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A finite element method (FEM) for multiterm fractional partial differential equations (MT-FPDEs) is studied for obtaining a
numerical solution effectively. The weak formulation for MT-FPDEs and the existence and uniqueness of the weak solutions are
obtained by the well-known Lax-Milgram theorem. The Diethelm fractional backward difference method (DFBDM), based on
quadrature for the time discretization, and FEM for the spatial discretization have been applied to MT-FPDEs. The stability and
convergence for numerical methods are discussed. The numerical examples are given to match well with the main conclusions.

1. Introduction

In recent years, the numerical treatment and supporting
analysis of fractional order differential equations has become
an important research topic that offers great potential. The
FEMs for fractional partial differential equations have been
studied by many authors (see [1–3]). All of these papers
only considered single-term fractional equations, where they
only had one fractional differential operator. In this paper,
we consider the MT-FPDEs, which include more than one
fractional derivative. Some authors also considered solving
linear problems with multiterm fractional derivatives (see
[4, 5]).This motivates us to consider their effective numerical
solutions for such MT-FPDEs, which have been proposed in
[6, 7].

Let Ω = (0,𝑋)
𝑑, where 𝑑 ≥ 1 is the space dimension.

We consider the MT-FPDEs with the Caputo time fractional
derivatives as follows:

𝑃 (
𝐶
𝐷𝑡) 𝑢 (𝑡, 𝑥) − Δ 𝑥𝑢 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) , 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ Ω,

(1)

𝑢 (0, 𝑥) = 𝑢0 (𝑥) , 𝑥 ∈ Ω, (2)

𝑢 (𝑡, 𝑥) = 0, 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ 𝜕Ω, (3)

where the operator 𝑃(𝐶𝐷𝑡)𝑢(𝑡, 𝑥) is defined as

𝑃 (
𝐶
𝐷𝑡) 𝑢 (𝑡, 𝑥) = (

𝐶

0𝐷
𝛼

𝑡
+

𝑠

∑

𝑖=1

𝑎𝑖
𝐶

0
𝐷

𝛼𝑖
𝑡
)𝑢 (𝑡, 𝑥) , (4)

with 0 < 𝛼𝑠 < 𝛼𝑠−1 < ⋅ ⋅ ⋅ < 𝛼1 < 𝛼 < 1 and {𝑎𝑖 > 0}
𝑠

𝑖=1
.

Here 𝐶

0
𝐷

𝛼

𝑡
𝑢(𝑡, 𝑥) denotes the left Caputo fractional derivative

with respect to the time variable 𝑡 andΔ 𝑥 denotes the Laplace
operator with respect to the space variable 𝑥.

Some numerical methods have been considered for solv-
ing the multiterm fractional differential equations. In [8], Liu
et al. investigate some effective numerical methods for time
fractional wave-diffusion and diffusion equations:

𝐶

0
𝐷

𝛼

𝑡
𝑢 (𝑡, 𝑥) − 𝑘Δ 𝑥𝑢 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) , 0 < 𝑥 < 𝐿, 𝑡 > 0,

(5)

where 𝑘 and 𝐿 are arbitrary positive constants and 𝑓(𝑡, 𝑥)

is a sufficiently smooth function. The authors consider the
implicit finite difference methods (FDMs) and prove that it
is unconditionally stable. The error estimate of the FDM is
𝑂(Δ𝑡 + Δ𝑡

2−𝛼
+ Δ𝑥), where Δ𝑡 and Δ𝑥 are the time and

space step size, respectively. They also investigate the frac-
tional predictor-corrector methods (FPCMs) of the Adams-
Moulton methods for multiterm time fractional differential
equations (1) with order {𝛼𝑖}𝑖=1,...,𝑠 by solving the equivalent
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Volterra integral equations. The error estimate of the FPCM
is 𝑂(Δ𝑡 + Δ𝑡

1+min{𝛼𝑙} + Δ𝑥
2
). In recent years, there are some

articles for the predictor-correction method for initial-value
problems (see [9–14]). For the application of the FDMs,
there have been many research articles as follows. In [15–20],
Simos et al. investigate the numerical methods for solving the
Schrödinger equation. In [21–24], the Runge-Kutta methods
are considered and applied to get the numerical solution
of orbital problems. For long-time integration, the Newton-
Cotes formulae are considered in [25–27].

In [28], Badr investigate the FEM for linear multiterm
fractional differential equations with one variable as follows:

𝐶

0
𝐷

1+𝛼

𝑡
𝑢 (𝑡) +

𝑠

∑

𝑖=1

𝐴 𝑖 (𝑥)𝐷
𝛼𝑖𝑢 (𝑥) = 𝑓 (𝑡) , 𝛼 ≤ 𝑛,

𝛼𝑖 < 𝑛 − 1, 0 < 𝑡 < 1,

(6)

where𝐴 𝑖(𝑥) are known functions.The author gives the details
of the modified Galerkin method for the above equations
andmakes the numerical example for checking the numerical
method. In [29], Ford et al. consider the FEM for (5)
with singular fractional order and obtain the error estimate
𝑂(Δ𝑡

2−𝛼
+ Δ𝑥

2
). In this paper, we follow the work in [29]

and consider the FEM for solving MT-FPDEs (1)–(3). Then,
we prove the stability and convergence of the FEM for MT-
FPDEs and make the error estimate.

The paper is organized as follows. In Section 2, the weak
formulation of the MT-FPDEs is given and the existence and
uniqueness results for such problems are proved. In Section 3,
we consider the convergence rate of time discretization of
MT-FPDEs, based on the Diethelm fractional backward
difference method (DFBDM). In Section 4, we propose an
FEM based on the weak formulation and carry out the error
analysis. In Section 5, the stability of this method is proven.
Finally, the numerical examples are considered for matching
well with the main conclusions.

2. Existence and Uniqueness

Let Γ(⋅) denote the gamma function. For any positive integer
𝑛 and 𝑛 − 1 < 𝛼 < 𝑛, the Caputo derivative are the Riemann-
Liouville derivative are, respectively, defined as follows [30].

(i) The left Caputo derivatives:

𝐶

0
𝐷

𝛼

𝑡
V (𝑡) :=

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

1

(𝑡 − 𝜏)
𝛼−𝑛+1

(
𝑑
𝑛

𝑑𝜏𝑛
V (𝜏)) 𝑑𝜏. (7)

(ii) The left Riemann-Liouville derivatives:

𝑅

0
𝐷

𝛼

𝑡
V (𝑡) :=

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0

V (𝜏)

(𝑡 − 𝜏)
𝛼−𝑛+1

𝑑𝜏. (8)

(iii) The right Riemann-Liouville derivatives:

𝑅

𝑡
𝐷

𝛼

𝑇
V (𝑡) :=

(−1)
𝑛

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑇

𝑡

V (𝜏)

(𝜏 − 𝑡)
𝛼−𝑛+1

𝑑𝜏. (9)

Let 𝐶∞
(0, 𝑇) denote the space of infinitely differentiable

functions on (0, 𝑇) and𝐶∞

0
(0, 𝑇)denote the space of infinitely

differentiable functions with compact support in (0, 𝑇). We
use the expression 𝐴 ≲ 𝐵 to mean that 𝐴 ≤ 𝑐𝐵 when 𝑐

is a positive real number and use the expression 𝐴 ≅ 𝐵 to
mean that 𝐴 ≲ 𝐵 ≲ 𝐴. Let 𝐿2(Q) be the space of measurable
functions whose square is the Lebesgue integrable inQwhich
may denote a domain Q = 𝐼 × Ω, 𝐼 or Ω. Here time domain
𝐼 := (0, 𝑇) and space domain Ω := (0, 𝑋). The inner product
and norm of 𝐿2(Q) are defined by

(𝑢, V)𝐿2(Q) := ∫
Q

𝑢V𝑑Q, ‖𝑢‖𝐿2(Q)
:= (𝑢, 𝑢)

1/2

𝐿2(Q)
,

∀𝑢, V ∈ 𝐿2 (Q) .

(10)

For any real 𝜎 > 0, we define the spaces 𝑙
𝐻

𝜎

0
(Q) and

𝑟
𝐻

𝜎

0
(Q) to be the closure of𝐶∞

0
(Q)with respect to the norms

‖V‖ 𝑙𝐻𝜎
0
(Q), and ‖V‖ 𝑟𝐻𝜎

0
(Q) respectively, where

‖V‖ 𝑙𝐻𝜎
0
(Q) := (‖V‖

2

𝐿2(Q)
+ |V|

2
𝑙𝐻𝜎
0
(Q)

)

1/2

,

|V|
2
𝑙𝐻𝜎
0
(Q)

:=
󵄩󵄩󵄩󵄩󵄩

𝑅

0𝐷
𝜎

𝑡
V
󵄩󵄩󵄩󵄩󵄩

2

𝐿2(Q)
,

‖V‖ 𝑟𝐻𝜎
0
(Q) := (‖V‖

2

𝐿2(Q)
+ |V|

2
𝑟𝐻𝜎
0
(Q))

1/2

,

|V|
2
𝑟𝐻𝜎
0
(Q) :=

󵄩󵄩󵄩󵄩󵄩

𝑅

𝑡 𝐷
𝜎

𝑇
V
󵄩󵄩󵄩󵄩󵄩

2

𝐿2(Q)
.

(11)

In the usual Sobolev space𝐻𝜎

0
(Q), we also have the definition

‖V‖𝐻𝜎
0
(Q) := (‖V‖

2

𝐿2(Q)
+ |V|

2

𝐻𝜎
0
(Q))

1/2

,

|V|
2

𝐻𝜎
0
(Q) :=

(
𝑅

0𝐷
𝜎

𝑡
V, 𝑅

𝑡
𝐷

𝜎

𝑇
V)

𝐿2(Q)

cos (𝜋𝜎)
.

(12)

From [3], for 𝜎 > 0, 𝜎 ̸= 𝑛 − 1/2, the spaces 𝑙
𝐻

𝜎

0
(Q),

𝑟
𝐻

𝜎

0
(Q), and 𝐻

𝜎

0
(Q) are equal, and their seminorms are all

equivalent to | ⋅ |𝐻𝜎
0
(Q). We first recall the following results.

Lemma 1 (see [3]). Let 0 < 𝜃 < 2, 𝜃 ̸= 1. Then for any 𝑤, V ∈

𝐻
𝜃/2

0
(0, 𝑇), then

(
𝑅

0𝐷
𝜃

𝑡
𝑤, V)

𝐿2(0,𝑇)
= (

𝑅

0𝐷
𝜃/2

𝑡
𝑤,

𝑅

𝑡
𝐷

𝜃/2

𝑇
V)

𝐿2(0,𝑇)
. (13)

From [3], we define the following space:

𝐵
𝛼/2

(𝐼 × Ω) = 𝐻
𝛼/2

(𝐼, 𝐿2 (Ω)) ∩ 𝐻
𝛼1/2 (𝐼, 𝐿2 (Ω)) ∩ ⋅ ⋅ ⋅

∩ 𝐻
𝛼𝑠/2 (𝐼, 𝐿2 (Ω)) ∩ 𝐿2 (𝐼,𝐻

1

0
(Ω))

= 𝐻
𝛼/2

(𝐼, 𝐿2 (Ω)) ∩ 𝐿2 (𝐼,𝐻
1

0
(Ω)) .

(14)
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Here 𝐵
𝛼/2

(𝐼 × Ω) is a Banach space with respect to the
following norm:

‖V‖𝐵𝛼/2(𝐼×Ω) = (‖V‖
2

𝐻𝛼/2(𝐼,𝐿2(Ω))
+ ‖V‖

2

𝐿2(𝐼,𝐻
1

0
(Ω))

)

1/2

, (15)

where𝐻𝛼/2
(𝐼, 𝐿2(Ω)) :={V; ‖V(𝑡, ⋅)‖𝐿2(Ω) ∈ 𝐻

𝛼/2
(𝐼)}, endowed

with the norm

‖V‖𝐻𝛼/2(𝐼,𝐿2(Ω)) :=
󵄩󵄩󵄩󵄩󵄩
‖V (𝑡, ⋅)‖𝐿2(Ω)

󵄩󵄩󵄩󵄩󵄩𝐻𝛼/2(𝐼)
. (16)

Based on the relation equation between the left Caputo
and the Riemann-Liouville derivative in [31], we can translate
the Caputo problem to the Riemann-Liouville problem.
Then, we consider the weak formulation of (1) as follows. For
𝑓 ∈ 𝐵

𝛼/2
(𝐼 × Ω)

󸀠, find 𝑢(𝑡, 𝑥) ∈ 𝐵
𝛼/2

(𝐼 × Ω) such that

A (𝑢, V) = F (V) , V ∈ 𝐵
𝛼/2

(𝐼 × Ω) , (17)

where the bilinear form is, by Lemma 1,

A (𝑢, V) := (
𝑅

0𝐷
𝛼/2

𝑡
𝑢,

𝑅

𝑡
𝐷

𝛼/2

𝑇
V)

𝐿2(𝐼×Ω)

+

𝑠

∑

𝑖=1

𝑎𝑖(
𝑅

0𝐷
𝛼𝑖/2

𝑡
𝑢,

𝑅

𝑡
𝐷

𝛼𝑖/2

𝑇
V)

𝐿2(𝐼×Ω)

+ (∇𝑥𝑢, ∇𝑥V)𝐿2(𝐼×Ω)
,

(18)

and the functional isF(V) := (𝑓, V)𝐿2(𝐼×Ω),𝑓(𝑡, 𝑥) := 𝑓(𝑡, 𝑥)+

(𝑢0(𝑥)𝑡
−𝛼
/Γ(1 − 𝛼)) + ∑

𝑠

𝑖=1
𝑎𝑖(𝑢0(𝑥)𝑡

−𝛼𝑖/Γ(1 − 𝛼𝑖)).
Based on themain results in Subsection 3.2 in [32], we can

prove the following existence and uniqueness theorem.

Theorem 2. Assume that 0 < 𝛼 < 1 and 𝑓 ∈ 𝐵
𝛼/2

(𝐼 × Ω)
󸀠.

Then the system (17) has a unique solution in 𝐵
𝛼/2

(𝐼 × Ω).
Furthermore,

‖𝑢‖𝐵𝛼/2(𝐼×Ω) ≲
󵄩󵄩󵄩󵄩󵄩
𝑓
󵄩󵄩󵄩󵄩󵄩𝐵𝛼/2(𝐼×Ω)

󸀠 . (19)

Proof. The existence and uniqueness of the solution of (17)
is guaranteed by the well-known Lax-Milgram theorem. The
continuity of the bilinear form A and the functional F is
obvious. Now we need to prove the coercivity of A in the
space 𝐵

𝛼/2
(𝐼 × Ω). From the equivalence of 𝑙

𝐻
𝛼

0
(𝐼 × Ω),

𝑟
𝐻

𝛼

0
(𝐼 × Ω) and𝐻

𝛼

0
(𝐼 × Ω), for all 𝑢, V ∈ 𝐵

𝛼/2
(𝐼 × Ω), using

the similar proof process in [32], we obtain

A (V, V) ≳ (
𝑅

0𝐷
𝛼/2

𝑡
V,

𝑅

0
𝐷

𝛼/2

𝑡
V)

𝐿2(𝐼×Ω)

+

𝑠

∑

𝑖=1

𝑎𝑖(
𝑅

0𝐷
𝛼𝑖/2

𝑡
V,

𝑅

0
𝐷

𝛼𝑖/2

𝑡
V)

𝐿2(𝐼×Ω)

+ (∇𝑥𝑢, ∇𝑥V)𝐿2(𝐼×Ω)
≳ ‖V‖

2

𝐵𝛼/2(𝐼×Ω)
.

(20)

Then we take V = 𝑢 in (17) to get ‖𝑢‖2
𝐵𝛼/2(𝐼×Ω)

≲ (𝑓, 𝑢)𝐿2(𝐼×Ω)

by the Schwarz inequality and the Poincaré inequality.

3. Time Discretization and Convergence

In this section, we consider DFBDM for the time discretiza-
tion of (1)–(3), which is introduced in [33] for fractional
ordinary differential equations. We can obtain the conver-
gence order for the time discretization for theMT-FPDEs. Let
𝐴 = −Δ 𝑥, 𝐷(𝐴) = 𝐻

1

0
(Ω) ∩ 𝐻

2
(Ω). Let 𝑢(𝑡), 𝑓(𝑡), and 𝑢(0)

denote the one-variable functions as 𝑢(𝑡, ⋅), 𝑓(𝑡, ⋅), and 𝑢(0, ⋅),
respectively. Then (1) can be written in the abstract form, for
0 < 𝑡 < 𝑇, 0 < 𝛼𝑠 < ⋅ ⋅ ⋅ < 𝛼1 < 𝛼 < 1, with initial value
𝑢(0) = 𝑢0. Now we have

𝑅

0
𝐷

𝛼

𝑡
[𝑢 − 𝑢0] (𝑡) +

𝑠

∑

𝑖=1

𝑎𝑖
𝑅

0
𝐷

𝛼𝑖
𝑡
[𝑢 − 𝑢0] (𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡) .

(21)

Let 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑁 = 𝑇 be a partition of [0, 𝑇].
Then, for fixed 𝑡𝑗, 𝑗 = 1, 2, . . . , 𝑁, we have

𝑅

0
𝐷

𝛼

𝑡
[𝑢 − 𝑢0] (𝑡𝑗) =

𝑡
−𝛼

𝑗

Γ (−𝛼)
∫

1

0

𝑔 (𝜏) 𝜏
−1−𝛼

𝑑𝜏, (22)

where 𝑔(𝜏) = 𝑢(𝑡𝑗−𝑡𝑗𝜏)−𝑢0. Here, the integral is a Hadamard
finite-part integral in [33] and [34].

Now, for every 𝑗, we replace the integral by a first-
degree compound quadrature formula with equispaced
nodes 0, (1/𝑗), (2/𝑗), . . . , 1 and obtain

∫

1

0

𝑔 (𝜏) 𝜏
−1−𝛼

𝑑𝜏 =

𝑗

∑

𝑘=0

𝛼
(𝛼)

𝑘𝑗
𝑔(

𝑘

𝑗
) + 𝑅

(𝛼)

𝑗
(𝑔) , (23)

where the weights 𝛼(𝛼)

𝑘𝑗
are

𝛼 (1 − 𝛼) 𝑗
−𝛼
𝛼
(𝛼)

𝑘𝑗

=

{{

{{

{

−1, for 𝑘=0,
2𝑘

1−𝛼
−(𝑘−1)

1−𝛼
−(𝑘+1)

1−𝛼
, for 𝑘=1, 2, . . . , 𝑗−1,

(𝛼−1) 𝑘
−𝛼
−(𝑘−1)

1−𝛼
+𝑘

1−𝛼
, for 𝑘=𝑗,

(24)

and the remainder term 𝑅
(𝛼)

𝑗
(𝑔) satisfies ‖𝑅

(𝛼)

𝑗
(𝑔)‖ ≤

𝛾𝛼𝑗
𝛼−2sup

0≤𝑡≤𝑇
‖𝑔

󸀠󸀠
(𝑡)‖, where 𝛾𝛼 > 0 is a constant.

Thus, for 𝜔(𝛼)

𝑘𝑗
= 𝑗

−𝛼
𝛼
(𝛼)

𝑘𝑗
/Γ(−𝛼), we have

𝑅

0𝐷
𝛼

𝑡
[𝑢 − 𝑢0] (𝑡𝑗) = Δ𝑡

−𝛼

𝑗

∑

𝑘=0

𝜔
(𝛼)

𝑘𝑗
(𝑢 (𝑡𝑗 − 𝑡𝑘) − 𝑢 (0))

+

𝑡
−𝛼

𝑗

Γ (−𝛼)
𝑅
(𝛼)

𝑗
(𝑔) .

(25)
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Let 𝑡 = 𝑡𝑗, we can write (21) as

Δ𝑡
−𝛼

𝑗

∑

𝑘=0

𝜔
(𝛼)

𝑘𝑗
(𝑢 (𝑡𝑗 − 𝑡𝑘) − 𝑢 (0))

+

𝑠

∑

𝑖=1

𝑎𝑖Δ𝑡
−𝛼𝑖

𝑗

∑

𝑘=0

𝜔
(𝛼𝑖)

𝑘𝑗
(𝑢 (𝑡𝑗 − 𝑡𝑘) − 𝑢 (0)) + 𝐴𝑢 (𝑡𝑗)

= 𝑓 (𝑡𝑗) −

𝑡
−𝛼

𝑗

Γ (−𝛼)
𝑅
(𝛼)

𝑗
(𝑔) −

𝑠

∑

𝑖=1

𝑎𝑖

𝑡
−𝛼𝑖

𝑗

Γ (−𝛼𝑖)
𝑅
(𝛼𝑖)

𝑗
(𝑔) ,

𝑗 = 1, 2, 3, . . . .

(26)

Denote 𝑈𝑗 as the approximation of 𝑢(𝑡𝑗) and 𝑓𝑗 = 𝑓(𝑡𝑗). We
obtain the following equation:

Δ𝑡
−𝛼

𝑗

∑

𝑘=0

𝜔
(𝛼)

𝑘𝑗
(𝑈

𝑗−𝑘
− 𝑈

0
)

+

𝑠

∑

𝑖=1

𝑎𝑖Δ𝑡
−𝛼𝑖

𝑗

∑

𝑘=0

𝜔
(𝛼𝑖)

𝑘𝑗
(𝑈

𝑗−𝑘
− 𝑈

0
) + 𝐴𝑈

𝑗
= 𝑓𝑗.

(27)

Lemma 3 (see [34]). For 0 < 𝛼 < 1, let the sequence {𝑑𝑗}𝑗=1,2,...

be given by𝑑1 = 1 and𝑑𝑗 = 1+𝛼(1−𝛼)𝑗
−𝛼

∑
𝑗−1

𝑘=1
𝛼
(𝛼)

𝑘𝑗
𝑑𝑗−𝑘.Then,

1 ≤ 𝑑𝑗 ≤ (sin(𝜋𝛼)/𝜋𝛼(1 − 𝛼))𝑗
𝛼, for 𝑗 = 1, 2, 3, . . . .

Let 𝑒𝑗 = 𝑢(𝑡𝑗) − 𝑈
𝑗 denote the error in 𝑡𝑗. Then we have

the following error estimate.

Theorem 4. Let𝑈𝑗 and 𝑢(𝑡𝑗) be the solutions of (27) and (21),
respectively. Then one has ‖𝑈𝑗

− 𝑢(𝑡𝑗)‖ ≲ Δ𝑡
2−𝛼.

Proof. Subtracting (27) from (26), we obtain the error equa-
tion

Δ𝑡
−𝛼

𝑗

∑

𝑘=0

𝜔
(𝛼)

𝑘𝑗
(𝑒

𝑗−𝑘
− 𝑒

0
) +

𝑠

∑

𝑖=1

𝑎𝑖Δ𝑡
−𝛼𝑖

𝑗

∑

𝑘=0

𝜔
(𝛼𝑖)

𝑘𝑗
(𝑒

𝑗−𝑘
− 𝑒

0
) + 𝐴𝑒

𝑗

= −

𝑡
−𝛼

𝑗

Γ (−𝛼)
𝑅
(𝛼)

𝑗
(𝑔) −

𝑠

∑

𝑖=1

𝑎𝑖

𝑡
−𝛼𝑖

𝑗

Γ (−𝛼𝑖)
𝑅
(𝛼𝑖)

𝑗
(𝑔) .

(28)

Note that 𝑒0 = 𝑢(0) − 𝑈
0
= 0. Denote

𝑒
𝑗
= (𝛼

(𝛼)

0𝑗
+

𝑠

∑

𝑖=1

𝑎𝑖Δ𝑡
𝛼−𝛼𝑖

Γ (−𝛼)

Γ (−𝛼𝑖)
𝛼
(𝛼𝑖)

0𝑗
+ 𝐴𝑡

𝛼
Γ (−𝛼))

−1

× (

𝑗

∑

𝑘=1

𝛼
(𝛼)

𝑘𝑗
𝑒
𝑗−𝑘

+

𝑠

∑

𝑖=1

𝑎𝑖Δ𝑡
𝛼−𝛼𝑖

Γ (−𝛼)

Γ (−𝛼𝑖)

𝑗

∑

𝑘=1

𝛼
(𝛼𝑖)

𝑘𝑗
𝑒
𝑗−𝑘

−𝑅
(𝛼)

𝑗
(𝑔) −

𝑠

∑

𝑖=1

𝑎𝑖

Γ (−𝛼)

Γ (−𝛼𝑖)
𝑡
𝛼−𝛼𝑖

𝑗
𝑅
(𝛼𝑖)

𝑗
(𝑔)) .

(29)

Let ‖ ⋅ ‖ denote the 𝐿2-norm, then we have

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑗󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝛼
(𝛼)

0𝑗
+

𝑠

∑

𝑖=1

𝑎𝑖Δ𝑡
𝛼−𝛼𝑖

Γ (−𝛼)

Γ (−𝛼𝑖)
𝛼
(𝛼𝑖)

0𝑗
+ 𝐴𝑡

𝛼
Γ (−𝛼))

−1󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

× (

𝑗

∑

𝑘=1

𝛼
(𝛼)

𝑘𝑗

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑗−𝑘󵄩󵄩󵄩󵄩󵄩

+

𝑠

∑

𝑖=1

𝑎𝑖Δ𝑡
𝛼−𝛼𝑖

Γ (−𝛼)

Γ (−𝛼𝑖)

𝑗

∑

𝑘=1

𝛼
(𝛼𝑖)

𝑘𝑗

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑗−𝑘󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑅
(𝛼)

𝑗
(𝑔)

󵄩󵄩󵄩󵄩󵄩
+

𝑠

∑

𝑖=1

𝑎𝑖

Γ (−𝛼)

Γ (−𝛼𝑖)
𝑡
𝛼−𝛼𝑖

𝑗

󵄩󵄩󵄩󵄩󵄩
𝑅
(𝛼𝑖)

𝑗
(𝑔)

󵄩󵄩󵄩󵄩󵄩
) .

(30)

Note that 𝐴 is a positive definite elliptic operator with all
of eigenvalues 𝜆 > 0. Since 𝛼(𝛼)

0𝑗
< 0 and Γ(−𝛼) < 0, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝛼
(𝛼)

0𝑗
+

𝑠

∑

𝑖=1

𝑎𝑖Δ𝑡
𝛼−𝛼𝑖

Γ (−𝛼)

Γ (−𝛼𝑖)
𝛼
(𝛼𝑖)

0𝑗
+ 𝐴𝑡

𝛼
Γ (−𝛼))

−1󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= sup
𝜆>0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝛼
(𝛼)

0𝑗
+

𝑠

∑

𝑖=1

𝑎𝑖Δ𝑡
𝛼−𝛼𝑖

Γ (−𝛼)

Γ (−𝛼𝑖)
𝛼
(𝛼𝑖)

0𝑗
+ 𝜆𝑡

𝛼
Γ (−𝛼))

−1󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≲ (−𝛼
(𝛼)

0𝑗
−

𝑠

∑

𝑖=1

𝑎𝑖Δ𝑡
𝛼−𝛼𝑖

Γ (−𝛼)

Γ (−𝛼𝑖)
𝛼
(𝛼𝑖)

0𝑗
)

−1

.

(31)

Hence,

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑗󵄩󵄩󵄩󵄩󵄩

≤ 𝛼 (1 − 𝛼) 𝑗
−𝛼

𝑗

∑

𝑘=1

𝛼
(𝛼)

𝑘𝑗

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑗−𝑘󵄩󵄩󵄩󵄩󵄩

+

𝑠

∑

𝑖=1

𝛼𝑖 (1 − 𝛼𝑖) 𝑗
−𝛼𝑖

𝑗

∑

𝑘=1

𝛼
(𝛼𝑖)

𝑘𝑗

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑗−𝑘󵄩󵄩󵄩󵄩󵄩

+ 𝛼 (1 − 𝛼) 𝛾𝛼𝑛
−2 sup

0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠󵄩󵄩󵄩󵄩󵄩

+

𝑠

∑

𝑖=1

𝛼𝑖 (1 − 𝛼𝑖) 𝛾𝛼𝑖
𝑛
−2 sup

0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠󵄩󵄩󵄩󵄩󵄩

.

(32)

Denote 𝑑1 = 1 and

𝑑𝑗 = 1 + 𝛼 (1 − 𝛼) 𝑗
−𝛼

𝑗−1

∑

𝑘=1

𝛼
(𝛼)

𝑘𝑗
𝑑𝑗−𝑘, 𝑗 = 2, 3, . . . , 𝑛,

𝑑
𝑖

𝑗
= 1 + 𝛼𝑖 (1 − 𝛼𝑖) 𝑗

−𝛼𝑖

𝑗−1

∑

𝑘=1

𝛼
(𝛼𝑖)

𝑘𝑗
𝑑𝑗−𝑘, 𝑗 = 2, 3, . . . , 𝑛,

(33)
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where 𝑖 = 1, 2, . . . , 𝑠. By induction and Lemma 3, then we
have

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑗󵄩󵄩󵄩󵄩󵄩

≲ 𝛼 (1 − 𝛼) 𝑛
−2 sup

0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩
⋅ 𝑑𝑗

+

𝑠

∑

𝑖=1

𝛼𝑖 (1 − 𝛼𝑖) 𝑛
−2 sup

0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩
⋅ 𝑑

𝑖

𝑗

≲ 𝑛
−2 sup

0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩

sin (𝜋𝛼)
𝜋

𝑗
𝛼

+

𝑠

∑

𝑖=1

𝑛
−2 sup

0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩

sin (𝜋𝛼𝑖)
𝜋

𝑗
𝛼𝑖

≲ Δ𝑡
2−𝛼

+

𝑠

∑

𝑖=1

Δ𝑡
2−𝛼𝑖 .

(34)

4. Space Discretization and Convergence

In this section, we will consider the space discretization for
MT-FPDEs (1) and show the complete process and details
of numerical scheme. The variational form of (1) is to find
𝑢(𝑡, ⋅) ∈ 𝐻

1

0
(Ω), such that, for all V ∈ 𝐻

1

0
(Ω),

(
𝑅

0𝐷
𝛼

𝑡
𝑢 (𝑡, 𝑥) , V)

𝐿2(Ω)
+

𝑠

∑

𝑖=1

𝑎𝑖(
𝑅

0𝐷
𝛼𝑖

𝑡
𝑢(𝑡, 𝑥), V)

𝐿2(Ω)

+ (∇𝑥𝑢, ∇𝑥V) = (𝑓(𝑡, 𝑥), V)
𝐿2(Ω)

.

(35)

Let ℎ denote themaximal length of intervals inΩ and let 𝑟
be any nonnegative integer. We denote the norm in𝐻

𝑟
(Ω) by

‖ ⋅ ‖𝐻𝑟(Ω). Let 𝑆ℎ ⊂ 𝐻
𝑟

0
be a family of finite element spaces with

the accuracy of order 𝑟 ≥ 2, that is, 𝑆ℎ consists of continuous
functions on the closure Ω of Ω which are polynomials of
degree at most 𝑟−1 in each interval and which vanish outside
Ωℎ, such that for small ℎ, V ∈ 𝐻

𝑏
(Ω) ∩ 𝐻

1

0
(Ω),

inf
𝜒∈𝑆ℎ

(
󵄩󵄩󵄩󵄩V − 𝜒

󵄩󵄩󵄩󵄩𝐿2(Ω)
+ ℎ

󵄩󵄩󵄩󵄩∇𝑥 (V − 𝜒)
󵄩󵄩󵄩󵄩𝐿2(Ω)

) ≤ 𝐶ℎ
𝑏
‖V‖𝐻𝑏(Ω),

1 ≤ 𝑏 ≤ 𝑟.

(36)
The semidiscrete problem of (1) is to find the approximate

solution 𝑢ℎ(𝑡) = 𝑢ℎ(𝑡, ⋅) ∈ 𝑆ℎ and𝑓(𝑡) = 𝑓(𝑡, ⋅) for each 𝑡 such
that

(
𝑅

0𝐷
𝛼

𝑡
𝑢ℎ (𝑡) , 𝜒)𝐿2(Ω)

+

𝑠

∑

𝑖=1

𝑎𝑖(
𝑅

0𝐷
𝛼𝑖

𝑡
𝑢ℎ (𝑡) , 𝜒)𝐿2(Ω)

+ (∇𝑥𝑢ℎ (𝑡) , ∇𝑥𝜒)𝐿2(Ω)
= (𝑓 (𝑡) , 𝜒)

𝐿2(Ω)
, ∀𝜒 ∈ 𝑆ℎ.

(37)

Let𝑈𝑁
= 𝑢ℎ(𝑡𝑁, 𝑥). After the time discretization, we have

Δ𝑡
−𝛼

𝑁

∑

𝑘=0

𝜔
(𝛼)

𝑘𝑁
(𝑈

𝑁
, 𝜒)

𝐿2(Ω)
+

𝑠

∑

𝑖=1

𝑎𝑖Δ𝑡
−𝛼𝑖

𝑁

∑

𝑘=0

𝜔
(𝛼𝑖)

𝑘𝑁
(𝑈

𝑁
, 𝜒)

𝐿2(Ω)

+ (∇𝑥𝑈
𝑁
, ∇𝑥𝜒)𝐿2(Ω)

= (𝑓 (𝑡) , 𝜒)
𝐿2(Ω)

, ∀𝜒 ∈ 𝑆ℎ.

(38)

In terms of the basis {𝜓𝑚}
𝑀−1

𝑚=1
⊆ 𝑆ℎ, choosing 𝜒 = 𝜓𝑚,

writing

𝑢ℎ (𝑡𝑁, 𝑥) =

𝑀−1

∑

𝑗=1

𝑈
𝑁

𝑗
𝜓𝑗 (𝑥) , (39)

and inserting it into (38), one obtains

𝑀−1

∑

𝑗=1

Δ𝑡
−𝛼

𝑁

∑

𝑘=1

𝜔
(𝛼)

𝑘𝑁
𝑈

𝑁−𝑘

𝑗
(𝜓𝑗, 𝜓𝑚)𝐿2(Ω)

+

𝑠

∑

𝑖=1

𝑎𝑖

𝑀−1

∑

𝑗=1

Δ𝑡
−𝛼𝑖

𝑁

∑

𝑘=1

𝜔
(𝛼𝑖)

𝑘𝑁
𝑈

𝑁−𝑘

𝑗
(𝜓𝑗, 𝜓𝑚)𝐿2(Ω)

+

𝑀−1

∑

𝑗=1

𝑈
𝑁

𝑗
(∇𝑥𝜓𝑗, ∇𝑥𝜓𝑚)𝐿2(Ω)

= (𝑓, 𝜓𝑚)𝐿2(Ω)
,

𝑚 = 1, 2, . . . ,𝑀 − 1.

(40)

Let 𝑈𝑁 = (𝑈
𝑁

1
, 𝑈

𝑁

2
, . . . , 𝑈

𝑁

𝑀−1
)
𝑇. From (40), we obtain a

vector equation

Ψ1 (Δ𝑡
−𝛼
𝜔
(𝛼)

0𝑁
𝑈𝑁 +

𝑠

∑

𝑖=1

𝑎𝑖Δ𝑡
−𝛼𝑖𝜔

(𝛼𝑖)

0𝑁
𝑈𝑁) + Ψ2𝑈𝑁

= Ψ1 (𝐹𝑁 − Δ𝑡
−𝛼

𝑁

∑

𝑘=1

𝜔
(𝛼)

𝑘𝑁
𝑈𝑁−𝑘 −

𝑠

∑

𝑖=1

𝑎𝑖Δ𝑡
−𝛼𝑖

𝑁

∑

𝑘=1

𝜔
(𝛼𝑖)

𝑘𝑁
𝑈𝑁−𝑘) ,

(41)

where initial condition is 𝑈0 = 𝑢(0, 𝑥), Ψ1 := {(𝜓𝑗,

𝜓𝑚)𝐿2(Ω)}
𝑀−1

𝑗,𝑚=1
is the mass matrix, Ψ2 is stiffness matrix as

Ψ2 := {(∇𝑥𝜓𝑗, ∇𝑥𝜓𝑚)𝐿2(Ω)
}
𝑀−1

𝑗,𝑚=1

, and 𝐹𝑁 := (𝑓
1
, . . . , 𝑓

𝑀−1
)
𝑇

is a vector valued function. Then, we can obtain the solution
𝑈𝑁 at 𝑡 = 𝑡𝑁.

Let 𝑅ℎ : 𝐻
1
(Ω) → 𝑆ℎ be the elliptic projection, defined

by (∇𝑥𝑅ℎ𝑢, ∇𝑥𝜒)𝐿2(Ω) = (∇𝑥𝑢, ∇𝑥𝜒)𝐿2(Ω), for all 𝜒 ∈ 𝑆ℎ.

Lemma5 (see [35]). Assume that (36) holds, thenwith𝑅ℎ and
V ∈ 𝐻

𝑏
(Ω) ∩ 𝐻

1

0
(Ω), we have ‖𝑅ℎV − V‖𝐿2(Ω) + ℎ‖∇𝑥(𝑅ℎV −

V)‖𝐿2(Ω) ≤ 𝐶ℎ
𝑏
‖V‖𝐻𝑏(Ω) for 1 ≤ 𝑏 ≤ 𝑟.

In virtue of the standard error estimate for the FEM of
MT-FPDEs, one has the following theorem which can be
proved easily by Lemma 5 and the similar proof in [35].

Theorem 6. For 0 < 𝛼𝑠 < ⋅ ⋅ ⋅ < 𝛼1 < 𝛼 < 1, let 𝑢ℎ ∈ 𝑆ℎ and
𝑢(𝑡, ⋅) ∈ 𝐻

1

0
(Ω) be, respectively, the solutions of (37) and (1),

then ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) ≲ ℎ
2
‖𝑢‖𝐿2(Ω).

5. Stability of the Numerical Method

In this section, we analyze the stability of the FEM for
MT-FPEDs (1)–(3). Now we do some preparations before
proving the stability of the method. Based on the definition
of coefficients 𝜔(𝛼)

𝑘𝑗
in Section 3, we can obtain the following

lemma easily.
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Lemma 7. For 0 < 𝛼 < 1, the coefficients 𝜔(𝛼)

𝑘𝑗
, (𝑘 = 1, . . . , 𝑗)

satisfy the following properties:

(i) 𝜔(𝛼)

0𝑗
> 0 and 𝜔

(𝛼)

𝑘𝑗
< 0 for 𝑘 = 1, 2, . . . , 𝑗,

(ii) Γ(2 − 𝛼)∑
𝑗

𝑘=1
𝜔
(𝛼)

𝑘𝑗
= (1 − 𝛼)𝑗

−𝛼
+ 1.

Now we report the stability theorem of this FEM for MT-
FPDEs in this section as follows.

Theorem 8. The FEM defined as in (38) is unconditionally
stable.

Proof. In (38), let 𝜒(⋅) = 𝑈
𝑗
(⋅) at 𝑡 = 𝑡𝑗 and the right hand

𝑓 = 0. We have

Δ𝑡
−𝛼

{
1

Γ (2 − 𝛼)
(𝑈

𝑗
, 𝑈

𝑗
)
𝐿2(Ω)

+

𝑗−1

∑

𝑘=1

𝜔
(𝛼)

𝑘𝑗
(𝑈

𝑗−𝑘
, 𝑈

𝑗
)
𝐿2(Ω)

+𝜔
(𝛼)

𝑗𝑗
(𝑈

0
, 𝑈

𝑗
)
𝐿2(Ω)

}

+

𝑠

∑

𝑖=1

𝑎𝑖Δ𝑡
−𝛼𝑖 {

1

Γ (2 − 𝛼𝑖)
(𝑈

𝑗
, 𝑈

𝑗
)
𝐿2(Ω)

+

𝑗−1

∑

𝑘=1

𝜔
(𝛼𝑖)

𝑘𝑗
(𝑈

𝑗−𝑘
, 𝑈

𝑗
)
𝐿2(Ω)

+𝜔
(𝛼𝑖)

𝑗𝑗
(𝑈

0
, 𝑈

𝑗
)
𝐿2(Ω)

}

+ (∇𝑥𝑈
𝑗
, ∇𝑥𝑈

𝑗
)
𝐿2(Ω)

= 0.

(42)

Using, Cauchy-Schwarz inequality, ±(𝑈
𝑗−𝑘

, 𝑈
𝑗
) ≤

(1/2)(‖𝑈
𝑗−𝑘

‖
2

𝐿2(Ω)
+ ‖𝑈

𝑗
‖
2

𝐿2(Ω)
) for 𝑘 = 0, 1, 2, . . . , 𝑁 and

Lemma 7, we get

(
Δ𝑡

−𝛼

2Γ (2 − 𝛼)
(1 + (1 − 𝛼) 𝑗

−𝛼
)

+

𝑠

∑

𝑖=1

𝑎𝑖

Δ𝑡
−𝛼𝑖

2Γ (2 − 𝛼𝑖)
(1+(1−𝛼𝑖) 𝑗

−𝛼𝑖))
󵄩󵄩󵄩󵄩󵄩
𝑈

𝑗󵄩󵄩󵄩󵄩󵄩

2

𝐿2(Ω)
+
󵄩󵄩󵄩󵄩󵄩
∇𝑥𝑈

𝑗󵄩󵄩󵄩󵄩󵄩

2

𝐿2(Ω)

≤
Δ𝑡

−𝛼

2
[−

𝑗−1

∑

𝑘=1

𝜔
(𝛼)

𝑘𝑗

󵄩󵄩󵄩󵄩󵄩
𝑈

𝑗−𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐿2(Ω)
− 𝜔

(𝛼)

𝑗𝑗

󵄩󵄩󵄩󵄩󵄩
𝑈

0󵄩󵄩󵄩󵄩󵄩

2

𝐿2(Ω)
]

+

𝑠

∑

𝑖=1

𝑎𝑖

Δ𝑡
−𝛼𝑖

2
[−

𝑗−1

∑

𝑘=1

𝜔
(𝛼𝑖)

𝑘𝑗

󵄩󵄩󵄩󵄩󵄩
𝑈

𝑗−𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐿2(Ω)
−𝜔

(𝛼𝑖)

𝑗𝑗

󵄩󵄩󵄩󵄩󵄩
𝑈

0󵄩󵄩󵄩󵄩󵄩

2

𝐿2(Ω)
] .

(43)

We prove the stability of (37) by induction. Since when
𝑗 = 1, we have

(
Δ𝑡

−𝛼

2Γ (2 − 𝛼)
(1 + (1 − 𝛼))

+

𝑠

∑

𝑖=1

𝑎𝑖

Δ𝑡
−𝛼𝑖

2Γ (2 − 𝛼𝑖)
(1 + (1 − 𝛼𝑖)))

󵄩󵄩󵄩󵄩󵄩
𝑈

1󵄩󵄩󵄩󵄩󵄩

2

𝐿2(Ω)

≤ (
Δ𝑡

−𝛼

2Γ (2 − 𝛼)
(1 − (1 − 𝛼))

+

𝑠

∑

𝑖=1

𝑎𝑖

Δ𝑡
−𝛼𝑖

2Γ (2 − 𝛼𝑖)
(1−(1−𝛼𝑖)))

󵄩󵄩󵄩󵄩󵄩
𝑈

0󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)
.

(44)

The induction basis ‖𝑈1
‖𝐿2(Ω) ≤ ‖𝑈

0
‖𝐿2(Ω) is presupposed.

For the induction step, we have ‖𝑈
𝑗
‖𝐿2(Ω) ≤ ‖𝑈

𝑗−1
‖𝐿2(Ω) ≤

⋅ ⋅ ⋅ ≤ ‖𝑈
0
‖𝐿2(Ω).Thenusing this result, by Lemma 7,we obtain

(

Δ𝑡
−𝛼

(1 + (1 − 𝛼) (𝑗 + 1)
−𝛼
)

2Γ (2 − 𝛼)

+

𝑠

∑

𝑖=1

𝑎𝑖

Δ𝑡
−𝛼𝑖

2Γ (2 − 𝛼𝑖)
(1 + (1 − 𝛼𝑖) (𝑗 + 1)

−𝛼𝑖
))

󵄩󵄩󵄩󵄩󵄩
𝑈

𝑗+1󵄩󵄩󵄩󵄩󵄩

2

𝐿2(Ω)

≤ (

Δ𝑡
−𝛼

(1 − (1 − 𝛼) (𝑗 + 1)
−𝛼
)

2Γ (2 − 𝛼)

+

𝑠

∑

𝑖=1

𝑎𝑖

Δ𝑡
−𝛼𝑖

2Γ (2 − 𝛼𝑖)
(1−(1−𝛼𝑖) (𝑗+1)

−𝛼𝑖
))

󵄩󵄩󵄩󵄩󵄩
𝑈

0󵄩󵄩󵄩󵄩󵄩

2

𝐿2(Ω)
.

(45)

Here 0 < 1 − 𝛼 < 1. After squaring at both sides of the
above inequality, we obtain ‖𝑈

𝑗+1
‖𝐿2(Ω) ≤ ‖𝑈

0
‖𝐿2(Ω).

6. Numerical Experiments

In this section, we present the numerical examples of MT-
FPDEs to demonstrate the effectiveness of our theoretical
analysis. The main purpose is to check the convergence
behavior of numerical solutions with respect to Δ𝑡 and Δ𝑥,
which have been shown in Theorem 4 and Theorem 6. It is
noted that the method in [29] is a special case of the method
in our paper for fractional partial differential equation with
single fractional order. So, we just need to compare FEM in
our paper with other existing methods in [8, 28].

Example 9. For 𝑡 ∈ [0, 𝑇], 𝑥 ∈ (0, 1), consider theMT-FPDEs
with two variables as follows:

𝐶

0
𝐷

𝛼

𝑡
𝑢 (𝑡, 𝑥) +

𝐶

0𝐷
𝛽

𝑡
𝑢 (𝑡, 𝑥) − 𝜕

2

𝑥
𝑢 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) ,

𝑢 (0, 𝑥) = 0, 𝑥 ∈ (0, 1) ,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) = 0, 𝑡 ∈ [0, 𝑇] ,

(46)
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Figure 1:𝐻1-norm and 𝐿2-norm of errors for (46) with 𝛼 = 0.9, 𝛽 = 0.5, Δ𝑥 = 0.001 (a), and Δ𝑡 = 0.001 (b).
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Figure 2:𝐻1-norm and 𝐿2-norm of errors for (46) with 𝛼 = 0.5, 𝛽 = 0.25, Δ𝑥 = 0.001 (a), and Δ𝑡 = 0.001 (b).

where the right-side function 𝑓(𝑡, 𝑥) = (2𝑡
2−𝛼

/Γ(3 −

𝛼)) sin(2𝜋𝑥)+(2𝑡2−𝛽/Γ(3−𝛽)) sin(2𝜋𝑥)+4𝜋2 sin(2𝜋𝑥)𝑡2.The
exact solution is 𝑢(𝑡, 𝑥) = 𝑡

2 sin(2𝜋𝑥).
We use this example to check the convergence rate (c.

rate) and CPU time (CPUT) of numerical solutions with
respect to the fractional orders 𝛼 and 𝛽.

In the first test, we fix 𝑇 = 1, 𝛼 = 0.9 and 𝛽 = 0.5 and
choose Δ𝑥 = 0.001which is small enough such that the space
discretization errors are negligible as compared with the time
errors. Choosing Δ𝑡 = 1/2

𝑖 (𝑖 = 2, 4, . . . , 7), we report that
the convergence rate of FDM in time is nearly 1.15 in Table 1,
which matches well with the result of Theorem 4. On the

other hand, Table 2 shows that an approximate convergence
rate is 2, by fixing Δ𝑡 = 0.001 and choosing Δ𝑥 = 1/2

𝑖 (𝑖 =
2, . . . , 6), which matches well with the result ofTheorem 6. In
the second test, we give the convergence rate when 𝛼 = 0.5,
𝛽 = 0.25 for Δ𝑡 in Table 3, and Δ𝑥 in Table 4, respectively. We
also report the 𝐿2-norm and 𝐻

1-norm of errors in Figures 1
and 2, respectively.

Fixing Δ𝑥 = 0.001, 𝛼 = 0.9, and 𝛽 = 0.3 in (46),
we compare the error and CPUT calculated by the FEM
in this paper with the FDM in [8] and the FPCM in [8].
From Table 5, it can be seen that the FEM in this paper is
computationally effective.
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Table 1: Convergence rate in time for (46) with 𝛼 = 0.9 and 𝛽 = 0.5.

Δ𝑥 Δ𝑡 𝐻
1-norm 𝐿2-norm c. rate CPUT (seconds)

0.001 1/4 1.3815 × 10
−2 1.8960 × 10

−3 0.214
0.001 1/16 6.1890 × 10

−3 8.4939 × 10
−4 1.1585 0.357

0.001 1/32 2.7858 × 10
−3 3.8234 × 10

−4 1.1516 0.736
0.001 1/64 1.2571 × 10

−3 1.7252 × 10
−4 1.1481 1.438

0.001 1/128 5.6567 × 10
−4 7.7635 × 10

−5 1.1520 2.922

Table 2: Convergence rate in space for (46) with 𝛼 = 0.9 and 𝛽 = 0.5.

Δ𝑡 Δ𝑥 𝐻
1-norm 𝐿2-norm c. rate CPUT (seconds)

0.001 1/4 0.2294 3.0611 × 10
−2 20.35

0.001 1/16 5.9763 × 10
−2 8.0381 × 10

−3 1.9291 21.85
0.001 1/32 1.5067 × 10

−2 2.0442 × 10
−3 1.9753 26.68

0.001 1/64 3.7356 × 10
−3 5.0966 × 10

−4 2.0039 32.72
0.001 1/128 8.9129 × 10

−4 1.2198 × 10
−4 2.0629 41.03

Table 3: Convergence rate in time for (46) with 𝛼 = 0.5 and 𝛽 = 0.25.

Δ𝑥 Δ𝑡 𝐻
1-norm 𝐿2-norm c. rate CPUT (seconds)

0.001 1/4 3.0985 × 10
−3 4.2525 × 10

−4 0.218
0.001 1/16 1.0789 × 10

−3 1.4807 × 10
−4 1.5221 0.413

0.001 1/32 3.6702 × 10
−4 5.0372 × 10

−5 1.5556 0.921
0.001 1/64 1.1772 × 10

−4 1.6156 × 10
−5 1.6406 1.855

0.001 1/128 3.0704 × 10
−5 4.2139 × 10

−6 1.6388 3.783

Table 4: Convergence rate in space for (46) with 𝛼 = 0.5 and 𝛽 = 0.25.

Δ𝑡 Δ𝑥 𝐻
1-norm 𝐿2-norm c. rate CPUT (seconds)

0.001 1/4 2.3325 × 10
−1 3.1119 × 10

−2 23.73
0.001 1/16 6.0836 × 10

−2 8.1823 × 10
−3 1.9272 26.29

0.001 1/32 1.5382 × 10
−2 2.0870 × 10

−3 1.9711 33.49
0.001 1/64 3.8569 × 10

−3 5.2622 × 10
−4 1.9877 41.68

0.001 1/128 9.6378 × 10
−4 1.3189 × 10

−4 1.9963 55.24

Table 5: Comparison of error and CPUT for (46) with 𝛼 = 0.9 and 𝛽 = 0.3.

Δ𝑥 Δ𝑡
FEM FDM [8] FPCM [8]

Error CPUT Error CPUT Error CPUT
0.001 1/4 3.7056 × 10

−3 0.238 5.8723 × 10
−3 0.897 2.2027 × 10

−2 6.16
0.001 1/8 1.6794 × 10

−3 0.481 2.6751 × 10
−3 1.837 8.7467 × 10

−3 16.63
0.001 1/16 7.6528 × 10

−4 0.962 1.2159 × 10
−3 3.512 3.4693 × 10

−3 30.11
0.001 1/32 3.5009 × 10

−4 1.335 5.5190 × 10
−4 7.001 1.3765 × 10

−3 52.71
0.001 1/64 1.6027 × 10

−4 2.703 2.4997 × 10
−4 14.45 5.4564 × 10

−4 106.49

Table 6: Comparison of error, convergence rate, and CPUT for (47) with 𝛼 = 0.5 and 𝛽 = 0.3.

Δ𝑡
DFBDM (Section 3) FEM2 [28]

Error c. rate CPUT Error c. rate CPUT
1/4 9.1975 × 10

−4 0.000864 3.6606 × 10
−3 0.001862

1/8 3.3037 × 10
−4 1.4772 0.001986 7.8173 × 10

−3 2.2274 0.004902
1/16 1.1375 × 10

−4 1.5382 0.004649 1.6210 × 10
−4 2.2697 0.051816

1/32 3.5112 × 10
−5 1.6958 0.012112 3.2629 × 10

−4 2.3127 0.518130
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Example 10. Consider the following multierm fractional dif-
ferential problem:

𝐶

0𝐷
𝛼

𝑡
𝑢 (𝑡) + 𝑡

−0.2 𝐶

0𝐷
𝛽

𝑡
𝑢 (𝑡) = 𝑓 (𝑡) , 𝑢 (0) = 0, (47)

where 𝑓(𝑡) = (4𝑡
1.5
/Γ(2.5)) + (12𝑡

2
/Γ(3.5)). For 𝛼 = 0.5 and

𝛽 = 0.3, the exact solution is 𝑢(𝑡) = 𝑡
2
+ 𝑡

2.5.
For the problem (47), our method in this paper is just the

DFBDM in Section 3. Therefore, we only need to compare
M1 with the FEM in [28] (FEM2). In Table 6, although the
convergence rate of FEM2 is higher than that of DFBDM, the
error and CPUT of DFBDM are smaller than those of FEM2.
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