
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 875965, 8 pages
http://dx.doi.org/10.1155/2013/875965

Research Article
Chaotic Motions in the Real Fuzzy Electronic Circuits

Shih-Yu Li,1,2 Cheng-Hsiung Yang,3 Chin-Teng Lin,2,4 Li-Wei Ko,1,2 and Tien-Ting Chiu5

1 Department of Biological Science and Technology, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan
2 Brain Research Center, National Chiao Tung University, Hsinchu, Taiwan
3Department of Automatic Control, National Taiwan University of Science and Technology, Taipei City, Taiwan
4 Institute of Electrical Control Engineering, National Chiao Tung University, Hsinchu, Taiwan
5Department of Industrial and Systems Engineering, Chung Yuan Christian University, Chung-Li, Taiwan

Correspondence should be addressed to Shih-Yu Li; agenghost@gmail.com

Received 26 October 2012; Accepted 30 December 2012

Academic Editor: Chuandong Li

Copyright © 2013 Shih-Yu Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fuzzy electronic circuit (FEC) is firstly introduced, which is implementing Takagi-Sugeno (T-S) fuzzy chaotic systems on electronic
circuit. In the research field of secure communications, the original source should be blended with other complex signals. Chaotic
signals are one of the good sources to be applied to encrypt high confidential signals, because of its high complexity, sensitiveness
of initial conditions, and unpredictability. Consequently, generating chaotic signals on electronic circuit to produce real electrical
signals applied to secure communications is an exceedingly important issue. However, nonlinear systems are always composed of
many complex equations and are hard to realize on electronic circuits. Takagi-Sugeno (T-S) fuzzy model is a powerful tool, which
is described by fuzzy IF-THEN rules to express the local dynamics of each fuzzy rule by a linear system model. Accordingly, in
this paper, we produce the chaotic signals via electronic circuits through T-S fuzzy model and the numerical simulation results
provided by MATLAB are also proposed for comparison. T-S fuzzy chaotic Lorenz and Chen-Lee systems are used for examples
and are given to demonstrate the effectiveness of the proposed electronic circuit.

1. Introduction

Nonlinear dynamics, commonly called the chaos theory,
changes the scientific way of looking at the dynamics of
natural and social systems,which has been intensively studied
over the past several decades [1–10]. The phenomenon of
chaos has attracted widespread attention amongst mathema-
ticians, physicists, and engineers and has also been exten-
sively studied in many fields, such as chemical reactions
[11, 12], biological systems [13, 14], information processing
[15, 16], and secure communications [17–20].

Themathematicalmeteorologist Lorenz discovered chaos
in a simple system of three autonomous ordinary differential
equations in order to describe the simplifiedRayleigh-Bénard
problem [21] in 1963 which is the most popular system for
studying [22–26]. Chen and Lee reported a new chaotic
system [27] in 2004, which is now called the Chen-Lee system
[28]. The chaotic Chen-Lee system was developed based on

the Euler equations for themotion of rigid body. It was proved
that this system is the governing set of equations for gyromo-
tion with feedback control. Recently, studies were conducted
on this system to explore its dynamic behavior, including the
fractional order behavior, the generation of hyperchaos and
perturbation analysis, the control and anti-control of chaos,
and the synchronization [29, 30].

Since the fuzzy set theory [31] and the fuzzy logic [32]
were initiated by Zadeh in 1965 and 1973, fuzzy logic has
received much attention as a powerful tool for the nonlinear
filed. Among various kinds of fuzzy methods, Takagi-Sugeno
fuzzy system is widely accepted as a tool for design and analy-
sis of fuzzy control system [33].TheT-S fuzzymodel proposes
a successful method to deal with certain complex nonlinear
systems via some local linear subsystems. There are plenty
of researches using the Takagi-Sugeno (T-S) fuzzy model to
represent typical chaotic models and then apply some effec-
tive fuzzy techniques [34–42]. However, there are still no real
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experimental models in electronic circuit for Takagi-Sugeno
(T-S) fuzzy-based chaotic systems. In this paper, we carry out
the powerful tool, Takagi-Sugeno (T-S) fuzzy model, in elec-
tronic circuit and show good agreement between computer
simulations in MATLAB and experimental results in our
circuits.

The layout of the rest of the paper is as follows. In
Section 2, the Takagi-Sugeno fuzzy model is introduced. In
Section 3, experimental results and configurations in elec-
tronic circuits for T-S fuzzy chaotic Lorenz and Chen-Lee
systems are presented. In Section 4, conclusions are given.

2. Takagi-Sugeno Fuzzy Model

In system analysis and design, it is important to select an
appropriate model representing a real system. As an expres-
sion model of a real plant, we use the fuzzy implications and
the fuzzy reasoning method suggested by Takagi and Sugeno.
The Takagi-Sugeno (T-S) fuzzy model is described by fuzzy
IF-THEN rules which represent local linear input-output
relations of a nonlinear system. The main feature of the T-
S fuzzy model is to express the local dynamics of each fuzzy
rule by a linear system model.

The overall fuzzymodel of the system is achieved by fuzzy
blending of the linear systemmodels. Consider a continuous-
time nonlinear dynamic system as follows.

Rule i:
IF 𝑥
1
(𝑡) is 𝑀

𝑖1
⋅ ⋅ ⋅ and 𝑥

𝑛
(𝑡) is 𝑀

𝑖𝑛

THEN 𝑥̇ (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) ,

(1)

where

𝑥 (𝑡) = [𝑥
1
(𝑡) , 𝑥
2
(𝑡) , . . . , 𝑥

𝑛
(𝑡)]
𝑇
,

𝑢 (𝑡) = [𝑢
1
(𝑡) , 𝑢
2
(𝑡) , . . . , 𝑢

𝑛
(𝑡)]
𝑇

,

(2)

𝑖 = 1, 2, . . . , 𝑟 (𝑟 is the number of IF-THEN rules), 𝑀
𝑖𝑗
are

fuzzy sets, and 𝑥(𝑡) = 𝐴
𝑖
𝑥(𝑡) + 𝐵

𝑖
𝑢(𝑡) is the output from the

𝑖th IF-THEN rule. Given a pair of (𝑥(𝑡), 𝑢(𝑡)), the final output
of the fuzzy system is inferred as follows:

𝑥̇ =

∑
𝑟

𝑖=1
𝜔
𝑖
(𝑥 (𝑡)) {𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡)}

∑
𝑟

𝑖=1
𝜔
𝑖
(𝑥 (𝑡))

, (3)

where

𝜔
𝑖
(𝑥 (𝑡)) =

𝑛

∏

𝑗=1

𝑀
𝑖𝑗
(𝑥 (𝑡)) , (4)

for all 𝑡, and 𝑀
𝑖𝑗
(𝑥(𝑡)) is the grade of membership 𝑥

𝑗
(𝑡) of

in 𝑀
𝑖𝑗
.

The open-loop system of (3) is

𝑥̇ =

∑
𝑟

𝑖=1
𝜔
𝑖
(𝑥 (𝑡)) 𝐴

𝑖
𝑥 (𝑡)

∑
𝑟

𝑖=1
𝜔
𝑖
(𝑥 (𝑡))

, (5)

where it is assumed that
𝑟

∑

𝑖=1

𝜔
𝑖
(𝑥 (𝑡)) > 0, 𝜔

𝑖
(𝑥 (𝑡)) ≥ 0, 𝑖 = 1, 2, . . . , 𝑟. (6)

By introducing ℎ
𝑖
(𝑥(𝑡)) = 𝜔

𝑖
(𝑥(𝑡))/∑

𝑟

𝑖=1
𝜔
𝑖
(𝑥(𝑡)) instead of

𝜔
𝑖
(𝑥(𝑡)), (3) and (5) can be rewritten as

𝑥̇ =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑥 (𝑡)) {𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡)} ,

𝑥̇ =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑥 (𝑡)) 𝐴

𝑖
𝑥 (𝑡) .

(7)

Note that
𝑟

∑

𝑖=1

ℎ
𝑖
(𝑥 (𝑡)) = 1, ℎ

𝑖
(𝑥 (𝑡)) ≥ 0, 𝑖 = 1, 2, . . . , 𝑟, (8)

for all 𝑡. ℎ
𝑖
(𝑥(𝑡)) can be regarded as the normalized weight of

the IF-THEN rules.

3. Implementation of T-S Fuzzy Systems on
Electronic Circuit

This section shows the electronic circuit implementations of
the T-S fuzzy model of classical Lorenz system and Chen-Lee
system. The experimental results are going to be compared
with the simulation results given by MATLAB.

3.1. FuzzyModeling of Lorenz System. For Lorenz system [21],

𝑥̇
1
= 𝑎 (𝑥

2
− 𝑥
1
) ,

𝑥̇
2
= 𝑐𝑥
1
− 𝑥
1
𝑥
3
− 𝑥
2
,

𝑥̇
3
= 𝑥
1
𝑥
2
− 𝑏𝑥
3
,

(9)

where 𝑎, 𝑏, 𝑐 are the parameters. When 𝑎 = 10, 𝑏 = 8/3, 𝑐 =
28, and initial states are (−0.1, 0.2, 0.3), the dynamic behavior
is chaotic. Assume that 𝑥

1
∈ [−𝑑, 𝑑] and 𝑑 > 0, then Lorenz

system can be exactly represented by T-S fuzzy model as
follows [43].

Rule 1:

IF 𝑥 is 𝑀
1
,

THEN 𝑋̇ (𝑡) = 𝐴
1
𝑋 (𝑡) .

(10)

Rule 2:

IF 𝑥 is 𝑀
2
,

THEN 𝑋̇ (𝑡) = 𝐴
2
𝑋 (𝑡) ,

(11)

where

𝑋 = [𝑥
1
, 𝑥
2
, 𝑥
3
]
𝑇
,

𝐴
1
=
[

[

−𝑎 𝑎 0

𝑐 −1 −𝑑

0 𝑑 −𝑏

]

]

, 𝐴
2
=
[

[

−𝑎 𝑎 0

𝑐 −1 𝑑

0 −𝑑 −𝑏

]

]

,

𝑀
1
(𝑥) =

1

2

(1 +

𝑥
1

𝑑

) , 𝑀
2
(𝑥) =

1

2

(1 −

𝑥
1

𝑑

) .

(12)
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Figure 1: The fuzzy electronic circuit for chaotic Lorenz system.

Choosing 𝑑 = 30, 𝑀
1
and𝑀

2
are fuzzy sets of Lorenz

system. Here, we call (10) the first linear subsystem under
the fuzzy rule and (11) the second linear subsystem under
the fuzzy rule. The final output of the fuzzy Lorenz system
is inferred as follows:

𝑋̇ (𝑡) =

2

∑

𝑖=1

ℎ
𝑖
𝐴
𝑖
𝑋(𝑡)

=
[

[

[

ℎ
1

ℎ
1

ℎ
1

]

]

]

𝑇

[

[

[

𝑎 (𝑥
2
− 𝑥
1
)

𝑐𝑥
1
− 𝑑𝑥
3
− 𝑥
2

𝑑𝑥
2
− 𝑏𝑥
3

]

]

]

+
[

[

[

ℎ
2

ℎ
2

ℎ
2

]

]

]

𝑇

[

[

[

𝑎 (𝑥
2
−𝑥
1
)

𝑐𝑥
1
+𝑑𝑥
3
− 𝑥
2

−𝑑𝑥
2
−𝑏𝑥
3

]

]

]

,

(13)

where

ℎ
1
=

𝑀
1

𝑀
1
+𝑀
2

, ℎ
2
=

𝑀
2

𝑀
1
+𝑀
2

. (14)

The configuration of electronic circuit in T-S fuzzy
chaotic Lorenz system is shown in Figure 1 and the chaotic
behaviors in circuit and MATLAB are shown in Figures 2
and 3. It can be found out that the experimental result in our
circuit is actually effective. Itmeans that the nonlinear chaotic
systems can be represented by real operations in electronic
circuits, not just existing in simulation results.

3.2. Fuzzy Modeling of Chen-Lee System. For Chen-Lee sys-
tem,

̇𝑦
1
= − 𝑦
2
𝑦
3
+ 𝑎
1
𝑦
1
,

̇𝑦
2
= 𝑦
1
𝑦
3
+ 𝑏
1
𝑦
2
,

̇𝑦
3
= 𝑦
1
𝑦
2
/3 + 𝑐

1
𝑦
3
,

(15)

where 𝑎
1
, 𝑏
1
, and 𝑐 are the parameters. When 𝑎

1
= 5,

𝑏
1
= −10, 𝑐

1
= −38, and initial states are (0.2, 0.2, 0.2), the

dynamic behavior is chaotic. Assume that 𝑦
1
∈ [−𝑑

1
, 𝑑
1
],

𝑦
2
∈ [−𝑒

1
, 𝑒
1
], and 𝑑

1
> 0, 𝑒

1
> 0, then Chen-Lee system

can be exactly represented by T-S fuzzy model as follows.
Rule 1: IF 𝑦

1
is 𝑃
1
and IF 𝑦

2
is 𝑄
1
, THEN

𝑌̇ (𝑡) = 𝐵
1
𝑌 (𝑡) . (16)

Rule 2: IF 𝑦
1
is 𝑃
1
and IF 𝑦

2
is 𝑄
2
, THEN

𝑌̇ (𝑡) = 𝐵
2
𝑌 (𝑡) . (17)

Rule 3: IF 𝑦
1
is 𝑃
2
and IF 𝑦

2
is 𝑄
1
, THEN

𝑌̇ (𝑡) = 𝐵
3
𝑌 (𝑡) . (18)

Rule 4: IF 𝑦
1
is 𝑃
2
and IF 𝑦

2
is 𝑄
2
, THEN

𝑌̇ (𝑡) = 𝐵
4
𝑌 (𝑡) , (19)



4 Abstract and Applied Analysis

−50 −30 −10 10 30 50
𝑥1

Voltage (V)

−30

−20

−10

0

10

20

30

−30

−20

−10

0

10

20

30

Vo
lta

ge
 (V

)
𝑥
2

T-S Lorenz

(a)

−50 −30 −10 10 30 50
𝑥1

Voltage (V)

Vo
lta

ge
 (V

)

−30

−20

−10

0

10

20

30

−30

−20

−10

0

10

20

30

𝑥
3

T-S Lorenz

(b)

Figure 2: Projection of phase portraits outputs in fuzzy electronic circuit for the Lorenz system.
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Figure 3: Projection of phase portraits in MATLAB for fuzzy chaotic Lorenz system.

where
𝑌 = [𝑦

1
, 𝑦
2
, 𝑦
3
]
𝑇

,

𝐵
1
=
[

[

[

𝑎 0 −𝑒

0 𝑏 𝑑

0

1

3

𝑑 𝑐

]

]

]

, 𝐵
2
=
[

[

[

𝑎 0 𝑒

0 𝑏 𝑑

0

1

3

𝑑 𝑐

]

]

]

,

𝐵
1
=
[

[

[

𝑎 0 −𝑒

0 𝑏 −𝑑

0 −

1

3

𝑑 𝑐

]

]

]

, 𝐵
2
=
[

[

[

𝑎 0 𝑒

0 𝑏 −𝑑

0 −

1

3

𝑑 𝑐

]

]

]

,

𝑃
1
(𝑦) =

1

2

(1 +

𝑦
1

𝑑
1

) , 𝑃
2
(𝑦) =

1

2

(1 −

𝑦
1

𝑑
1

) ,

𝑄
1
(𝑦) =

1

2

(1 +

𝑦
2

𝑒
1

) , 𝑄
2
(𝑦) =

1

2

(1 −

𝑦
2

𝑒
1

) .

(20)

Choose 𝑑
1
= 40 and 𝑒

1
= 30. 𝑁

1
and 𝑁

2
are fuzzy sets of

Chen-Lee system. Here, we call (16) the first linear subsystem

under the fuzzy rule and (17) the second linear subsystem
under the fuzzy rule. The final output of the fuzzy Chen-Lee
system is inferred as follows:

̇
𝑍 (𝑡) =

2

∑

𝑖=1

𝐼
𝑖
𝐵
𝑖
𝑍 (𝑡)

=
[

[

[

𝐼
1

𝐼
1

𝐼
1

]

]

]

𝑇

[

[

[

−𝑒
1
𝑦
3
+ 𝑎
1
𝑦
1

𝑑
1
𝑦
3
+ 𝑏
1
𝑦
2

𝑑
1
𝑦
2
/3 + 𝑐

1
𝑦
3

]

]

]

+
[

[

[

𝐼
2

𝐼
2

𝐼
2

]

]

]

𝑇

[

[

[

𝑒
1
𝑦
3
+ 𝑎
1
𝑦
1

𝑑
1
𝑦
3
+ 𝑏
1
𝑦
2

𝑑
1
𝑦
2
/3 + 𝑐

1
𝑦
3

]

]

]

+
[

[

[

𝐼
3

𝐼
3

𝐼
3

]

]

]

𝑇

[

[

[

−𝑒
1
𝑦
3
+ 𝑎
1
𝑦
1

−𝑑
1
𝑦
3
+ 𝑏
1
𝑦
2

−𝑑
1
𝑦
2
/3 + 𝑐

1
𝑦
3

]

]

]

+
[

[

[

𝐼
4

𝐼
4

𝐼
4

]

]

]

𝑇

[

[

[

𝑒
1
𝑦
3
+ 𝑎
1
𝑦
1

−𝑑
1
𝑦
3
+ 𝑏
1
𝑦
2

−𝑑
1
𝑦
2
/3 + 𝑐

1
𝑦
3

]

]

]

,

(21)
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Figure 4: The fuzzy electronic circuit for chaotic Chen-Lee system.
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Figure 5: Projection of phase portraits outputs in fuzzy electronic circuit for Chen-Lee system.
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=
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(22)

The configuration of electronic circuit in T-S fuzzy
chaotic Chen-Lee system is shown in Figure 4 and the chaotic
behaviors in circuit and MATLAB are shown in Figures 5
and 6. This experimental result in T-S fuzzy chaotic Chen-
Lee system is exactly effective as well.

Two illustrations given in Sections 3.1 and 3.2 all show
the agreement between our experimental and MATLAB
simulation results. It means the T-S fuzzy model would
no longer be just a mathematical tool, it can be applied
to electronic circuits for various kinds of applications in
practice.

4. Conclusions

The implementations of Takagi-Sugeno (T-S) fuzzy chaotic
systems on electronic circuits are proposed in this paper.
We construct the powerful tool, Takagi-Sugeno (T-S) fuzzy

model, on electronic circuit and show good agreement
between computer simulations in MATLAB and experimen-
tal results in our circuits. Through our effort, the powerful
Takagi-Sugeno (T-S) method is more than just a numerical
strategy, it can be applied to electronic circuits for vari-
ous kinds of applications in practice. Implementations of
electronic circuits for Takagi-Sugeno (T-S) fuzzy chaotic
systems are only the beginning for secure communication
and other kinds of applications, this paper also creates
both opportunities and challenges. Implementations of novel
synchronization or control approaches on electronic circuits
in nonlinear research filed would be definitely our future
directions to achieve.
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