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Some new oscillation criteria for a general class of second-order differential equations with nonlinear damping are shown. Except
some general structural assumptions on the coefficients and nonlinear terms, we additionally assume only one sufficient condition
(of Fite-Wintner-Leighton type). It is different compared to many early published papers which use rather complex sufficient
conditions. Our method contains three items: classic Riccati transformations, a pointwise comparison principle, and a blow-up
principle for sub- and supersolutions of a class of the generalized Riccati differential equations associated to any nonoscillatory
solution of the main equation.

1. Introduction

In the paper, we develop some new oscillation criteria for
the following class of second-order differential equationswith
nonlinear damping:

(𝑟 (𝑡) 𝑘
1
(𝑥, 𝑥󸀠))

󸀠

+ 𝑝 (𝑡) 𝑘
2
(𝑥, 𝑥󸀠) 𝑥󸀠

+ 𝑞 (𝑡) 𝑓 (𝑥) = 0, 𝑡 ≥ 𝑡
0
> 0,

(1)

where the coefficients 𝑟 ∈ 𝐶1([𝑡
0
,∞), (0,∞)), 𝑝, 𝑞 ∈ 𝐶([𝑡

0
,

∞),R), and the functions 𝑘
1
(𝑢, 𝑣), 𝑘

2
(𝑢, 𝑣) are continuous in

all their variables, 𝑘
1
∈ 𝐶1(R2,R) and solution 𝑥 = 𝑥(𝑡), 𝑥 ∈

𝐶2((𝑡
0
,∞),R) ∩ 𝐶([𝑡

0
,∞),R). A function 𝑥(𝑡) is said to be

oscillatory if there is a sequence 𝑡
𝑛
≥ 𝑡

0
such that 𝑥(𝑡

𝑛
) = 0

and 𝑡
𝑛
→ ∞ as 𝑛 → ∞.

In Section 2, we present some basic structural assump-
tions on the coefficients: 𝑟(𝑡), 𝑝(𝑡), and 𝑞(𝑡) and on the
nonlinear functions: 𝑘

1
(𝑢, 𝑣) and 𝑘

2
(𝑢, 𝑣), which are slightly

more general than those of the previously published results
such as in Zhao et al. [1, Theorem 2.1] (see also Theorem
A, Section 2), [1, Theorems 2.2–2.8], [2, Theorem 2], [3,
Theorem 2.1]. In Section 3, we study some new oscillation
criteria for (1) based on an additional sufficient condition
of Fite-Wintner-Leighton type, which is rather simpler than
Kamenev-type conditions or related complex ones. Equation

(1) in various different forms has been considered in many
several published papers, see, for instance, [4–12] and refer-
ences therein. In Section 4, we state and prove a pointwise
comparison principle between all sub- and supersolutions of
the corresponding generalized Riccati differential equation
associated with every nonoscillatory solution 𝑥(𝑡) of (1).
Furthermore, under the main assumption of Fite-Wintner-
Leighton type, we construct a subsolution of the Riccati
differential equation which blows up in time. It together with
classic Riccati transformation gives the proof of the main
result.

2. Main Assumptions and Remarks

In particular, for 𝑚 = 𝑛 = 1, in [1] authors firstly supposed
the next five basic conditions on the coefficients𝑝(𝑡), 𝑞(𝑡) and
the functions 𝑓(𝑢), 𝑘

1
(𝑢, 𝑣), and 𝑘

2
(𝑢, 𝑣):

𝑝 (𝑡) ≥ 0 ∀𝑡 ≥ 𝑡
0
, (2)

𝑓 (𝑢)
𝑢

≥ 𝐾 for some 𝐾 > 0 and all 𝑢 ∈ R, 𝑢 ̸= 0, (3)

𝑞 (𝑡) ≥ 0 ∀𝑡 ≥ 𝑡
0
,

𝑞 (𝑡) ̸≡ 0 on [𝑡
∗
,∞) for any 𝑡

∗
≥ 𝑡

0
,

(4)
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𝑘2𝑚
1

(𝑢, 𝑣) ≤ 𝛼
1
𝑢2𝑚−2𝑣𝑘

1
(𝑢, 𝑣) for some𝑚 ∈ N, 𝛼

1
> 0

and all (𝑢, 𝑣) ∈ R
2, 𝑢 ̸= 0,

(5)

𝑢2𝑛−1𝑣𝑘
2
(𝑢, 𝑣) ≥ 𝛼

2
𝑘2𝑛
1
(𝑢, 𝑣) for some 𝑛 ∈ N, 𝛼

2
> 0

and all (𝑢, 𝑣) ∈ R
2, 𝑢 ̸= 0.

(6)

Such a set of assumptions, with slightly different (6) and𝑚 =
𝑛 = 1, was introduced for the first time in [2], see also [3].
Just the same as in [1], besides (6) we also consider a similar
assumption:

𝑢𝑣𝑘
2
(𝑢, 𝑣)≥𝛼

2
𝑢𝑘

1
(𝑢, 𝑣) for some𝛼

2
>0 and all (𝑢, 𝑣)∈R2.

(6)
1

And, in the case when 𝑝(𝑡) and 𝑞(𝑡) may change the sign,
instead of (2)–(4) and (6), one considers also:

𝑓 ∈ 𝐶1 (R,R) , 𝑢𝑓 (𝑢) ̸= 0,

𝑓󸀠 (𝑢) ≥ 𝐾 > 0 ∀𝑢 ∈ R, 𝑢 ̸= 0,
(3)

1

𝑣𝑘
2
(𝑢, 𝑣)=𝛼

2
𝑘
1
(𝑢, 𝑣) for some 𝛼

2
>0 and all (𝑢, 𝑣)∈R2.

(6)
2

Here, assumptions (5) and (6) are generalized in the
following sense, see Theorem 5—(ii) and (iii), respectively,

𝑣𝑘
1
(𝑢, 𝑣) ≥ 0 ∀ (𝑢, 𝑣) ∈ R

2, (5)
𝑤

𝑢𝑣𝑘
2
(𝑢, 𝑣) ≥ 0 ∀ (𝑢, 𝑣) ∈ R

2, (6)
𝑤

which are weaker than (5) and (6), respectively. One of the
reasons for that is presented in the next remarks.

Remark 1.

(1) The most simple second-order differential operator
which satisfies assumption (5) for 𝑚 = 1 is linear in
variable 𝑣; that is,

(𝑟 (𝑡) 𝑘
1
(𝑥, 𝑥󸀠))

󸀠

= (𝐴 (𝑥) 𝑥󸀠)
󸀠

, (7)

where 𝑟(𝑡) ≡ 1, 𝑘
1
(𝑢, 𝑣) = 𝐴(𝑢)𝑣, and 𝐴(𝑢) is an

arbitrary function satisfying 0 ≤ 𝐴(𝑢) ≤ 𝛼
1
. It is

because 𝑘2
1
(𝑢, 𝑣) = 𝐴2(𝑢)𝑣2 ≤ 𝛼

1
𝐴(𝑢)𝑣2 = 𝛼

1
𝑣𝑘

1
(𝑢, 𝑣)

for all (𝑢, 𝑣) ∈ R2 and 𝛼
1
≥ 0, see also Corollary 6.

However, it is easy to check that the differential
operator from (7) does not satisfy assumption (5) for
every𝑚 > 1.

(2) Next, we consider the corresponding second-order
quasilinear differential operator:

(𝑟 (𝑡) 𝑘
1
(𝑥, 𝑥󸀠))

󸀠

= (𝐴 (𝑥) 󵄨󵄨󵄨󵄨󵄨𝑥
󸀠󵄨󵄨󵄨󵄨󵄨
𝛽−1

𝑥󸀠)
󸀠

, (8)

where 𝑟(𝑡) ≡ 1, 𝑘
1
(𝑢, 𝑣) := 𝐴(𝑢)|𝑣|𝛽−1𝑣, and 𝐴(𝑢) is

an arbitrary function satisfying 0 ≤ 𝐴(𝑢) ≤ 𝛼
1
and

in order to ensure that 𝑘
1

∈ 𝐶1(R2,R), we take
𝛽 ≥ 1 since 𝜕𝑘

1
/𝜕𝑣 = 𝛽|𝑣|𝛽−1. Unfortunately, the

differential operator from (8) does not satisfy assump-
tion (5) for every 𝑚 ∈ N, 𝛽 > 1. It is because
𝑘2
1
(𝑢, 𝑣) = 𝐴2(𝑢)𝑣2𝛽−2𝑣2 = 𝐴2(𝑢)𝑣2𝛽 ≤ 𝛼

1
𝐴(𝑢)𝑣2𝛽 =

𝛼
1
𝑣𝑘

1
(𝑢, 𝑣)|𝑣|𝛽−1, which is different from (5).

(3) Unlike (5), the differential operator from (8) satisfies
assumption (5)

𝑤
, and hence, (8) is also included in our

study of the oscillation of (1), see Corollary 11.

(4) Although both differential operators from (7) and (8)
do not satisfy assumption (5) for every 𝑚 > 1, the
so-called generalized prescribed mean curvature-like
differential operator:

(𝑟 (𝑡) 𝑘
1
(𝑥, 𝑥󸀠))

󸀠

= (𝐴 (𝑥) 𝑥󸀠

(1 + 𝑥󸀠2)
𝛼/2

)

󸀠

(9)

satisfies assumption (5) for every𝑚 ≥ 1, where 𝑟(𝑡) ≡
1, 𝑘

1
(𝑢, 𝑣) := 𝐴(𝑢)𝑣/(1 + 𝑣2)𝛼/2, 𝛼 ≥ 1, and 𝐴(𝑢) is an

arbitrary function satisfying 0 ≤ 𝐴2𝑚−1(𝑢) ≤ 𝛼
1
𝑢2𝑚−2,

see Corollary 9.

(5) The simple case 𝑘
2
(𝑢, 𝑣) ≡ 0 is involved in (6)

𝑤
unlike

(6), and hence, the nonlinear equation𝑥󸀠󸀠+𝑞(𝑡)𝑓(𝑥) =
0 can be considered as a special case of (1).

We pay attention to the recently published paper [13] in
which authors show that any generalization of the assump-
tions (2)–(6) should be done very carefully.

Now, we can recall [1, Theorems 2.5].

Theorem A. Let (2)–(6) hold. Assume that there exist 𝜌 ∈
𝐶1([𝑡

0
,∞), (0,∞)), 𝐻 ∈ H, 𝑔 ∈ 𝐶1([𝑡

0
,∞),R), and some

𝑡
1
≥ 𝑡

0
such that for all 𝑇 ≥ 𝑡

1
:

lim sup
𝑡→∞

1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

[𝐻 (𝑡, 𝑠) 𝛾
1
(𝑠)

−
𝛼
1
𝜌 (𝑠) 𝑣 (𝑠) 𝑟2 (𝑠)

4 (𝛼
2
𝑝 (𝑠)+𝑟 (𝑠))

𝑄2

1
(𝑡, 𝑠)] 𝑑𝑠=∞,

(10)

where 𝑣(𝑡) and 𝛾
1
(𝑡) are defined, respectively, by

𝑣 (𝑡) = exp(− 2
𝛼
1

∫
𝑡

𝑡
1

𝑔 (𝑠) 𝑑𝑠) ,

𝛾
1
(𝑡) = 𝜌 (𝑡) 𝑣 (𝑡) [ 1

𝛼
1

𝑟 (𝑡) 𝑔2 (𝑡)

+𝐾𝑞 (𝑡) + 𝛼
2
𝑔2 (𝑡) 𝑝 (𝑡) − (𝑟 (𝑡) 𝑔 (𝑡))󸀠] ,

(11)
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and 𝑄
1
∈ 𝐶(𝐷,R) satisfies

−𝜕𝐻 (𝑡, 𝑠)
𝜕𝑠

= (
𝜌󸀠 (𝑠)
𝜌 (𝑠)

+
2𝛼

2
𝑝 (𝑠) 𝑔 (𝑠)
𝑟 (𝑠)

)𝐻 (𝑡, 𝑠)

+ 𝑄
1
(𝑡, 𝑠) √𝐻 (𝑡, 𝑠).

(12)

Then, (1) is oscillatory.

In Theorem A, the set 𝐷 = {(𝑡, 𝑠) : 𝑡 ≥ 𝑠 ≥ 𝑡
0
}.

And the assumption 𝐻 ∈ H means that 𝐻 ∈ 𝐶(𝐷,R
+
),

𝜕𝐻(𝑡, 𝑠)/𝜕𝑠 is continuous on 𝐷
0
= {(𝑡, 𝑠) : 𝑡 > 𝑠 ≥ 𝑡

0
},

𝐻(𝑡, 𝑡) = 0 for all 𝑡 ≥ 𝑡
0
and 𝐻(𝑡, 𝑠) > 0 for all (𝑡, 𝑠) ∈

𝐷
0
. It is easy to see that the coefficients: 𝑟(𝑡), 𝑝(𝑡), and

𝑞(𝑡) are involved in the assumptions (10)–(12), often called
the general Kamenev-type conditions, about the Kamenev-
type conditions and their several generalization we refer
the reader, for instance, to [14–18]. The main purpose of
supposing the existence of the functions: 𝜌(𝑡), 𝐻(𝑡, 𝑠), and
𝑔(𝑡) satisfying the corresponding assumptions (10)–(12) is to
ensure the nonexistence of continuous function 𝑤(𝑡) which
satisfies the corresponding Riccati differential inequality:

𝑤󸀠 ≥ 𝛼 (𝑡) 𝜔2 + 𝛽 (𝑡) 𝜔 + 𝛾 (𝑡) , 𝑡 ≥ 𝑇, (13)

where 𝛼(𝑡),𝛽(𝑡), and 𝛾(𝑡) depend on 𝑟(𝑡),𝑝(𝑡), 𝛼
1
, and 𝛼

2
, and

𝑇 ≥ 𝑡
0
.

Instead of Kamenev-type conditions (10)–(12), we con-
sider the next one (which can be called the Fite-Wintner-
Leighton-type condition by a reason given in Remark 2): for
the explicitly given two functions 𝑎(𝑡) and 𝑏(𝑡)which depend
on the data 𝑟(𝑡), 𝑝(𝑡), 𝑚, 𝑛, 𝛼

1
, 𝛼

2
, and 𝑞(𝑡), (see Theorems 5

and 15), let there be a function 𝐸(𝑡) and a point 𝑇
1
≥ 𝑡

0
such

that

𝐸 ∈ 𝐶 ([𝑇
1
,∞)) , lim sup

𝑡→∞

∫
𝑡

𝑇
1

𝐸 (𝜏) 𝑑𝜏 = ∞,

∀𝑚, 𝑛 ∈ N,we have

𝐸 (𝑡)≤{min {𝑎 (𝑡) , 𝑏 (𝑡)} , 𝑡 ≥ 𝑇
1
, if min {𝑚, 𝑛} = 1,

min {𝑎 (𝑡) , 𝑏 (𝑡)−𝑎 (𝑡)} , 𝑡≥𝑇
1
, if min {𝑚, 𝑛}>1.

(14)

Combining a pointwise comparison principle and a blow-
up argument, which is a different method than that in the
case of Kamenev-type conditions, we are able to prove the
nonexistence of any continuous function 𝜓(𝑡) which satisfies
the corresponding Riccati differential inequality:

𝜓󸀠 ≥ 𝑎
1
(𝑡) 𝜓2𝑚 + 𝑎

2
(𝑡) 𝜓2𝑛 + 𝑏 (𝑡) , 𝑡 ≥ 𝑇, (15)

where 𝑎
1
(𝑡), 𝑎

2
(𝑡), and 𝑏(𝑡) are arbitrary functions. On the

various aspects of the comparison principles, we refer the
reader, for instance, to [19, 20]—the comparison principles
for Volterra integral operators, [21, 22]—the pointwise com-
parison principle for ODEs and [23]—the abstract form of
comparison principles.

Remark 2. It is simple to check that in particular for 𝑘
1
(𝑢, 𝑣) ≡

𝑣, 𝑘
2
(𝑢, 𝑣) ≡ 0, and 𝑓(𝑢) ≡ 𝑢, the conditions (3), (5) with

𝑚 = 1 and (6)
𝑤
still hold where the inequality “≥” is replaced

by “=.” Then (1) becomes the linear second-order differential
equation (LEq): (𝑟(𝑡)𝑥󸀠)󸀠 + 𝑞(𝑡)𝑥 = 0. Hence, the inequality
in (14) for 𝑚 = 𝑛 = 1 can be replaced by the corresponding
equality, where 𝑎(𝑡) = 1/𝑟(𝑡) and 𝑏(𝑡) = 𝑞(𝑡) (see the case (iii)
of Theorem 5), and so, we conclude that in this case, (14) is
equivalent to:

lim sup
𝑡→∞

∫
𝑡

𝑇
1

1
𝑟 (𝜏)

𝑑𝜏 = lim sup
𝑡→∞

∫
𝑡

𝑇
1

𝑞 (𝜏) 𝑑𝜏 = ∞, (16)

which presents the classic Fite-Wintner-Leighton oscillation
criterion for linear second-order differential equation (LEq),
where “lim” appears instead of “lim sup.” In Fite [24],Wintner
[25], and Leighton [26] equation (LEq) was considered,
respectively, with 𝑟(𝑡) ≡ 1 and 𝑞(𝑡) > 0, 𝑟(𝑡) ≡ 1 and 𝑞(𝑡)
may change sign, and arbitrary 𝑟(𝑡) > 0 and 𝑞(𝑡)may change
sign. Nonlinear version of such a class of oscillation criteria
was due to Wong [27], and 𝑁th-order extension for linear
equations can be found in Travis [28].

In order to simplify notation, we firstly introduce the
following definition for the pointwise comparison principle
of the corresponding Riccati differential equation:

𝑤󸀠 = 𝑎
1
(𝑡) 𝑤2𝑚 + 𝑎

2
(𝑡) 𝑤2𝑛 + 𝑏 (𝑡) , 𝑡 ≥ 𝑇, (17)

where 𝑎
1
(𝑡), 𝑎

2
(𝑡), and 𝑏(𝑡) are three arbitrary functions, and

𝑇 ≥ 𝑡
0
.

Definition 3. Let 𝑇
0
and 𝑇∗ be two arbitrary real numbers,

𝑇 ≤ 𝑇
0

< 𝑇∗. Two functions, 𝜑(𝑡) and 𝜓(𝑡), 𝜑, 𝜓 ∈
𝐶1((𝑇

0
, 𝑇∗),R) ∩ 𝐶([𝑇

0
, 𝑇∗),R), are said to be, respectively,

subsolution and supersolution of the Riccati differential
equation (17) provided that

𝜑󸀠 ≤ 𝑎
1
(𝑡) 𝜑2𝑚 + 𝑎

2
(𝑡) 𝜑2𝑛 + 𝑏 (𝑡) ,

𝜓󸀠≥𝑎
1
(𝑡) 𝜓2𝑚+𝑎

2
(𝑡) 𝜓2𝑛+𝑏 (𝑡) , 𝑡 ∈ (𝑇

0
, 𝑇∗) .

(18)

Moreover, if the statement:

𝜑 (𝑇
0
) ≤ 𝜓 (𝑇

0
) implying 𝜑 (𝑡) ≤ 𝜓 (𝑡) ∀𝑡 ∈ [𝑇

0
, 𝑇∗)

(19)

is fulfilled for all sub- and supersolutions 𝜑, 𝜓 ∈ 𝐶1((𝑇
0
,

𝑇∗),R) ∩ 𝐶([𝑇
0
, 𝑇∗),R) of (17), then we say that comparison

principle (19) holds for (17) with arbitrary 𝑇
0
and 𝑇∗, 𝑇 ≤

𝑇
0
< 𝑇∗.

Remark 4. The possibilty that (19) holds for all sub- and
supersolutions and with arbitrary 𝑇

0
and 𝑇∗, 𝑇 ≤ 𝑇

0
< 𝑇∗

plays an essential role in some concrete situations. According
to it, when the comparison principle (19) holds for the
Riccati differential equation (17) with arbitrary 𝑇

0
and 𝑇∗,

𝑇 ≤ 𝑇
0
< 𝑇∗, then we can choose some concrete sub-

and supersolutions as well as 𝑇
0
and 𝑇∗ with some suitable

properties.
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Our method contains the next three steps:

(i) at the first step, we give a sufficient condition on
𝑎
1
(𝑡), 𝑎

2
(𝑡) such that comparison principle (19) holds

for the Riccati differential equation (17) with arbitrary
𝑏(𝑡), 𝑇

0
and 𝑇∗, 𝑇 ≤ 𝑇

0
< 𝑇∗;

(ii) at the second step, for a supersolution 𝜓 ∈ 𝐶1((𝑇,
∞),R) ∩ 𝐶([𝑇,∞),R) of (17), where 𝑎

1
(𝑡), 𝑎

2
(𝑡),

and 𝑏(𝑡) are three arbitrary functions, and under
assumption (14), we find two real numbers𝑇

0
and𝑇∗,

𝑇 ≤ 𝑇
0
< 𝑇∗, and construct a subsolution 𝜑(𝑡), 𝜑 ∈

𝐶1((𝑇
0
, 𝑇∗),R) ∩ 𝐶([𝑇

0
, 𝑇∗),R) of (17) such that the

following initial and blow-up arguments are satisfied:

𝜑 (𝑇
0
) ≤ 𝜓 (𝑇

0
) , lim

𝑡→𝑇
∗

𝜑 (𝑡) = ∞; (20)

(iii) at the third step, under conditions (2)–(6) or related
ones such as (5)

𝑤
and (6)

𝑤
, we show that if the main

equation (1) allows a nonoscillatory solution 𝑥(𝑡),
then the function:

𝜓 (𝑡) = −
𝑟 (𝑡) 𝑘

1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡))
𝑥 (𝑡)

, 𝑡 ≥ 𝑇, (21)

is well defined for some 𝑇 ≥ 𝑡
0
, 𝜓 ∈ 𝐶1((𝑇,∞),R) ∩

𝐶([𝑇,∞),R), and 𝜓(𝑡) is a supersolution of (17) with
some concrete 𝑎

1
(𝑡), 𝑎

2
(𝑡), and 𝑏(𝑡); in the case when

𝑝(𝑡) and 𝑞(𝑡) change the sign, instead of (21), we
consider the function:

𝜓 (𝑡) = −
𝑟 (𝑡) 𝑘

1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡))
𝑓 (𝑥 (𝑡))

, 𝑡 ≥ 𝑇. (22)

In conclusion, combining (19) and (20), we obtain the
nonexistence of any continuous supersolution of the Riccati
differential equation (17), and hence, the function 𝜓(𝑡) given
by (21) or (22) is not possible. Therefore, (1) does not allow
any nonoscillatory solution.

3. Main Results and Examples

As usual, we recognize two main different cases: the first
one is when 𝑝(𝑡) and 𝑞(𝑡) are positive and the second one is
when they may change the sign. Moreover, in the first case,
depending on the combination of assumptions (5), (6), (5)

𝑤
,

(6)
𝑤
, and (6)

1
, we consider five subcases such as is done in

our first oscillation criterion for (1).

Theorem 5 (positive coefficients). Let assumptions (2)–(4) be
fulfilled. Then, (1) is oscillatory if one of the next five cases is
met.

(i) Let𝑚, 𝑛 ∈ N and (5), (6) hold. One supposes (14) with
respect to 𝑎(𝑡) := 𝑎

1
(𝑡) + 𝑎

2
(𝑡) provided that𝑚 = 𝑛 = 1

or 𝑎(𝑡) := min{𝑎
1
(𝑡), 𝑎

2
(𝑡)}, otherwise,

𝑎
1
(𝑡)= 1

𝛼
1
𝑟2𝑚−1 (𝑡)

, 𝑎
2
(𝑡)=

𝑝 (𝑡) 𝛼
2

𝑟2𝑛 (𝑡)
, 𝑏 (𝑡)=𝐾𝑞 (𝑡) .

(23)

(ii) Let 𝑛 ∈ N and (5)
𝑤
, (6) hold. One supposes (14) with

respect to 𝑎(𝑡) and 𝑏(𝑡) given by

𝑎 (𝑡) =
𝑝 (𝑡) 𝛼

2

𝑟2𝑛 (𝑡)
, 𝑏 (𝑡) = 𝐾𝑞 (𝑡) . (24)

(iii) Let 𝑚 ∈ N and (5), (6)
𝑤
hold. One supposes (14) with

respect to 𝑎(𝑡) and 𝑏(𝑡) given by

𝑎 (𝑡) = 1
𝛼
1
𝑟2𝑚−1 (𝑡)

, 𝑏 (𝑡) = 𝐾𝑞 (𝑡) . (25)

(iv) Let 𝑚 = 1 and (5), (6)
1
hold. One supposes (14) with

respect to 𝑎(𝑡) and 𝑏(𝑡) given by

𝑎 (𝑡) = 1
𝛼
1
𝑟 (𝑡)

𝑒−𝛼2 ∫(𝑝(𝜏)/𝑟(𝜏))𝑑𝜏,

𝑏 (𝑡) = 𝐾𝑞 (𝑡) 𝑒𝛼2 ∫(𝑝(𝜏)/𝑟(𝜏))𝑑𝜏.
(26)

(v) Let 𝑝 ∈ 𝐶1((𝑡
0
,∞),R),𝑚 = 1, and (5), (6)

1
hold. One

supposes (14) with respect to 𝑎(𝑡) and 𝑏(𝑡) given by

𝑎 (𝑡)= 1
𝛼
1
𝑟 (𝑡)

, 𝑏 (𝑡)=𝐾𝑞 (𝑡)−
𝛼
1
𝛼
2
𝑝󸀠 (𝑡)
2

−
𝛼
1
𝛼2

2
𝑝2 (𝑡)

4𝑟 (𝑡)
.

(27)

For each of the cases (i)–(v) ofTheorem 5, we derive some
consequences and examples, which show the importance of
our oscillation criterion.

The case (i) of Theorem 5 for 𝑚 = 𝑛 = 1 allows us to
consider the following class of equations:

(𝑟 (𝑡) 𝐴 (𝑥) 𝑥󸀠)
󸀠

+𝑝 (𝑡) 𝐵 (𝑥) 𝑥󸀠2+𝑞 (𝑡) 𝑓 (𝑥)=0, 𝑡 ≥ 𝑡
0
> 0,
(28)

where the functions 𝐴 = 𝐴(𝑢), 𝐴 ∈ 𝐶1(R), and 𝐵(𝑢) satisfy

0 ≤ 𝐴 (𝑢) ≤ 𝛼
1
, 𝑢𝐵 (𝑢) ≥ 𝛼

2
𝐴2 (𝑢) ∀ (𝑢, 𝑣) ∈ R

2, (29)

for some 𝛼
1
> 0 and 𝛼

2
> 0. Under assumption (29), it is easy

to see that the functions 𝑘
1
(𝑢, 𝑣) := 𝐴(𝑢)𝑣 and 𝑘

2
(𝑢, 𝑣) :=

𝐵(𝑢)𝑣 satisfy both required assumptions (5) and (6) with𝑚 =
𝑛 = 1. Hence, as an easy consequence ofTheorem 5, we obtain
the following result.

Corollary 6. Let (2)–(4) and (14) hold with respect to 𝑎(𝑡) and
𝑏(𝑡) given in case (i) of Theorem 5 with𝑚 = 𝑛 = 1. If𝐴(𝑢) and
𝐵(𝑢) satisfy (29), then (28) is oscillatory.

Example 7. Let 𝐾 > 0, 𝜇 ≤ 1 or 𝜈 ≥ 2𝜇 − 1, and 𝜎 ≤ 1. Then,
the equation:

(𝑡𝜇 𝑥2

1 + 𝑥2
𝑥󸀠)

󸀠

+ 𝑡𝜈𝑥3𝑥󸀠2 + 𝐾𝑡−𝜎𝑥 = 0, 𝑡 ≥ 𝑡
0
> 0 (30)

is oscillatory. Indeed, it is enough to check that the coefficients
𝑟(𝑡) = 𝑡𝜇, 𝑝(𝑡) = 𝑡𝜈, and 𝑞(𝑡) = 𝑡−𝜎 and the functions
𝑓(𝑢) = 𝐾𝑢, 𝐴(𝑢) = 𝑢2/(1 + 𝑢2), and 𝐵(𝑢) = 𝑢3 satisfy all the
assumptions of Corollary 6 with respect to 𝛼

1
= 𝛼

2
= 1 and

𝐸(𝑡) = 𝑐/𝑡 for some 𝑐 > 0.
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Example 8. Let 𝐾 > 0, 𝜇 ≤ 1 or 𝜈 ≥ 2𝜇 − 1, and 𝜎 ≤ 1. Then,
the equation:

(𝑡𝜇(sin𝑥)2𝑥󸀠)
󸀠

+ 𝑡𝜈𝑥3𝑥󸀠2 + 𝐾𝑡−𝜎𝑥 = 0, 𝑡 ≥ 𝑡
0
> 0 (31)

is oscillatory. In fact, it is easy to check that the coefficients
𝑟(𝑡) = 𝑡𝜇, 𝑝(𝑡) = 𝑡𝜈, and 𝑞(𝑡) = 𝑡−𝜎 and the functions 𝑓(𝑢) =
𝐾𝑢, 𝐴(𝑢) = sin2𝑢, and 𝐵(𝑢) = 𝑢3 satisfy all the assumptions
of Corollary 6 with respect to 𝛼

1
= 𝛼

2
= 1 and 𝐸(𝑡) = 𝑐/𝑡 for

some 𝑐 > 0.

The case (i) of Theorem 5 for 𝑚, 𝑛 ∈ N proposes the fol-
lowing class of differential equations:

(𝑟 (𝑡) 𝐴 (𝑥) 𝑥󸀠

(1 + 𝑥󸀠2)
𝛼/2

)

󸀠

+ 𝑝 (𝑡) 𝐵 (𝑥)( 𝑥󸀠

(1 + 𝑥󸀠2)
𝛼/2

)

2𝑛

+ 𝑞 (𝑡) 𝑓 (𝑥) = 0, 𝑡 ≥ 𝑡
0
> 0,

(32)

where 𝛼 ≥ 1, 𝑛 ∈ N, and the functions 𝐴 = 𝐴(𝑢), 𝐴 ∈ 𝐶1(R),
and 𝐵(𝑢) satisfy

0≤𝐴2𝑚−1 (𝑢)≤𝛼
1
𝑢2𝑚−2, 𝑢2𝑛−1𝐵 (𝑢)≥𝛼

2
𝐴2𝑛 (𝑢) , 𝑢 ∈ R.

(33)

As a consequence ofTheorem 5, we derive the next inter-
esting corollary.

Corollary 9. Let (2)–(4) and (14) hold with respect to 𝑎(𝑡) and
𝑏(𝑡) given in case (i) ofTheorem 5. If𝐴(𝑢) and𝐵(𝑢) satisfy (33),
then (32) is oscillatory.

Example 10. Let 𝛼 ≥ 1, 𝑛 ∈ N, 𝐾 > 0, 𝜇 ≤ 1 or 𝜈 ≥ 2𝜇 − 1,
and 𝜎 ≤ 1. Then, according to Corollary 9, we conclude that
the equation:

(𝑡𝜇 𝑥2

1 + 𝑥2

𝑥󸀠

(1 + 𝑥󸀠2)𝛼/2
)

󸀠

+ 𝑡𝜈𝑥( 𝑥𝑥󸀠

(1 + 𝑥2) (1 + 𝑥󸀠2)
𝛼/2

)

2𝑛

+ 𝐾𝑡−𝜎𝑥 = 0, 𝑡 ≥ 𝑡
0
> 0

(34)

is oscillatory.

We have pointed out in Remark 1 that assumption (5)
𝑤

unlike (5) allows to consider the oscillation of the following
quasilinear differential equation:

(𝑟 (𝑡) 𝐴 (𝑥) 󵄨󵄨󵄨󵄨󵄨𝑥
󸀠󵄨󵄨󵄨󵄨󵄨
𝛽−1

𝑥󸀠)
󸀠

+ 𝑝 (𝑡) 𝐵 (𝑥) 𝑥󸀠2𝛽

+ 𝑞 (𝑡) 𝑓 (𝑥) = 0, 𝑡 ≥ 𝑡
0
> 0,

(35)

where 𝛽 ≥ 1 and the functions 𝐴 = 𝐴(𝑢), 𝐴 ∈ 𝐶1(R), and
𝐵(𝑢) satisfy

0 ≤ 𝐴 (𝑢) , 𝑢𝐵 (𝑢) ≥ 𝛼
2
𝐴2 (𝑢) ∀ (𝑢, 𝑣) ∈ R

2, (36)

for some 𝛼
2
> 0. It is clear that (28) is a particular case of (35)

for 𝛽 = 1. Under assumption (36), the functions

𝑘
1
(𝑢, 𝑣) := 𝐴 (𝑢) |𝑣|𝛽−1𝑣, 𝑘

2
(𝑢, 𝑣) := 𝐵 (𝑢) 𝑣2𝛽−1 (37)

satisfy both required assumptions (5)
𝑤
and (6) with 𝑛 = 1.

Therefore, we can derive the following easy consequence of
the case (ii) of Theorem 5.

Corollary 11. Let (2)–(4) and (14) hold with respect to 𝑎(𝑡)
and 𝑏(𝑡) given in case (ii) of Theorem 5 with 𝑛 = 1. If𝐴(𝑢) and
𝐵(𝑢) satisfy (36), then (35) is oscillatory.

Example 12. Let 𝛽 ≥ 1, 𝐾 > 0, 𝜈 ≥ 2𝜇 − 1 and 𝜎 ≤ 1. Then
the equation:

(𝑡𝜇(sin𝑥)2𝑥󸀠𝛽)
󸀠

+ 𝑡𝜈𝑥3𝑥󸀠2𝛽 + 𝐾𝑡−𝜎𝑥 = 0, 𝑡 ≥ 𝑡
0
> 0,

(38)

is oscillatory. In fact, it is enough to check that the coefficients
𝑟(𝑡) = 𝑡𝜇, 𝑝(𝑡) = 𝑡𝜈, 𝑞(𝑡) = 𝑡−𝜎 and the functions 𝑓(𝑢) =
𝐾𝑢, 𝐴(𝑢) = sin2𝑢 and 𝐵(𝑢) = 𝑢3 satisfy all assumptions of
Corollary 11 with respect to 𝐸(𝑡) = 𝑐/𝑡 for some 𝑐 > 0.

The case (iii) of Theorem 5 allows us to consider the
following class of equations:

(𝑟 (𝑡) 𝐴 (𝑥) 𝑥󸀠)
󸀠

+ 𝑝 (𝑡) 𝐵 (𝑥) 𝐶 (𝑥󸀠) 𝑥󸀠

+ 𝑞 (𝑡) 𝑓 (𝑥) = 0, 𝑡 ≥ 𝑡
0
> 0,

(39)

where the functions 𝐴 = 𝐴(𝑢), 𝐴 ∈ 𝐶1(R), 𝐵(𝑢) and 𝐶(𝑣)
satisfy:

0 ≤ 𝐴 (𝑢) ≤ 𝛼
1
, 𝑢𝐵 (𝑢) ≥ 0, 𝑣𝐶 (𝑣) ≥ 0 ∀ (𝑢, 𝑣) ∈ R

2,
(40)

for some 𝛼
1
> 0. Under this assumption, it is easy to see

that the functions 𝑘
1
(𝑢, 𝑣) := 𝐴(𝑢)𝑣 and 𝑘

2
(𝑢, 𝑣) := 𝐵(𝑢)𝐶(𝑣)

satisfy both required assumptions (5) and (6)
𝑤
. Hence, as an

easy consequence of case (iii) of Theorem 5, we obtain the
following result.

Corollary 13. Let (2), (3), and (14) hold with respect to 𝑎(𝑡)
given in case (iii) of Theorem 5. If 𝐴(𝑢), 𝐵(𝑢), and 𝐶(𝑣) satisfy
(40), then (39) is oscillatory.

Example 14. Let 𝐾 > 0, 𝜇 ≤ 1, 𝜈 ≥ 0, 𝜆 ≥ 0, and 𝜎 ≤ 1. Then,
the equation:

(𝑡𝜇 𝑥2

1 + 𝑥2
𝑥󸀠)

󸀠

+𝑡𝜈|𝑥|𝜆𝑥 sh (𝑥󸀠) 𝑥󸀠+𝐾𝑡−𝜎𝑥=0, 𝑡 ≥ 𝑡
0
>0

(41)

is oscillatory. In order to show that, it is enough to check that
the coefficients: 𝑟(𝑡) = 𝑡𝜇, 𝑞(𝑡) = 𝑡−𝜎 and the functions:𝑓(𝑢) =
𝐾𝑢, 𝐴(𝑢) = 𝑢2/(1 + 𝑢2), 𝐵(𝑢) = |𝑢|𝜆 𝑢, and 𝐶(𝑣) = sh(𝑣)
satisfy all the assumptions of Corollary 13 with respect to 𝛼

1
=

𝛼
2
= 1 and 𝐸(𝑡) = 𝑐/𝑡 for some 𝑐 > 0.
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Next, we consider the oscillation of (1) in the case when
the coefficients 𝑝(𝑡) and 𝑞(𝑡)may change the sign.

Theorem 15 (coefficients may change the sign). Let 𝑚 = 1
and assumptions (3)

1
, (5), and (6)

2
hold.Then, (1) is oscillatory

provided that one of the following two cases is met. (vi) One
assumes (14) with respect to 𝑎(𝑡) and 𝑏(𝑡) given by

𝑎 (𝑡) = 𝐾
𝛼
1
𝑟 (𝑡)

𝑒−𝛼2 ∫
𝑡

𝑇
(𝑝(𝜏)/𝑟(𝜏))𝑑𝜏,

𝑏 (𝑡) = 𝑞 (𝑡) 𝑒𝛼2 ∫
𝑡

𝑇
(𝑝(𝜏)/𝑟(𝜏))𝑑𝜏, 𝑡 ≥ 𝑇.

(42)

(vii) Let 𝑝 ∈ 𝐶1((𝑡
0
,∞),R). One assumes (14) with respect to

𝑎(𝑡) and 𝑏(𝑡) given by

𝑎 (𝑡)= 𝐾
𝛼
1
𝑟 (𝑡)

, 𝑏 (𝑡)=𝑞 (𝑡)−
𝛼
1
𝛼
2
𝑝󸀠 (𝑡)
2𝐾

−
𝛼
1
𝛼2

2
𝑝2 (𝑡)

4𝐾𝑟 (𝑡)
, 𝑡≥𝑇.

(43)

The case (vi) of Theorem 15 allows us to consider the
following class of equations:

(𝑟 (𝑡) 𝐴 (𝑥) 𝑥󸀠)
󸀠

+𝛼
2
𝑝 (𝑡) 𝐴 (𝑥) 𝑥󸀠+𝑞 (𝑡) 𝑓 (𝑥)=0, 𝑡≥𝑡

0
>0,
(44)

where 𝛼
2
∈ R, and the function 𝐴(𝑢) satisfies

0 ≤ 𝐴 (𝑢) ≤ 𝛼
1

∀ (𝑢, 𝑣) ∈ R
2 and some𝛼

1
> 0. (45)

Under (45), one can easily check that the functions 𝑘
1
(𝑢, 𝑣) :=

𝐴(𝑢)𝑣 and 𝑘
2
(𝑢, 𝑣) := 𝛼

2
𝐴(𝑢) satisfy both required assump-

tions (5) and (6)
2
. Hence, as an easy consequence of case (vi)

of Theorem 5, we conclude the next consequence.

Corollary 16. Let (3)
1
and (14) hold with respect to 𝑎(𝑡) and

𝑏(𝑡) given in case (vi) of Theorem 5. If 𝐴(𝑢) satisfies (45), then
(44) is oscillatory.

Example 17. Let 𝜇 ≥ 2 and 𝑞
0
∈ R. Then, the equations:

(𝑡−𝜇 𝑥2

1 + 𝑥2
𝑥󸀠)

󸀠

+ 𝑡−𝜇−1 𝑥2

1 + 𝑥2
𝑥󸀠

+ 𝑞
0
(sin 𝑡) 𝑥 = 0, 𝑡 ≥ 𝑡

0
> 0,

(𝑡−𝜇(sin𝑥)2𝑥󸀠)
󸀠

+ 𝑡−𝜇−1(sin𝑥)2𝑥󸀠

+ 𝑞
0
(sin 𝑡) 𝑥 = 0, 𝑡 ≥ 𝑡

0
> 0

(46)

are oscillatory. In order to show that, it is enough to check that
the coefficients: 𝑟(𝑡) = 𝑡−𝜇, 𝑝(𝑡) = 𝑡−𝜇−1, and 𝑞(𝑡) = 𝑞

0
sin 𝑡

and the functions: 𝑓(𝑢) = 𝑢, 𝐴(𝑢) = 𝑢2/(1 + 𝑢2), and 𝐴(𝑢) =
sin2𝑢 satisfy all the assumptions of Corollary 16 with respect
to 𝛼

1
= 𝛼

2
= 1 and 𝐸(𝑡) = 𝑐𝑡 sin 𝑡 for some 𝑐 ∈ R, 𝑐 ̸= 0.

4. Proofs of the Main Results

In this section, we study the oscillation of (1) in the view of a
pointwise comparison principle presented below, which will
be shown for the corresponding Riccati differential equation.

Definition 18. A function ℎ(𝑡, 𝑢) is said to be locally Lipschitz
in the second variable if for any bounded interval 𝐼

0
⊆ [𝑇,∞)

and 𝑀 > 0 there is a constant 𝐿 > 0 depending on 𝐼
0
,𝑀, ℎ

such that
󵄨󵄨󵄨󵄨ℎ (𝑡, 𝑢1) − ℎ (𝑡, 𝑢2)

󵄨󵄨󵄨󵄨 ≤ 𝐿 󵄨󵄨󵄨󵄨𝑢1 − 𝑢2
󵄨󵄨󵄨󵄨 ∀𝑡 ∈ 𝐼

0
,

𝑢
1
, 𝑢

2
∈ [−𝑀,𝑀] .

(47)

Now, we state and use the following general comparison
principle, which will be proved at the end of this section.

Lemma 19. Let 𝑇
0
and 𝑇∗ be two arbitrary real numbers such

that 𝑇
0
< 𝑇∗. Let 𝜑(𝑡) and 𝜓̃(𝑡), 𝜑, 𝜓̃ ∈ 𝐶1((𝑇

0
, 𝑇∗),R) ∩

𝐶([𝑇
0
, 𝑇∗),R), be two functions satisfying:

𝜑󸀠 ≤ ℎ (𝑡, 𝜑) , 𝜓̃󸀠 ≥ ℎ (𝑡, 𝜓̃) , 𝑡 ∈ (𝑇
0
, 𝑇∗) , (48)

where ℎ(𝑡, 𝑢) is a locally Lipschitz function in the second
variable. Then, we have

𝜑 (𝑇
0
) ≤ 𝜓̃ (𝑇

0
) implies 𝜑 (𝑡) ≤ 𝜓̃ (𝑡) ∀𝑡 ∈ [𝑇

0
, 𝑇∗) .

(49)

Definition 20. A function 𝑎(𝑡) is said to be locally bounded
on [𝑇,∞), if for any bounded interval 𝐼

0
⊆ [𝑇,∞) there is a

constant 𝐶 > 0 depending on 𝐼
0
such that |𝑎(𝑡)| ≤ 𝐶 for all

𝑡 ∈ 𝐼
0
.

According to Lemma 19, we are able to give a sufficient
condition on the functions: 𝑎

1
(𝑡), 𝑎

2
(𝑡) such that the Riccati

differential equation (17) satisfies the comparison principle
(19).

Lemma 21. If 𝑎
1
(𝑡) and 𝑎

2
(𝑡) are two locally bounded func-

tions on [𝑇,∞), then comparison principle (19) holds for the
Riccati differential equation (17) with arbitrary 𝑏(𝑡), 𝑇

0
, and

𝑇∗, where 𝑇 ≤ 𝑇
0
< 𝑇∗.

Proof. Let 𝜑(𝑡) and 𝜓(𝑡), 𝜑, 𝜓 ∈ 𝐶1((𝑇
0
, 𝑇∗),R) ∩ 𝐶([𝑇

0
,

𝑇∗),R), be, respectively, sub- and supersolution of (17); that
is, they satisfy (18). It is not difficult to check that ℎ(𝑡, 𝑢) :=
𝑎
1
(𝑡)𝑢2𝑚 + 𝑎

2
(𝑡)𝑢2𝑛 + 𝑏(𝑡) is a locally Lipschitz function in

the second variable. Indeed, for any bounded interval 𝐼
0
⊆

[𝑡
0
,∞),𝑀 > 0, for all 𝑡 ∈ 𝐼

0
and 𝑢

1
, 𝑢

2
∈ [−𝑀,𝑀], we have

󵄨󵄨󵄨󵄨ℎ (𝑡, 𝑢1) − ℎ (𝑡, 𝑢2)
󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨𝑎1 (𝑡)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑢

2𝑚

1
− 𝑢2𝑚

2

󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎2 (𝑡)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑢

2𝑛

1
− 𝑢2𝑛

2

󵄨󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨𝑎1 (𝑡)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑢1 − 𝑢2

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑚

∑
𝑗=1

𝑢2𝑚−𝑗

1
𝑢𝑗−1
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨𝑎2 (𝑡)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑢1 − 𝑢2

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑛

∑
𝑗=1

𝑢2𝑛−𝑗
1

𝑢𝑗−1
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2𝑚𝑀2𝑚−1 󵄨󵄨󵄨󵄨𝑎1 (𝑡)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑢1 − 𝑢2

󵄨󵄨󵄨󵄨 + 2𝑛𝑀
2𝑛−1 󵄨󵄨󵄨󵄨𝑎2 (𝑡)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑢1 − 𝑢2

󵄨󵄨󵄨󵄨

≤ 2𝐶 (𝑚𝑀2𝑚−1 + 𝑛𝑀2𝑛−1) 󵄨󵄨󵄨󵄨𝑢1 − 𝑢2
󵄨󵄨󵄨󵄨 ,

(50)
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where 𝐶 = max{sup
𝐼
0

|𝑎
1
(𝑡)|, sup

𝐼
0

|𝑎
2
(𝑡)|}. Hence, Lemma 19

can be applied to 𝜑(𝑡) and 𝜓(𝑡). If we set 𝜑(𝑡) := 𝜑(𝑡),
and 𝜓̃(𝑡) := 𝜓(𝑡), then statement (48) is fulfilled because of
assumption (18), and therefore, the desired conclusion (19)
immediately follows from (49).

Corollary 22. If 𝑎
1
(𝑡) and 𝑎

2
(𝑡) are two continuous functions

on [𝑇,∞), then comparison principle (19) holds for the Riccati
differential equation (17)with arbitrary 𝑏(𝑡),𝑇

0
, and𝑇∗, where

𝑇 ≤ 𝑇
0
< 𝑇∗.

Proof. Since 𝑎
1
(𝑡) and 𝑎

2
(𝑡) are two continuous functions

on [𝑇,∞), they are also locally bounded functions on
[𝑡

0
,∞), and hence, this corollary immediately follows from

Lemma 21.

Next, we present an essential lemma in which we con-
struct a subsolution 𝜑(𝑡) of (17) which has a blow-up desired
property.

Lemma 23. Let 𝑎
1
(𝑡) ≥ 0, 𝑎

2
(𝑡) ≥ 0, and 𝑏(𝑡) be three

arbitrary functions, and let assumption (14) hold, where 𝑎(𝑡) =
𝑎
1
(𝑡) + 𝑎

2
(𝑡) if 𝑚 = 𝑛 = 1 and 𝑎(𝑡) = min{𝑎

1
(𝑡), 𝑎

2
(𝑡)}

otherwise. Let 𝜓 ∈ 𝐶1((𝑇,∞),R) ∩ 𝐶([𝑇,∞),R) be a
supersolution of the Riccati differential equation (17). Then,
there are two real numbers 𝑇

0
and 𝑇∗, 𝑇 ≤ 𝑇

0
< 𝑇∗, and

a subsolution 𝜑 ∈ 𝐶1((𝑇
0
, 𝑇∗),R) ∩ 𝐶([𝑇

0
, 𝑇∗),R) of (17)

satisfying

𝜑 (𝑇
0
) ≤ 𝜓 (𝑇

0
) , lim

𝑡→𝑇
∗

𝜑 (𝑡) = ∞. (51)

Proof. In particular from (14), we obtain a sequence 𝑡
𝑛
→ ∞

as 𝑛 → ∞ such that

∫
𝑡
𝑛

𝑇
1

𝐸 (𝜏) 𝑑𝜏 󳨀→ ∞ as 𝑛 󳨀→ ∞, (52)

where 𝑇
1
(determined in (14)) can be chosen so that 𝑇

1
≥ 𝑇.

From the previous statement, we conclude that there is a𝑇
2
>

𝑇
1
such that

∫
𝑇
2

𝑇
1

𝐸 (𝜏) 𝑑𝜏 = 𝜋. (53)

Since ∫𝑡

𝑇
1

𝐸(𝜏)𝑑𝜏 is a continuous function in the variable 𝑡,
there is a 𝑇

0
∈ [𝑇

1
, 𝑇

2
) such that

∫
𝑇
0

𝑇
1

𝐸 (𝜏) 𝑑𝜏 = 0, ∫
𝑡

𝑇
1

𝐸 (𝜏) 𝑑𝜏 ≥ 0 ∀𝑡 ∈ [𝑇
0
, 𝑇

2
) . (54)

Consequently, we derive that

∫
𝑡

𝑇
1

𝐸 (𝜏) 𝑑𝜏 = ∫
𝑇
0

𝑇
1

𝐸 (𝜏) 𝑑𝜏 + ∫
𝑡

𝑇
0

𝐸 (𝜏) 𝑑𝜏

= ∫
𝑡

𝑇
0

𝐸 (𝜏) 𝑑𝜏, 𝑡 ∈ [𝑇
0
, 𝑇

2
) ,

(55)

which together with (53) and (54) shows

∫
𝑡

𝑇
0

𝐸 (𝜏) 𝑑𝜏 ≥ 0 ∀𝑡 ∈ [𝑇
0
, 𝑇

2
) , ∫

𝑇
2

𝑇
0

𝐸 (𝜏) 𝑑𝜏 = 𝜋.

(56)

Next, let 𝑠
0
∈ (−𝜋/2, 𝜋/2) be such that tan(𝑠

0
) = 𝜓(𝑇

0
),

where 𝑇
0
is from (54)-(56). Such 𝑠

0
exists since the tangent

function is a bijection from (−𝜋/2, 𝜋/2) to R. Let

𝑉 (𝑡) := ∫
𝑡

𝑇
0

𝐸 (𝜏) 𝑑𝜏, 𝑡 ∈ [𝑇
0
, 𝑇

2
] . (57)

Because of (56), we have 𝑠
0
+ 𝑉(𝑡) > −𝜋/2, 𝑡 ∈ [𝑇

0
, 𝑇

2
), 𝑠

0
+

𝑉(𝑇
0
) < 𝜋/2 and 𝑠

0
+𝑉(𝑇

2
) > 𝜋/2. Since𝑉(𝑡) is a continuous

function, it implies the existence of a 𝑇∗ ∈ (𝑇
0
, 𝑇

2
) such that

𝑠
0
+ 𝑉 (𝑇∗) = 𝜋

2
, −𝜋

2
< 𝑠

0
+ 𝑉 (𝑡) < 𝜋

2
∀𝑡 ∈ [𝑇

0
, 𝑇∗) .

(58)

As a consequence, the function

𝜑 (𝑡) = tan (𝑠
0
+ 𝑉 (𝑡)) , 𝑡 ∈ [𝑇

0
, 𝑇∗) (59)

is well defined and obviously satisfies

𝜑 (𝑇
0
) = tan (𝑠

0
+ 𝑉 (𝑇

0
)) = tan (𝑠

0
) = 𝜓 (𝑇

0
) ,

lim
𝑡→𝑇

∗

𝜑 (𝑡) = tan (𝑠
0
+ 𝑉 (𝑇∗)) = tan(𝜋

2
) = ∞.

(60)

Also, since 𝐸(𝑡) is continuous on [𝑡
0
,∞), we have 𝜑 ∈

𝐶1((𝑇
0
, 𝑇∗),R)∩𝐶([𝑇

0
, 𝑇∗),R). Now, by taking the derivative

of 𝜑(𝑡) for every 𝑡 ∈ [𝑇
0
, 𝑇∗), we obtain

𝜑󸀠 = 1
cos2 (𝑠

0
+ ∫𝑡

𝑇
0

𝐸 (𝜏) 𝑑𝜏)
⋅ 𝐸 (𝑡)

= 𝐸 (𝑡) (1 + tan2 (𝑠
0
+ ∫

𝑡

𝑇
0

𝐸 (𝜏) 𝑑𝜏))

= 𝐸 (𝑡) 𝜑2 + 𝐸 (𝑡) .

(61)

According to (14), we observe that

(1) if𝑚 = 𝑛 = 1, then

𝐸 (𝑡) 𝜑2 + 𝐸 (𝑡) ≤ (𝑎
1
(𝑡) + 𝑎

2
(𝑡)) 𝜑2 + 𝑏 (𝑡)

= 𝑎
1
(𝑡) 𝜑2𝑚 + 𝑎

2
(𝑡) 𝜑2𝑛 + 𝑏 (𝑡) ;

(62)

(2) if 1 = min{𝑚, 𝑛} < max{𝑚, 𝑛}, then

𝐸 (𝑡) 𝜑2 + 𝐸 (𝑡) ≤ 𝑎 (𝑡) 𝜑2 + 𝑏 (𝑡) ≤ 𝑎 (𝑡) (𝜑2𝑚 + 𝜑2𝑛) + 𝑏 (𝑡)

≤ 𝑎
1
(𝑡) 𝜑2𝑚 + 𝑎

2
(𝑡) 𝜑2𝑛 + 𝑏 (𝑡) ;

(63)

(3) if min{𝑚, 𝑛} > 1, then

𝐸 (𝑡) 𝜑2 + 𝐸 (𝑡) ≤ 𝑎 (𝑡) 𝜑2 + 𝑏 (𝑡) − 𝑎 (𝑡)

≤ 𝑎 (𝑡) (𝜑2𝑚+𝜑2𝑛+1) + 𝑏 (𝑡) − 𝑎 (𝑡)

≤ 𝑎
1
(𝑡) 𝜑2𝑚 + 𝑎

2
(𝑡) 𝜑2𝑛 + 𝑏 (𝑡) .

(64)
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Thus, in all three cases of𝑚, 𝑛 ∈ N, we have

𝐸 (𝑡) 𝜑2+𝐸 (𝑡)≤𝑎
1
(𝑡) 𝜑2𝑚+𝑎

2
(𝑡) 𝜑2𝑛+𝑏 (𝑡) , 𝑡∈[𝑇

0
, 𝑇∗) .

(65)

Putting the previous inequality into (61) and taking into ac-
count of (60), we conclude that

𝜑 (𝑇
0
) ≤ 𝜓 (𝑇

0
) , 𝜑󸀠 ≤ 𝑎

1
(𝑡) 𝜑2𝑚 + 𝑎

2
(𝑡) 𝜑2𝑛 + 𝑏 (𝑡) ,

𝑡 ∈ [𝑇
0
, 𝑇∗) , lim

𝑡→𝑇
∗

𝜑 (𝑡) = ∞.
(66)

It proves that 𝜑(𝑡) is a subsolution of the Riccati differential
equation (17) which satisfies the statement (51).

Next, we are concerned with the following technical but
crucial lemma.

Lemma 24. Let the assumptions of Theorem 5 in the cases
(i)–(iii) hold. If the main equation (1) allows a nonoscillatory
solution 𝑥(𝑡), then the function 𝜓(𝑡) given by (21) is well-
defined with respect to such an 𝑥(𝑡) and some 𝑇 ≥ 𝑡

0
, 𝜓 ∈

𝐶1((𝑇,∞),R) ∩ 𝐶([𝑇,∞),R), and 𝜓(𝑡) is a supersolution of
the Riccati differential equation (17).

Proof. If the main equation (1) allows a nonoscillatory solu-
tion 𝑥(𝑡), then there is a 𝑇 ≥ 𝑡

0
such that 𝑥(𝑡) ̸= 0 for all 𝑡 ≥ 𝑇.

Hence, the function𝜓(𝑡) given by (21) is well defined for such
an 𝑥(𝑡). Next, making the derivative of 𝜓(𝑡), using that 𝑥(𝑡)
satisfies (1) and taking common assumptions ofTheorem5 for
the functions 𝑝(𝑡), 𝑟(𝑡), 𝑞(𝑡), 𝑘

1
(𝑢, 𝑣), and 𝑘

2
(𝑢, 𝑣), we obtain

𝜓󸀠 (𝑡) = − 1
𝑥 (𝑡)

(𝑟 (𝑡) 𝑘
1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡)))

󸀠

+ 1
𝑥2 (𝑡)

𝑟 (𝑡) 𝑘
1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡)) 𝑥󸀠 (𝑡)

=
𝑝 (𝑡)
𝑥 (𝑡)

𝑘
2
(𝑥 (𝑡) , 𝑥󸀠 (𝑡)) 𝑥󸀠 (𝑡)

+ 𝑟 (𝑡)
𝑥2 (𝑡)

𝑘
1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡)) 𝑥󸀠 (𝑡) + 𝑞 (𝑡)

𝑓 (𝑥 (𝑡))
𝑥 (𝑡)

=
𝑝 (𝑡)
𝑥2𝑛 (𝑡)

[𝑘
2
(𝑥 (𝑡) , 𝑥󸀠 (𝑡)) 𝑥2𝑛−1 (𝑡) 𝑥󸀠 (𝑡)]

+ 𝑟 (𝑡)
𝑥2𝑚 (𝑡)

[𝑘
1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡)) 𝑥2𝑚−2 (𝑡) 𝑥󸀠 (𝑡)]

+ 𝑞 (𝑡)
𝑓 (𝑥 (𝑡))
𝑥 (𝑡)

.

(67)

Depending on each of the three cases (i)–(iii) of Theorem 5,
from the previous equality, we obtain

𝜓
󸀠
(𝑡) ≥

{{{{{{{{{{{

{{{{{{{{{{{

{

𝛼2𝑝 (𝑡)

𝑥
2𝑛

(𝑡)
𝑘
2𝑛

1
(𝑥 (𝑡) , 𝑥

󸀠
(𝑡))

+
𝑟 (𝑡)

𝛼1𝑥
2𝑚

(𝑡)
𝑘
2𝑚

1
(𝑥 (𝑡) , 𝑥

󸀠
(𝑡))+𝐾𝑞 (𝑡), in (i)—Theorem 5,

𝛼2𝑝 (𝑡)

𝑥
2𝑛

(𝑡)
𝑘
2𝑛

1
(𝑥 (𝑡) , 𝑥

󸀠
(𝑡))+𝐾𝑞 (𝑡) , in (ii)—Theorem 5,

𝑟 (𝑡)

𝛼1𝑥
2𝑚

(𝑡)
𝑘
2𝑚

1
(𝑥 (𝑡) , 𝑥

󸀠
(𝑡)) +𝐾𝑞 (𝑡) , in (ii)—Theorem 5,

(68)

Next from (21), we also have

𝑘
1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡)) = −𝑥 (𝑡)

𝑟 (𝑡)
𝜓 (𝑡) . (69)

Now, from (68) and (69), we immediately obtain: 𝜓󸀠 ≥
𝑎
1
(𝑡)𝜓2𝑚 + 𝑎

2
(𝑡)𝜓2𝑛 + 𝑏(𝑡), 𝑡 ≥ 𝑇. According to the

definition of a supersolution, the previous inequality shows
this lemma.

Lemma 25. Let the assumptions of Theorem 5 in the cases
(iv)-(v) hold. If the main equation (1) allows a nonoscillatory
solution 𝑥(𝑡), then the function 𝜓(𝑡) given by

𝜓 (𝑡) =

{{{{{{{{{{
{{{{{{{{{{
{

−
𝑟 (𝑡) 𝑘

1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡))
𝑥 (𝑡)

×𝑒𝛼2 ∫(𝑝(𝜏)/𝑟(𝜏))𝑑𝜏, 𝑡 ≥ 𝑇, in the case (iv),

−
𝑟 (𝑡) 𝑘

1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡))
𝑥 (𝑡)

−
𝛼
1
𝛼
2
𝑝 (𝑡)
2

, 𝑡 ≥ 𝑇, in the case (v)
(70)

is well defined with respect to such an 𝑥(𝑡) and some 𝑇 ≥ 𝑡
0

such that 𝜓 ∈ 𝐶1((𝑇,∞),R) ∩ 𝐶([𝑇,∞),R), and 𝜓(𝑡) is a
supersolution of the Riccati differential equation (17).

The proof of Lemma 25 is omitted because it is very
similar to the proof of the following lemma.

Lemma 26. Let assumptions of Theorem 15 hold. If the main
equation (1) allows a nonoscillatory solution 𝑥(𝑡), then the
function 𝜓(𝑡) given by

𝜓 (𝑡) =

{{{{{{{{{{{
{{{{{{{{{{{
{

−
𝑟 (𝑡) 𝑘

1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡))
𝑓 (𝑥 (𝑡))

×𝑒𝛼2 ∫(𝑝(𝜏)/𝑟(𝜏))𝑑𝜏, 𝑡 ≥ 𝑇, in the case (vi) ,

−
𝑟 (𝑡) 𝑘

1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡))
𝑓 (𝑥 (𝑡))

−
𝛼
1
𝛼
2
𝑝 (𝑡)

2𝐾
, 𝑡 ≥ 𝑇, in the case (vii)

(71)

is well definedwith respect to such an𝑥(𝑡) and some𝑇 ≥ 𝑡
0
,𝜓 ∈

𝐶1((𝑇,∞),R) ∩ 𝐶([𝑇,∞),R), and 𝜓(𝑡) is a supersolution of
the Riccati differential equation (17), where 𝑎(𝑡) = 𝑎

1
(𝑡) + 𝑎

2
(𝑡)

and 𝑎(𝑡), 𝑏(𝑡) are given in the case (vi) of Theorem 5.
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Proof. Let 𝑥(𝑡) be a nonoscillatory solution of (1), and thus,
we can take a 𝑇 ≥ 𝑡

0
such that 𝑥(𝑡) ̸= 0 on [𝑇,∞). Let 𝜓

0
(𝑡) be

a function defined by

𝜓
0
(𝑡) = −

𝑟 (𝑡) 𝑘
1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡))
𝑓 (𝑥 (𝑡))

, 𝑡 ≥ 𝑇. (72)

From the assumptions of Theorem 15 and from equalities (1)
and (72), we can easily make the following computation:

𝜓󸀠

0
(𝑡) = − 1

𝑓 (𝑥 (𝑡))
(𝑟 (𝑡) 𝑘

1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡)))

󸀠

+ 1
𝑓2 (𝑥 (𝑡))

𝑟 (𝑡) 𝑘
1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡)) 𝑥󸀠 (𝑡) 𝑓󸀠 (𝑥 (𝑡))

=
𝑝 (𝑡)

𝑓 (𝑥 (𝑡))
[𝑘

2
(𝑥 (𝑡) , 𝑥󸀠 (𝑡)) 𝑥󸀠 (𝑡)]

+ 𝑟 (𝑡)
𝑓2 (𝑥 (𝑡))

[𝑘
1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡)) 𝑥󸀠 (𝑡)] 𝑓󸀠 (𝑥 (𝑡))+𝑞 (𝑡)

≥ 𝛼
2
𝑝 (𝑡) [

𝑘
1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡))
𝑓 (𝑥 (𝑡))

]

+ 𝐾𝑟 (𝑡)
𝛼
1

[
𝑘
1
(𝑥 (𝑡) , 𝑥󸀠 (𝑡))
𝑓 (𝑥 (𝑡))

]
2

+ 𝑞 (𝑡)

= −
𝛼
2
𝑝 (𝑡)
𝑟 (𝑡)

𝜓
0
(𝑡) + 𝐾

𝛼
1
𝑟 (𝑡)

𝜓2

0
(𝑡) + 𝑞 (𝑡) ;

(73)

that is,

𝜓󸀠

0
(𝑡) ≥ 𝐾

𝛼
1
𝑟 (𝑡)

𝜓2

0
(𝑡) −

𝛼
2
𝑝 (𝑡)
𝑟 (𝑡)

𝜓
0
(𝑡) + 𝑞 (𝑡) , 𝑡 > 𝑇.

(74)

Now, if the middle term on the right-hand side of (74) is
moved into the left-hand side, and multiplying such equality
by 𝑒𝛼2 ∫(𝑝(𝜏)/𝑟(𝜏))𝑑𝜏, we conclude that the function

𝜓 (𝑡) = 𝜓
0
(𝑡) 𝑒𝛼2 ∫𝑝(𝜏)/𝑟(𝜏)𝑑𝜏, 𝑡 ≥ 𝑇 (75)

satisfies the Riccati differential equation (17) with respect to
𝑎(𝑡) and 𝑏(𝑡) given in the case (vi) of Theorem 15, which
proves the first statement of this lemma.

However, if we group the first two terms on the right-hand
side of (74) by the purpose of getting the complete square,
then from (74) we easily conclude that the function:

𝜓 (𝑡) = 𝜓
0
(𝑡) −

𝛼
1
𝛼
2
𝑝 (𝑡)

2𝐾
, 𝑡 ≥ 𝑇 (76)

satisfies the Riccati differential equation (17) with respect to
𝑎(𝑡) and 𝑏(𝑡) given in the case (vii) of Theorem 15, which
proves the second statement of this lemma.

Now, we are able to present a common proof of the main
results of the paper.

Proof of Theorems 5 and 15. At first, it is worth pointing out
that the functions: 𝑎(𝑡), 𝑎

1
(𝑡), 𝑎

2
(𝑡), and 𝑏(𝑡), which are

appearing at the same time in the main assumption (14)
and the Riccati differential equation (17), only depend on
the appropriate combination of basic assumptions on the
coefficients: 𝑟(𝑡)𝑝(𝑡), and 𝑞(𝑡) and the functions: 𝑘

1
(𝑢, 𝑣) and

𝑘
2
(𝑢, 𝑣), which are formulated in one of the five cases of

Theorem 5 and one of the two cases of Theorem 15.
Now, if we assume the contrary to the main assertion of

the theorem; that is, if (1) is not oscillatory, then there is a
nonoscillatory solution 𝑥(𝑡) of (1) and a point 𝑇 ≥ 𝑡

0
and

𝑇 ≥ 𝑇
1
, where 𝑇

1
is appearing in (14), such that 𝑥(𝑡) ̸= 0

for all 𝑡 ∈ [𝑇,∞). Then by Lemmas 24, 25 and 26, the
function 𝜓(𝑡) given by (21) or (70), and (71) is well defined
with respect to such an 𝑥(𝑡), smooth enough on (𝑇,∞), and
it is a supersolution of the Riccati differential equation (17).
Taking into account the main results of Lemma 23, we obtain
the two numbers 𝑇

0
and 𝑇∗, 𝑇 ≤ 𝑇

0
< 𝑇∗, and a subsolution

𝜑(𝑡) of (17) such that the blow-up argument (51) is satisfied.
By Corollary 22, we can apply the comparison principle (19)
to (17) with arbitrary 𝑇

0
and 𝑇∗, where 𝑇 ≤ 𝑇

0
< 𝑇∗. Hence,

combining (19) and (51), we get𝜓(𝑡) → ∞ as 𝑡 → 𝑇∗, which
contradicts the fact that 𝜓 ∈ 𝐶1((𝑇

0
,∞),R) ∩ 𝐶([𝑇

0
,∞),R).

Thus, 𝜓(𝑡) is not possible, and therefore, (1) does not allow
any nonoscillatory solution.

Proof of Lemma 19. Let 𝑑(𝑡) = 𝜓̃(𝑡) −𝜑(𝑡) and 𝜑(𝑇
0
) ≤ 𝜓̃(𝑇

0
);

that is,

𝑑 (𝑇
0
) ≥ 0. (77)

If statement (49) does not hold, then there is a point 𝑇
∗
∈

(𝑇
0
, 𝑇∗) such that 𝜑(𝑇

∗
) > 𝜓̃(𝑇

∗
); that is,

𝑑 (𝑇
∗
) < 0. (78)

Moreover, since 𝑑 ∈ 𝐶1((𝑇
0
, 𝑇∗),R) ∩ 𝐶([𝑇

0
, 𝑇∗),R) from

(77) and (78), we obtain a 𝑇
1
∈ [𝑇

0
, 𝑇

∗
) such that

𝑑 (𝑇
1
) = 0, 𝑑 (𝑡) < 0 ∀𝑡 ∈ (𝑇

1
, 𝑇

∗
] . (79)

Since 𝜑, 𝜓̃ ∈ 𝐶([𝑇
1
, 𝑇

∗
]), we may use (47) in particular for

𝐼
0
= [𝑇

1
, 𝑇

∗
] , 𝑀 = max{max

𝑡∈𝐼
0

󵄨󵄨󵄨󵄨𝜑 (𝑡)
󵄨󵄨󵄨󵄨 ,max

𝑡∈𝐼
0

󵄨󵄨󵄨󵄨𝜓̃ (𝑡)
󵄨󵄨󵄨󵄨} .

(80)

Hence, from (47), (48), and (79), we get

𝑑󸀠 (𝑡) = 𝜓̃󸀠 (𝑡) − 𝜑󸀠 (𝑡) ≥ ℎ (𝑡, 𝜓̃ (𝑡)) − ℎ (𝑡, 𝜑 (𝑡))

≥ −𝐿 󵄨󵄨󵄨󵄨󵄨𝑑 (𝑡)
󵄨󵄨󵄨󵄨󵄨 = 𝐿𝑑 (𝑡) , 𝑡 ∈ (𝑇

1
, 𝑇

∗
) .
(81)

Multiplying this inequality by 𝑒−𝐿𝑡 and denoting by 𝜃(𝑡) :=
𝑑(𝑡) 𝑒−𝐿𝑡, we get

𝜃󸀠 (𝑡) = 𝑒−𝐿𝑡 (𝑑󸀠 (𝑡) − 𝐿𝑑 (𝑡)) ≥ 0, 𝑡 ∈ (𝑇
1
, 𝑇

∗
) . (82)

Thus, according to (79) and (82), we have that 𝜃(𝑇
1
) = 0,

𝜃(𝑡) < 0 and 𝜃󸀠(𝑡) ≥ 0 on (𝑇
1
, 𝑇

∗
), which is not possible.

Hence, the hypothesis (78) yields to a contradiction and, thus,
𝜑(𝑡) ≤ 𝜓̃(𝑡) for all 𝑡 ∈ [𝑇

0
, 𝑇∗).
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