"), S(0), I(0"),
¥7(0%), ypr(07),m < x(8), S(), I1(t), y;(t), yp(t) < M hold for
allt > T, where m and M are independent of initial value,
T, may depend on initial value.

Remark 3. The global existence and uniqueness of system (1)
is guaranteed by the smoothness properties of f (for details,
see [13,14]).

Lemma 4 (see [15]). Let V : R, x R" — R satisfy V; €
Vo, i = 1,2,...,m, and assume that

D'V(t,x®)<()gt,V(t,x®)), ttk+t-1)T, kT,

V(x(t) <@y (V(Lx®), t=(k+t-1)T,
V(t,x(t) <@y (V(t,x®), t=kT, keN,
x(07) = xq,
3)

where g : R, x R — R is continuous in ((k — 1)T, (k +
7 - 1T] x R™ and ((k + 7 — 1)T,kT] x R™, for each p €
R™ k=1,2,... the limitlim(t)q)_>((k+T_I)T+’p)g(t, q) = g((k+
- 1)TY, p) and lim ) (e-1yre, 9t q) = g((k — DT, p)
exists. g(t,q) is quasimonotone nondecreasing in q. Y, Yy :
RY — RT is nondecreasing for all k € N. Let 0(t) be
the maximal (minimal) solution of the following impulsive
differential equation on [0, 00):

w ) =gtw(t), t#(k+t-1)T, kT,

wt) =y (w), t=k+t-1T,
(4)
w(t) =y (w(t), t=kT, keN,
w(07) = w,.

Then for any solution x(t) of the system (3), V(0',
Xo) < (Z)w, implies that V (t, x(t)) <(=)0(t) for allt > 0.

3
Lemma 5 (see [13,15]). Consider the following system:
VO S@pOvO)+q@), tHe,
v(t) < (@) dev(t) +b t=t, keN, 5)

v(0%) < (2) v

where p,q € PC(R,,R) and d;. > 0, v, and by are constants.
Suppose that

(A1) the sequence t; satisfies 0 < t; < t, < ---, with

limt_,ootk = 005

(A2) v € PC'(R,,R) and v(t) is left-continuous at t,, k €
N.

Then, fort > 0,

V() < (2)vyeh PO 4

0<tp<t

» < [ d;ejf*”“’ds>bk ©
0<tp<t

ti<t;<t

t t
+ J < H dk> el POAT L (5) ds.
0\ s<t <t

Lemma 6. There exists a constant M = max{(1/A)((L/d) +
(pe™ )™ — 1)), K} > 0, such that x(t), S(t), 1(¢), y,(t),
yu(t) < M for each solution of (1) with t large enough.

Proof. Since x'(t) < rx(1 = (x(t)/K)), then x'(t)lx(t):K <0,
andx(n+7-1D)T") < x(n+7-1T) (0 < 8 < 1), s0
x(t) < K for t large enough. Let us define V(t) € V, by
V(t) = ABx(t) + AS(t) + M(t) + y;(t) + yp(¢) and denote
d = min{dy, dy, d;, d)}. Then, it is obvious that

dav (t)
dt

)Lﬁrxz ()
K '@
t+ (n+7-1)T, t+nT.

+dV (t) < AB(r+d) x () -

Since the right-hand side (7) is bounded from above by L =
KAB(r + d)*/4r, it follows that

dav (t)

+dV(t) <L, t+m+7t-1T, t#+nT. (8)

When t = (n+ 17— 1)T and t = nT, it is easy to obtain that

Vin+t-DT)<V((n+1-1)T),
)
V(nT") =V (nT) + (A8; + &, +8y) .



Then, by Lemma 5, we can obtain that
t
V)<V e+ J Le g5
0

dar
—d(t-KT) L pe
+ e — =+ ——", — 00,
> P y

daT ’
0<kT<t et —1
(10)

where p = A8; + 8; + 8. So it follows that V(¢) is uniformly
bounded on [0, 00). The proof is completed. O

Lemma 7 (see [31]). Let one consider the following impulsive
control subsystem:

_x®)
K

Ax(t) =-0x(t),t=(n+7-1)T.

x'(t)=rx(t)<1 >, t+ n+7-1)T,

(11)

Suppose & = 1 — e ™" Then one has the following results.

() If 8 > &, then the trivial periodic solution of system
(11) is locally asymptotically stable.

(2) If 8 < 8y, then the system (11) has a unique positive
periodic solution x™ (t), which is globally asymptotically
stable, where

K(1—6—efrT)

* —
x ()= 1-06—e'T 4 oe rt-(mit-DT)

te((n+t-1)T,(n+1)T],neN,

K(1-8)e"-1)

Xt (0+) — 5 (nT+) = (e”T - 1) +(1-0) (erT _

erTT) :
(12)

Remark 8. From Lemma 7, we have

(1a) if §; > 28, then x*(t) > K/2 for all t > 0;

(2a) ift € (n—1)T,nT], n € N, then the periodic solution
x*(t) can be rewritten in the form

K (1 -6- efrT)
1-8—e'T 4+ §e T g—rt—(n-DT)°
te((n-1)T,(n+7t-1)T],
K (1 -0- e_’T)
1=-8—¢'T + Se—r(t—(nw—l)T) ’
te((n+t-1)T,nT],neN.

X7 () = (13)
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Lemma 9. Let one consider the following impulsive control
subsystem:

W =a@)-dz(t), t+m+71-1)T, t#nT,

Az (t)=-pz(t), t=m+7-1)T,
(14)
Az(t) =08, t=nT, neN,
z(07) = 2,

where a(t) is a T-periodic PC(R,,R) function. p,d are the
positive real constants and p < 1. Then system (14) has a unique
T-periodic solution z*(t), and for each solution z(t) of (14),
z(t) — z*(t)ast — oo, where

t—(n-1)T

2 () = ¢ 40D (z* () + J

0

a(s)edsds>,
te((n-DT,(n+7t-1)T],

A(t—(n-1)T ar | (COVT d
Z* (t) = ¢ DD (z* (zT") e + J a(s)e Sds),

T
te((n+7-1)T,nT],
z*(0%)
[(1 —p) L;FTQ(S) ed5d5+ J;a(s) edeS:I e—dT 8
1-(1-p)edl

2" (¢T")

(1-p) “OTT a(s)e®ds +e T LTT a(s)eds+ (‘5] e T

(e
(15)
Proof. First, it is easy to obtain that
t
z(t)=e® (z (0%) + J a(s) edsds) , te(0,71T],
0
t
z)=e N (2T ) + J a(s)e®ds, te(zT,T).
T
(16)
Since the T-periodicity requirement, we have
T
Z" (T =" (z* (0%) + J a(s) edsds) (1-p),
’ (17)

T
2 (07) = e T (zT%) + 7T J a(s)e™ds + 6.
T
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By (17), we can obtain that

2 (0")
[(1 -p) IOTT a(s)e™ds + JfTa (s) edsds] e T 48
(- p)e

z" (¢T")
B (1-p) “OTT a(s)e®ds+e T ITTT a(s)e®ds + 8] e 4T
) 1-(1-p)e ™ '

(18)

So, we will obtain the T-periodic solution of (14):

« o —dt=-1)T) [ % ot s ds
Z"(t)=e z"(0") + a(s)e®ds |,

0

te((n-1)T,n+7t-1)T],

d T ar | [TV d
Z* (t) = ¢ DD (z* (zT") ™™ + J a(s)e Sds) ,

T

te((n+t-1)T,nT].
(19)

Let Z(t) = z(t) — 2" (¢). Substituting Z(¢) into (14), we have

Z'(t)=-dZ (), t+ n+1-1T, t+nT,

AZ(t)=-pZ(t), t=m+1-1)T,
(20)
AZ(t)=0, t=nT, neN,

Z(0")=z,-2z"(0").

Then, Z(t) = Z(0+)e_dtH0<(n+T_1)T<t(1—p) — 0,ast — o©o.
The proof is completed. O

4. Main Results

4.1. Local and Global Stability. In this section, we will study
the existence and stability of the system (1) susceptible pest-
eradication periodic solution (x"(t),0,17(t), y; (), yy ().
To this purpose, it is seen first that when S(¢) = 0, system
(1) can be rewritten in the form

5
X (t) = rx (0) (1 - %)
I'(t) = ~d;1 (1),
yy () == (d; +m) y; (0),
yag (O) = myy () = dpyp (8
t¥+ (n+17-1)T,
t #nT,
Ax (t) = -0x (1),
AI(t) = -P (1),
Ay; (1) = =Py, (1),
Ayp () = =Ppyypg ()
t=m+7-1)T,
Ax(t) =0,
AL (t) =6y,
Ay; (t) = 6,
Ayp () = S
t =nT, (1)

which describes the dynamics of system (1) in the absence
of the susceptible pest population. So, when t € ((n -
1)T,nT](n € N), we can calculate the T-periodic solution of
(21) by Lemmas 7 and 9. It is seen that

K (1 -0- e_rT)
1-6-eT 4+ 8e—r(T—TT)e—r(t—(n—1)T) >
te((n-1)T,(n+7t-1)T],
K(1-5-¢)
1-8—-e1T + Se—r(t—(nﬂ'—l)T) >
te((n+t-1)T,nT],

X7 () = (22)

8y ditt=(n-DT)
1-(1-P)e ™’
te((m-1)T,(n+7-1)T],
8, (1-P) g1 t=(n=1)1)
1-(1-P)e T
te((n+t-1)T,nT],

I"(t) = 1 (23)

816—(m+d,)(t—(n—1)T)

1-(1-Py)etmrdT”
te((n-1)T,(n+7t-1)T],
(S] (1 _ P]) e—(m+d])(t—(n—1)T)
1-(1-Py)etmd)T
te((n+t-1)T,nT],

IGER (24)

>




Y (t)

eI (32 (0F) 4 A(t - (n—1)T)),

) te(n-1DT(n+7-1)T],

=\ e~ tult-(-1)T) (y;/[ (TT+) el | B(t-(n-1) T)) ,
te(n+7-1)T,nT],

(25)
v oy [(A=Py) AGT) + B(T)] e ™ + 5,

v (07) = e . (26)
o (=P [AGT) + e DTB(T) + 8y ) T
Vi (7T7) = 1-(1-Py)e T ’

(27)
where
md (e(dM—(m+d,))t _ 1)
At) = . —(m+d,)T g
(1= (1= Py) e ™)) (dy, ~ (m + dj))
te(0,7T],
5 (t) _ mé} (1 _ P]) (e(dM—(m+d,))t _ e(dM—(erd,))'rT) ,
(1= (1 =P)e ™) (dy ~ (m+dy))
t e (1T, T).
(28)

To discuss the locally asymptotical stability of the susceptible
pest-eradication periodic solution, we now introduce the
Floquet theory for a linear impulsive control system:
W (O =Aw), t#T
(29)
Aw(t) =Bw(t), t=1, keN,

under the following conditions:

H1: A(-) € PC(R, M, (R)) and A(t + T) = A(t) for t > 0.

H2: B, € M,,, det(I, + B;) #0, 7, < 7y, fork e N,and I,
denotes the n x n real identity matrix.

H3: Thereisaq € Nsuch that By, = By, Ty = T + T
fork e N.

Let ¥(t) be a fundamental matrix of (29), then there is a
unique reversible matrix M € M, (R) such that ¥(t + T) =
Y(t)M for all t € R, which is called the monodromy matrix
of (29) corresponding to ¥. All monodromy matrices of (29)
are similar and they have the same eigenvalues A, A,,...,A,,
which are called the Floquet multipliers of (29).

Lemma 10 (see [13] (Floquet theory)). Let the conditions HI-
H3 hold. Then system (29) have the following properties

(1) stable if and only if all Floquet multipliers A; (1 < i <
n) of (29) satisfy |A;| < 1 and moreover, to those A,
for which |A;| = 1, there correspond simple elementary
divisors;
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(2) asymptotically stable if and only if all Floquet multipli-
ers A; (1 <i<mn)of (29) satisfy [A;] < 1;

(3) unstable if there is a Floquet multipliers A; (1 <i < n)
of (29) such that |A;| > 1.

In the following, we present two main results with the
locally and globally asymptotical stability of the susceptible
pest-eradication periodic solution (x(t), 0, I"(t), P} (t),
Py (1)).

Theorem 11. If

T

T
ﬁj P, (x* (t))dt—j g(I" (1)) dt
0 0 (30)

T
P (O)J Y (6 dt - dgT < ln ——,
0 1-Pg

then the susceptible pest-eradication periodic solution (x*(¢), 0,
I°(t), y; (1), ypr(1)) of system (1) is locally asymptotically stable.

Proof. Let (x(t),S(t), I(t), y;(t), ypr(t)) be any solution of
system (1). We define error e,(t) = x(t) — x"(t), e,(t) =
S(t), es(t) = I(t) = I"(t), ey(t) = y;(t) = y;(t), es(t) =
Ym(®) — ya(t). The linearized system of (1) at (x"(t),
0,17(t), yy (1), yp (1)) is

x* (1)

e (t) = <r —2r > e, (t) =P (x"(t))e, (1),

e; (1) = (BP, (x" (1) = g (I" (1)) = 3 (0) y3; (1) — ds) e, (8),
e (1) = g(I" (1) e, (t) — dyes (1),

ey (t) = AP (0) yy, (t) €, (t) = (d; +m)e, (1),

e (1) = me, (1) - dyes (1),

t#(n+t-1)T,

t#nT,
Aey (t) = —de, (1),
Ae, (t) = ~Pse, (1),
Aes (1) = ~Pres (1),
Aey (t) = —Prey (1),
Aes (£) = ~Pyes (1),
t=m+71-1)T,
Aeq (t) = Ae, (t) = Aey (t) = Aey (t) = Aes () = 0,
t =nT.
(31)

Let P (¢) be the fundamental matrix of (31), then W(t) satisfies
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(t
roop e ® P, (x* (1)) 0 0 0
¥ (0) BP (x* (1)) =g (I" (t)) = Py (0) y5, () —ds 0 0 0
Tar 0 (" () -, 0 o |¥YO. (2
0 AP} (0) yix; () 0 —(dj+m) 0
0 0 0 m  —dy
Then, a fundamental matrix ¥(¢) (¥(0) = I,) of (31) is
e_[o(r—Zr(x* (s)/K))ds ¢12 ®) 0 0 0
0 eJo (B (x* (9)=g(I" ()-PL(0)y3(s)-dsds ) 0 0
v (t) = 0 ¢32 (t) e—dzt 0 0 s (33)
0 by (1) 0 e @mt
0 $5, (1) 0 ¢y ()
where The resetting impulsive condition of (31) becomes
e, (n+7-1)T")
e,(n+7-1)T")
es(n+7-1)T")
"
_ - flrean 9/K))ds ey (n+7-1)T")
()= —e I es(n+7-1)T")
1-6 0 0 0 0
t
. [ P () -g(I" ()P} (0)y31(E)~ds)dE 0 1-P O 0 0
X.[opl(x () e R =l o o 1—PI 0 0
0o 0 0 1-P 0
0 0 0 0 1-P,
[Str—2r(x" ©)/K))dE (35)
xen ds, e, (n+7-1)T)
e, (n+17-1)T)
t 2
b3, (1) x| es(m+7-1)T) |,
t s . . P e,(n+7-1)T)
-d * (BPy(x" (£)=g(I" (§)-P}(0)y (§)-ds)d 4
=e Itjog(l (S))eﬂ’ﬁ1 '@ Yul®)=ds)ds es(n+7-1)T)
w el ds, e, (nT™") 10000 e, (nT)
e, (nT") 01000 e, (nT)
by (1) es(nT*) |=( 00100 e; (nT)
, e, (nT") 00010 e, (nT)
dt j AP (0) v (s)e Jo (BP (™ (£))-g(I" (£)-P} (0)y34(E)-d)dE es (nT™) 00001 es (nT)
0

d
x eV%ds,

b, (1) = e ! L me,, (s) e ds,

" (e—(d,+m)t B

dy - (d; +m)

e—th)

‘/’54 (t) =

(34)

Then, it is easy to obtain all eigenvalues of

1-6 0 0 0 0
0 1-P 0 0 0
M= 0 0 1-P 0 0
0 0 0 1-P 0
0 0 0 0 1-Py,
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10000
01000
x| 00100 |¥(.
00010
0000O01
(36)
T *
We have A, = (1 - 8)€J’0 (r2r6E@s ) = (1 - Py)

ely BPLG O-g(I" ()-BIOr-dods ) - _ (] _ pyg T <
Ay =(1=P)e @ < Tand A = (1-Pye ™" < 1. Since
x*(t) > (K/2),s0 A, < 1. By the condition (30), we have A, <
1. Therefore, according to Lemma 10, the susceptible pest-
eradication periodic solution (x*(£),0, I"(t), y; (), y(t)) of
system (1) is locally asymptotically stable. The proof is
completed. O

Theorem 12. If

T T
[3J P, (x" (t))dt—J g(I" () dt
0 0 37)

T
* 1
- min P, ((D)J. yyu B dt —dgT <In ,
0 1-P

0<@<Us S

where Ug is an ultimate boundedness constant for S, then
the susceptible pest-eradication periodic solution (x*(t),0,

I°(t), y; (1), ypr(1)) of system (1) is globally asymptotically
stable.

Proof. Since

T T
Bl PG @a-[ g @)ar
0 0 38)

T
: ! * 1
- ,min P, (@) L Y ()t = dgT < In — B

we can choose an € small enough such that

T T
ﬁj P, (x* (t)+s)dt—J g(I" (t) —¢)dt

0 0

- min P, (@) jT (y;\‘/f(t) - 8) dt —d T (39)

0<0<Ug 0

—1n

=€<0,

S

where yy3,(t) is defined in the following. According to system
(1), we have

x’(t)grx(t)(l—%>,
I'(t) > ~d,1(t),

}’} () = _d])’] () —my,; (),
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Iy () = my; (6) = dyya (1),
t¥ n+71-1)T,
t #nT,
Ax (t) = -8x (1),
AL(t) =PI (t),
Ay; (1) = =Py, (1),
Ay () = =Pyyu (B
t=(m+1-1)T,
Ax(t) =0,
AI(t) =6},
Ay, (t) =6,
Ayy (t) = S
t=nT, neN.

(40)

From the first equation of system (40), we obtain the
following comparison system:

v(t)—rV(t)(l I ) t#m+7-1T, o
Av(t)=-8v(t), t=m+1t-1)T.

By Lemma 7, system (41) has a positive periodic solution
v*(t), and for any solution v(¢) of (41), »(t) — v*(¢t) ast large
enough, where v*(t) = x”(¢). Then, according to Lemmas
4 and 7, there exists a positive constant n* such that for all
t>n"T

x(t)<x"(t) +e (42)

Let us define V() = (V,(t), V,(t))" € C[R, x R*,R?] and
Vi(t) € Vi, (i = 1,2), where V() = I(¢), V,(t) = y;(¢). Then,

we have

’ —d;I(t) _(-d 0
vz <_(d1 +Im))’1(t)> - ( 01 —(d}+m)>v(t)’

t+ n+1-1)T, t+nT,
(43)

1-P, 0
0 1-P

V(nT") = <(1) (1)) V(nT) + (g;)

V(0") = (1(07), y;(07)).

V((n+T—1)T+)=< )V((n+‘r—1)T),

(44)
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Then, the multicomparison system of (43) is

w ) =Aw®), t+ nm+1-1)T,nT,

w(t)=Bw(), t=m+1-1T,

(45)

wt)=Lw@t)+C, t=nT,

w(07) =V (0"),
o 1-P; 0 B}
where A = ( o —(d,+m))’ B= ( o 1_PI),andC = (5;).
By Lemma, it is easy to obtain a periodic solution

(I*(t), yj*(t))T of system (45). Then, according to Lemmas 4
and 9, one may find ny (n; > n") such that forallt > n; T

I®) =1 (t)—¢, )2y (1) -e (46)

From the fourth equation of system (40), we have )’1,\4(t) >
m(y; (t) — €) = dpryp(t), by Lemmas 4 and 9, there exists
ny (nj > ny) such that for all ¢ > n; T

yau () = yi ) — &, (47)
where
[ g~ du(t=(n=1)T)
x (5,09
t—(n—-1)T
+m J (y]* @) - s) edMSds) ,
0

T tE((n—l)T,(n+T—l)T],
Y (6) = 1 o~ lt=(r-1)T) (48)

x (T et
t—(n-1)T
+m J (y]* ) - s) edMsds) ,
T
te(n+1t-1)T,nT],

W = (m [(1 -Py) JTT (y]* t) - s) e ds

0
T
+ J (y}k t) - e) edMSds] e T | 8M>
T
X (1 -(1-Py) e_dMT)_l,
Yo (TTh)
T
= <(1 - Py) [mj (y]* (t) - s) e ds
0
T
+ me T J (y]* (t) - s) eMids + SM]
T
% e*dMTT>

x (1= (1= Py) e‘dMT)'l.
(49)

Therefore,

S'(t) < [ﬁPl (x* () +e)—g(I" (t) —¢)
- min (@ (75,01 —¢) - ds | s 0,
t+ m+7t-1)T, (50)
t #nT,
AS(t) = -PS(t), t=m+1-1)T,
AS(t) =0, t=nT,

fort > n;T.Let N € Nand (N + 7 - 1) > n;. Integrating (50)
on((n+7-1T,(n+1)T], n> N, we have

S((n+1)T)
<S((m+7-1)T)(1-F)

(n+1)T —_—

. (n+T71)T(/3Pl(x*(t)—s)—g(l?l(tﬂe)—ogis%st,(a))(m+s)fd5)dt

=S((n+1t-1)T)€".

(51)

Then S(t) < S((n+7)T)e* fort € (n+7+k)T, (n+7+k+1)T].
Since € < 0, we can easily get S(f) — 0,ast — oo0. In the
following, we prove x(t) — x"(¢),I(t) — I'(t),y;(t) —
y]*(t),yM(t) — yy(t),ast — oco. Give g > 0 small enough
(8g < (r/P'1(0))), there must exist n; (1; > n}) such that
S(t) < &y, for t > n, T. Then, we have

, ’ rx (1)
x () > (r—Pl (O)SO)x(t)(l_ K(?’T{(O)SO)>’

I'(t)<—(d; - g (0)g)I (1),

y; () AP, (80) M = (d; +m) y; (1),

ya () = my; (6) = dpgyag (8),
t+ n+7-1T,
t#nT,

Ax (t) = -6x (1),

AI(t) = -PI(t),

Ay (t) = =Pry; (1),

Ayy (t) = =Pyyp (B),

t=m+71-1)T,
Ax (t) =0,
AI(t) =6y,
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Ay] (t) = 6];
t =nT.

(52)

Analyzing (52) with similarity as (40), there exists ny (ny >
ny) such that for all t > n; T

x(t)zm—s, I(t)sI/*\(t)+e,

(53)

N

yr(t) < )TI*E + & yu (1) < vy ) + &,

where
x* (1)

(K (1= PL0) o) (1 -6 - 00T
X (r [1 _§ = e rPlO=)T

~(r=P](0)eo)(T=7T) ,~(r~P] (0)¢) (t~(n-1)T) ] )*1

>

+0e

] te((n-1)T,(n+7-1)T],
K(r—-P{(0)¢) (1 Y <0>so>T)

r [1 — 5 — (Pl (Oe)T 4 Se,(r,plr(0)50)“7("”71”)] >
te((n+t-1)T,nT],

'@

( 516—(d1—g’(0)so)(t—(n—1)T)

1-(1-P,)e g ©e)T’
te((n-1)T,(n+7-1)T],
8; (1 - Py) ¢"@mg @e)(t=(+-1D)

1- (1 _ pl) e~dr=g'(0)g)T
te((n+t-1)T,nT],

¥ ()
[ e—(m+d,)(t—(n—1)T)
x (77 ©) + AP, (e) M frer emdes)

te(m-1)T,(n+7-1)T],
o~ (m+d))(t=(n=1)T)

X (J’]* (TT+)e(m+d,)rT

+/\P2 (80) M J‘:;("—I)T e(m+d;)sds> ,

te((n+t-1)T,nT],

7709

T

T
e(m+d,)sds " J e(m+d,)sds]
T

- <AP2 (e0) M [(1 -5

0

= d,))T — 4T\~ !
x ey +81>(1—(1—P,)e ;) )

Abstract and Applied Analysis
y; (7T%)
T
- ((1 _p) [APZ (e [ émheas
0

T
+e " TAP, () M J

M 4 6]]
T

_ _ -1
xe (m+d,)rT> (1 _ (1 _ P])e (m+d])T) X

Yar(6)
[ e—dM(t—(n—l)T)

—

% (¥4 (0%)
t-(n-)T
+m J (y]* @) + s) edMSds) ,
0

- te((n-D)T,(n+7t-1)T],

- (t=(1-1)T)
X (ym’f)edMTT
t-n-)T .
+mj (y}k (t)+£)e Mids ),
T

te(n+7-1)T,nT],

J——

Y (0F)
T 4
= <m [(I—PM) Jo (y]*(t)+8)e MS s

T
+ J ()’]* )+ s) edMsds] e T 4 5M>
T

T
-1
>

x (1= (1= Py)e™T)

(T
-(-rw

T
x [m J (,'V/* )+ 8) e ds + me T
0

T
X J (y; () + ) e™ds + SM] eidMTT>
T

T
-1

x (1= (1= Py)e™T)
(54)

Letting &,¢, — 0, we have m — y;\‘/[(t),;‘—(?) — x*(t),
I*(t) — I'(p), yit) — Y7 (), y3(t) — yp(t). Together
with (42), (46), (47), and (53), we get x(t) — x"(¢),I(t) —
I"(t), y;(t) — )/]* @), yut) —  yyt) ast — oo
Therefore, the susceptible pest-eradication periodic solution
(x*(£), 0, I°(t), y; (t), yp(1)) is globally attractive. Since (37)
implies (30), it follows from Theorem 11 that (x*(¢), 0, I*(¢),
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yy (1)) is locally asymptotically stable. So, the susceptible pest-
eradication periodic solution (x(t), 0, I"(t), y; (), y;,(t)) of
system (1) is globally asymptotically stable. The proof is
completed. O

4.2. Permanence. Next, we will discuss the permanence of
system (1). In order to facilitate discussion, we give one
lemma.

Lemma 13. There exists a constant m, > 0, such that x(t),
I(t), y;(t), yp(t) = my for each solution of (1) with t large
enough.

Proof . First, we discuss x(t). Since S(t) < M, by the first
equation of system (1), we have

! ' rx (t)
X (t)Z(T—Pl (O)M)x(t)(l—m),
t+ n+7-1)T, t+nT,
Ax(t)=-6x(t), t=m+t-1)T,

Ax(t) =0, t=nT.

(55)

Then, we obtain the following comparison system:

li ! (t)
) =(r-P ()M (t)(l—”‘—,>,
KO =(r=nO M)y K (r = P (0) M)
t+ (n+17-1)T, t+nT,

Ax(t) =-6x (@),
Ay (t) =0,

t=(mn+7t-1T,

t =nT.
(56)

Letting r > PI'(O)M and (1 - 8)e(r_P1’(°)M)T > 1, by Lemma 7,
the system (56) has a positive periodic solution x*(t), and for
any solution y(t) of (56), x(t) — x"(t) as t large enough,
where

(K (r—P[()M)(1-5-¢-HOMWT)

o (r[1 -6 - e-o-HtOm

8 e—(r—P{ (0)M)(T-T)

w e~ -PLOME--0D )™

te(n-1)T,(n+7-1T], (57)
K (r =P} (0) M) (18- -HOMT)
X (r [1 _§ = rAOMT

45 e—(r—P{ (0)M)(t—(n+7-1)T) ]

te((n+t-1)TnT].

-1

According to Lemmas 4 and 7, one may find n; € N such
that x(t) > x*(t) — e for t > n,T. Since y*(t) — & > (K(r —

Pl(0)M)(1=8—¢ TFOMT) (1o~ ¢=PIOMTY) o — 1y 5 ),

1

so x(t) = m, for t > n, T. Next, we will discuss the rest of
parts.

From (46) and (47), we know that there exists n; (n; >
max{n;,n,}) such that I(t) > I"(t) — &, y;(t) 2 y[* (t) — &, and
Yam(t) = yr (t) — e forall t > niT. By (22), (23), and (48), we
have I(t) > (8;(1-Pe™ T /(1-(1-P)e™ ™)) —e =m; > 0,
y;(£) > (8;(1-P)e ™ T (1- (1-P)e ™)) —g = m, >
0,and y,,(t) = my;—e = m; > 0, wherem,; = ming .7 yy,(t).
Let m, = min{my, m;, m,,ms}, then x(t), I(¢), y;(£), yp,(t) =
my, for t > n.T. The proof is completed. O

Theorem 14. If

T

T !
ﬁj P, (x* (1) dt - j g(I" (1)) dt - P, (0)
0 0 (58)

T
* 1
XL yM(t)dt—dsT>lnl_PS,

then system (1) is permanent.

Proof. By Lemmas 6 and 13, we have already known
that there exist two constants m,, M > 0, such that
x(t), I(t), y;(t), ypr(t) = my and x(t), S(t), I(t), y;(t), yps(t) <
M for ¢t large enough. Thus, we only need to find m* > 0
such that S(t) > m" for t large enough. We will do this in the
following two steps.

Step 1. Let ms > 0 and ¢ > 0 small enough, so that m; <
min{(r/P{(0)), (d,/g'(0)), M} and

T T /
B n(E®-a)d- | o(FG+e)ar-PO

0
r | (59)
XJ (y;t,[(t‘)+sl)dt—dsT—lnl =n>0,
0 s
where
B (r - P/ (0) ms) (1 -8- ef(’fpll(o)ms)T)
x(r[1-8- 0 rhOmT
+8e TP (Oms)(T-7T)
w e~(rF! (o>m5>(t—(n—1)T>D‘1
x* (f) = A te((n-1)T,(n+7-1)T],
K (r =P} (0)my) (1 -8 = ¢ O
x (r [1 _ 8 — o rPl@m)T
+5e- Pl (0)m5)(t—(n+1—1)T)] )’1,
te((n+7-1)T,nT],
8¢ =g @ms)(t~(n-1)D)
1-(1-P)e@drg@m)1’
_ te((n-1)T,(n+7-1)T],
I =4 ~(dr-g Oms)(t—(n-1T)
8 (1 - py) et i
1— (1 - pI) e~ (di=g'(0)ms)T
te(n+t-1)T,nT],
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y; (©)
( e—(m+d,)(t—(n—1)T)

. t—(n-1)T
X (yl* (0%) + AP, (mg) M Jo e(m+d’)sds> ,

te((n-1DT,(n+1t-1)T],
o~ m+d))(t=(n-1)T)

% (yF (T )etmeeT
t—(n-1)T
AP, (m5) M I

T

e(m+d,)sds) ,

te((n+1-1)T,nT],

—_—

y;y (0)

T T
= (Apz (ms) M[(l - PI)J e s +J e(m+d’)sds]
0 T

x e )T 81> (1-a- P,)e_(m+d’)T)_l,
y; T
= ( (1-p)

T
X [APZ (ms) M J e g 4 g )T
0

X AP, (ms) M J-T

e g 4 8]]
T

-1
Xe_(m+d’)TT> (1-@1 =P ™),

Y (6)
o~ du(t=(1=1)T)

. t—(n-1)T
X (y]”\‘,f Ot +m J

0
x (m + sl) edMsds) ,

te((n-DT,(n+7-1)T],
o~ dm(t=(n=1)T)

X (yI;VI(\TT/*)edMTT
t-(n-1)T 4
+mJT (y]*(t)+£1)eMsds>,

te((n+7-1)T,nT],

i (09)

= (m [(1 -Py) JTT ()//]*\(_tl) + sl) e ds

0

T d
+JT(y]* (t)+81)e Msds]

T

Abstract and Applied Analysis

xe T 4 6M> (1-(1-Py) e_dMT)_l,
e (7T%)
-(a-2y)

X [m JTT ()//]*\(_t/) + sl) e ds
0

T
+me T J (y}k (1) + sl) eMids + (SM]
T

T

xe’dMTT> (1-(1=Py)e ™).
(60)

We shall prove that one cannot have S(t) < m; for all ¢ > 0,
otherwise

’ , rx (t)
Xz (r-P (O)fns)x“)(1 B W>

I't)<—(d;—g )yms)I(t),
yy (0) < AP, (ms) M = (d; +m) y; (8),
Yar (8) = my; (6) = dpyag (8)
t+ n+7-1T,
t#nT,
Ax (t) = -6x (t),
AI(t)=-PI(t), (61)
Ay () = =Py, (1),
Ayp () = =Prypg ()5
t=(m+7t-1)T,
Ax (t) = 0,
AI(t) = &),
Ay; (t) =),
Ayp (1) = 8y
t = nT.

Analyzing (61) with similarity as (40), it is easy to obtain that
there exists a positive constant 7, such that x(¢) > x*(t) —
e, I(t) < I*(t) + &, yy(t) < y}‘(t) +ep, yu(t) < yi(6) + g for
t > ngT. Therefore,

S' (1) 2 P (x"(6) — &) S(t) — g (I*(®) +&,) (1)

=P, (0) (y3,(D) +2)S(t) —dsS (1),
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t+ n+t-1)T, t+nT,
AS(t) = -PS(t), t=m+1-1T,
AS(t) =0, t=nT,
(62)

fort > n;T. Let Ny € Nand (N, + 7 — 1) > ng. Integrating
(62)on (n+ 17— 1)T,(n+ 1)T],n > N, we have

S((n+1)T)

>S((n+7t-1)T)(1-P)

(n+1)T —_—— —_— ’ _— (63)
% e (n+r—1)T(/3P1 (x* (t)—&;)—g(I* (t)+e;)—P, (0) (yy, (t)+e; ) —dg)dt

=S((n+7-1)T)e".

Then S((N, + 7 + k)T) > S(N,, + T - coask — oo,
which is a contradiction. So there exists a t, (t; > n;T) such
that S(t,) > ms.

Step 2. If S(t) = mg for all t > t;, then Our purpose is
obtained. If not, let t, = inf{t > t; | S(t) < ms}. Then
S(t) = ms fort € [t;,t,) and S(t,) = ms. In this step, we
consider two possible cases for t,.

Case 1. t, = (n, + 7 — D)T,n; € N. Then S(t;) = (1 -
Pg)S(t,) < ms. Select ny,n; € N such that (n, — 1) > ng
and (1 — Pg)2e™ 0T 5 (1 — po)"2e™ Dol 5 1 \here
o = P, (my,) - g(M) - PZ'(O)M -dg <0. LetT = (n, + n;)T,
then we have the claim: there exists t; € (t,,t, + T] such that
S(t3) = ms. If the claim is false, we will get a contradiction in
the following.

According to Step 1, we have x(t) > x*(t) — &,I(t) <
>

I*(t) + ey () < y7(6) + &, yp(t) < yy(t) + ¢ for ¢
(ny + ny — 1)T. Then, we have

S0 = B (D -e) SO - g (FB+e)S®)
— P, (0) (y3, () + &) S(®) —dsS (1),
t# m+1-1T, t+nT, (64)
AS(t) =-PS(t), t=m+7-1)T,
AS(t) =0, t=nT,
fort € [t, + n,T,t, + T]. As in Step 1, we have
S(ty+T) 2 S(ty +n,T) ™. (65)

Since x(t) > my,, I(t) < M, yy(t) < M and P,(S(t)) <
P}(0)S(t), we have
S'()
> (BP, (my) — g (M) - P, (0) M — dg) S () = oS (#),
t+ n+1-1)T, t+nT,
AS(t) = -PS(t), t=m+1-1)T,

AS(t)=0, t=nT,

(66)
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fort € [t,,t,+n,T]. Integrating (66) on [¢,,t, +n,T], we have
S(t, +n,T) = S(£]) ™"
= (1 - Py)mse™"" (67)
> (1 - P)"mge™".

Thus, by (65) and (67), we have S(¢, + T > (1 -
Pg)"mse™ ™" > mg, which is a contradiction. Let t, =
inf{t > t, | S(t) > ms}, then for ¢t € [t,,1,),S(t) < m; and
S(ty) = ms. So, S(t) = S(t)e” ™) = (1 - Pmse”™) >
(1 - P mg e’ ™) = 7 for t € [t,,t,).

Case 2 (t,# (n, + 7 — 1)T,n; € N). Suppose that t, € ((n] +

- 1T, (n; + 7)T), n; € N.S(t) = mg fort € [t,t,) and
S(t,) = ms. There are two possible cases for ¢ € (t,, (n; +7)T).

Case 2a. If S(t) < mg forallt € (t,, (n; +71)T), similar to Case
1, we can prove there exists a t; € ((ni +17)T, (n; +7)T + T
such that S(t}) > ms. Lett) = inf{t > t, | S(t) > ms}, then for
t € [ty 1)), S(t) < msand S(t}) = ms. So, S(t) = S(t,)e” ™) =
mse”7) > (1 = Pg) eI = i < for all
t € [ty ty).

Case 2b.Ifthereexistsat € (t,, (I’l;+T)T) such that S(¢) > ms.
Let t) = inf{t > t, | S(t) > ms}, then for t € [t,,1)),S(t) <
ms and S(t}) = ms. So, S(t) > S(t,)e?t ) = mseg(Hz) >

mse’ > m* forallt e [t27Z)-
Since S(t) > mj for some t > t,, in both cases a similar
discussion can be continued. The proof is completed. O

5. Numerical Simulations and Conclusions

In this section, we will give an example and its simulations to
show the efficiency of the criteria derived in Section 4.

In system (1), let P,(x(t)) = ax(t), g(I(t)) = bI(t),
and P,(S(t)) = h(1 - eSOy a, b, c, h > 0. Namely,
P, (x(t)) describes an Holling type-I functional response of
the pest, P,(S(¢)) describes a Ivlev-type functional response
of the pest ’s natural predator. Therefore, we consider the pest
management model with impulsive releasing and harvesting
at two different fixed moments:

X (t) = rx (t) (1 - %) —ax(H)S (1),
S’ (t) = Bax (t) S(t) — b (t) S (t)
~h(1-eD) ypy (1) - dsS (1),
I'(t) =bI (t)S(t) - d,1(t),
yy () = A (1-e0) yp () = dyy; (8) = myy (1),

yar () = my; () = dyryy (8)
t+ n+7-1T,
t +nT,
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FIGURE 1: Time series of the system (68) withr = 8, K = 10,a = 0.8, 8 =0.5,b=03,h =8,c¢ =02, =0.6,m = 2,dg = 0.2,d; = 0.5,
d;=04,dy =02,8=04,P =P, =P = P,y =02,8,= 02,8, =03,8,, = 0.5, 7 = 0.3, T = 0.5, x(0) = 20, S(0) = 2, 1(0) = 2, y,(0) = 0.5,
yu(0) = 0.5.

Ax () = =0x (1), Aype () = S

AS(t) = -PsS (1), t =nT.

AI(t) =-PI(1), (68)

So, by (22), (23), and (25), we have
Byy (6= =By (@), '

T K
Ayp () = =Py (), B L P (x" (1)) dt = B% (T +In(1-9)) =0,,

t=(mn+t-1)T, T
I* (t))dt
Ax (t) =0, Jo g(I" (1)
AS(t) =0, B bd, [1 —e T (1-P) (e—d,rT _ e—d,T)]
AL(t) =6, d;(1-(1-Py)eT)
=0,,
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FIGURE 2: Phase portrait of the system (68) withr = 8, K =10,a =08, 3=05,b=03,h=8,c=02,1=0.6,m =2,dg = 0.2,d; = 0.5,
d;=04,dy =02,8=04,P; =P, =P, =Py, =02,8 =02,8 = 03,8, =057 =03,T = 0.5,x(0) = 20, S(0) = 2, 1(0) = 2, y,(0) = 0.5,

Yu(0) = 0.5.

mé;

+
(1= (1= P) e ™ T (dy, — (m +d,))
y 1— e—(m+d,)1T 1- e—dM‘rT
m+d; dy

yar (TT) e " ( —dytT  dyT
Sy e
M

md; (1-P))

== B) e ™) (dyy = o+ dy)

(e—(m+d,)TT _ e—(m+d,)T
X

m+d;
e—erT _ —dy

dy

e

T
e(dM—(m+d,))‘rT)

where
) (0%) = [(1-Py) A(T) + B(T)] e ™" + 8,
M 1-(1-Py)ednT ’
— (1-Py) [AGT) + e B(T) + 8] e
)’M(T )= = (1= Py) el ,
md (e(dM—(m+d,))rT _ 1)
A(T) = . —(m+d;)T >
(1-(1-P)e D) (dpg = (m+ dy))
mé, (1 =P e(dM*(erd/))T _ e(de(erd,))rT
sy~ "o (=P ( )

(= (1= B)e 0 [y~ (m+d,)
Then, by Theorems 11 and 14, we have the following.

(THIfO, — 6, — 0, —dyT < In(1/(1 - Py)), then the
susceptible pest-eradication periodic solution (x*(¢),
0,I%(t), y]* (1), yr;(1)) of system (68) is locally asymp-
totically stable.

(T2) If 6, — 6, — hce ™0, — d;T < In(1/(1 - Py)),
then the susceptible pest-eradication periodic solu-
tion (x*(t),0,17(t), yy (t), yp(t)) of system (68) is
globally asymptotically stable, where M is defined in
Lemma 6.

(T3) If0, — 0, — hcB; — dsT > In(1/(1 — Ps), then system
(68) is permanent.

In the following, we analyze the locally asymptotical
stability of the susceptible pest-eradication periodic solution

(69)  and permanence of system (68).
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FIGURE 3: Time series of the system (68) with r = 8, K
d; = 04,dy; = 02,8 =04,P;= P, = P, = P, = 02,6,
ym(0) = 2.

Assume that x(0) = 20, S(0) = 2, I(0) = 2, y;(0) = 0.5,
yp(0) = 05,7 =8K=10,a=088=05b=03h=8,
c=02,1=06,m=2dg=02d,=05.4d, =04,dy, =02,
8 =04,P; =P =P =P, =028 =020 =03,
Oy = 0.5,7 = 0.3, T = 0.5. Obviously, the condition of (T1)
is satisfied, then the susceptible pest-eradication periodic
solution of system (68) is locally asymptotically stable, which
can be seen from the numerical simulation in Figures 1and 2.

Assume that x(0) = 20, S(0) = 0.2, I(0) = 2, y;(0) = 2,
yp(0) = 2,7 =8,K =10,a =08, =05b=03h=8,
c=02,1=06,m=24dg=02d;=05.4d, =04,dy =02,
8 =04,P; =P =P =P, =026 =020 =03,
Oy = 0.5, 7 = 0.3, T = 1. Obviously, the condition of (T3) is
satisfied. Then, system (68) is permanent, which can also be
seen from Figures 3 and 4.

From results of the numerical simulation, we know that
there exists an impulsive harvesting(or releasing) periodic

40 60 80

0,a=08p8=05b=03h=8c=021=06m=24ds=024d =05,
02,8, = 03,8, = 0.5,7=03,T = 1, x(0) = 20,5(0) = 0.2, 1(0) = 2, y,(0) = 2,

threshold T*, which satisfies 0.5 < T* < 1.If T < T* and
the other parameters are fixed (r = 8, K = 10,a = 0.8,
B =050b=203h=28c=021=06m= 2
ds = 02,d; = 05,d, = 04,dy = 02,8 = 04, P =
P, =P = Py = 02,8, = 02,8 = 03,8, = 0571 =
0.3, T = 0.5.), then the susceptible pest-eradication periodic
solution (x*(t), 0, I"(t), y; (t), y3,(t)) of system (68) is locally
asymptotically stable. If T > T* and the other parameters are
fixed(r =8,K=10,a=0.8,3=050b=03,h=8,c=02,
A=06m=2dg=024d =05d =04,dy =02,
8 =04,P =P =P =Py =028 =020 =03,
Oy = 05,7 =0.3,T = 0.5.), then system (68) is permanent.
The same discussion can be applied to other parameters.

In this paper, we proposed a pest management model with
impulsive releasing (periodic infective pests, immature and
mature natural enemies releasing) and harvesting (periodic
crops harvesting) at two different fixed moments. By means
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FIGURE 4: Phase portrait of the system (68) withr = 8, K = 10,a = 0.8, 3=0.5,b=03,h=8,c=02,1=0.6,m = 2,dg =0.2,d; = 0.5,
d; = 04,dy =02,8 =04,P; =P, =P, =P, =02,8, = 02,8, = 03,8, = 0.5, 7 = 03, T = 1, x(0) = 20, S(0) = 0.2, 1(0) = 2, y,(0) = 2,

ya(0) = 2.

of Floquet theory and multicomparison results for impulsive
differential equations, two sufficient conditions ensuring the
locally and globally asymptotical stability of the susceptible
pest-eradication period solution and permanence of the
system are derived.
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