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We present a new reversed version of a generalized sharp Hölder’s inequality which is due to Wu and then give a new refinement
of Hölder’s inequality. Moreover, the obtained result is used to improve the well-known Popoviciu-Vasić inequality. Finally, we
establish the time scales version of Beckenbach-type inequality.

1. Introduction

The classical Hölder’s inequality states that if 𝑎𝑘 ≥ 0, 𝑏𝑘 ≥
0 (𝑘 = 1, 2, . . . , 𝑛), 𝑝 > 1, and 1/𝑝 + 1/𝑞 = 1, then

𝑛

∑

𝑘=1

𝑎𝑘𝑏𝑘 ≤ (

𝑛

∑

𝑘=1

𝑎
𝑝

𝑘
)

1/𝑝

(

𝑛

∑

𝑘=1

𝑏
𝑞

𝑘
)

1/𝑞

. (1)

The inequality is reversed for 𝑝 < 1 (𝑝 ̸= 0), (for 𝑝 < 0, we
assume that 𝑎𝑘, 𝑏𝑘 > 0).

As is well known, Hölder’s inequality plays an important
role in different branches of modern mathematics such as
classical real and complex analysis, probability and statistics,
numerical analysis, and qualitative theory of differential
equations and their applications. Various refinements, gen-
eralizations, and applications of inequality (1) and its series
analogues in different areas of mathematics have appeared
in the literature. For example, Abramovich et al. [1] pre-
sented a new generalization of Hölder’s inequality and its
reversed version in discrete and integral forms. Ivanković et
al. [2] presented the properties of several mappings which
have arisen from the Minkowski inequality and then gave
some refinements of the Hölder inequality. Liu [3] obtained
Hölder’s inequality in fuzzy set theory and rough set theory.
Nikolova and Varošanec [4] obtained some new refinements
of the classical Hölder inequality by using a convex function.

For detailed expositions, the interested readermay consult [1–
18] and the references therein.

Among various refinements of (1), Hu in [9] established
the following interesting sharpness of Hölder’s inequality.

Theorem A. Let 𝑝 ≥ 𝑞 > 0, 1/𝑝 + 1/𝑞 = 1, let 𝐴𝑛, 𝐵𝑛 ≥ 0,
∑
𝑛
𝐴
𝑝

𝑛
< ∞, and∑

𝑛
𝐵
𝑞

𝑛
< ∞, and let 1−𝑒𝑛+𝑒𝑚 ≥ 0,∑

𝑛
|𝑒𝑛| <

∞. Then,

∑

𝑛
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𝑞

𝑛
)
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𝑛
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𝑛

𝐴
𝑝

𝑛
)]

2

− [(∑

𝑛

𝐵
𝑞

𝑛
𝑒𝑛)(∑

𝑛

𝐴
𝑝

𝑛
)

− (∑

𝑛

𝐵
𝑞

𝑛
)(∑

𝑛

𝐴
𝑝

𝑛
𝑒𝑛)]

2

}

1/2𝑝

.

(2)

In 2007, Wu [18] presented the generalization of Hu’s
result as follows.
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Theorem B. Let 𝐴𝑟 ≥ 0,𝐵𝑟 > 0 (𝑟 = 1, 2, . . . , 𝑛), let 1 − 𝑒𝑟 +

𝑒𝑠 ≥ 0 (𝑟, 𝑠 = 1, 2, . . . , 𝑛), and let 𝑝 ≥ 𝑞 > 0, 𝜇 = min{1/𝑝 +

1/𝑞, 1}. Then,

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟 ≤ 𝑛
1−𝜇

(
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2
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− (
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∑
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∑
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𝐴
𝑝

𝑟
𝑒𝑟)]

2

}

1/2𝑝

.

(3)

Theorem C. Let 𝑓(𝑥), 𝑔(𝑥), and 𝑒(𝑥) be integrable functions
defined on [𝑎, 𝑏] and 𝑓(𝑥) ≥ 0, 𝑔(𝑥) > 0, 1 − 𝑒(𝑥) + 𝑒(𝑦) ≥ 0

for all 𝑥, 𝑦 ∈ [𝑎, 𝑏], and let 𝑝 ≥ 𝑞 > 0, 1/𝑝 + 1/𝑞 ≤ 1. Then,

∫

𝑏

𝑎

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥

≤ (𝑏 − 𝑎)
1−1/𝑝−1/𝑞

(∫

𝑏

𝑎

𝑔
𝑞
(𝑥) 𝑑𝑥)
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(𝑥) 𝑑𝑥∫

𝑏
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𝑝
(𝑥) 𝑑𝑥)

2
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𝑔
𝑞
(𝑥) 𝑒 (𝑥) 𝑑𝑥∫

𝑏

𝑎

𝑓
𝑝
(𝑥) 𝑑𝑥
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𝑏

𝑎

𝑔
𝑞
(𝑥) 𝑑𝑥∫

𝑏

𝑎

𝑓
𝑝
(𝑥) 𝑒 (𝑥) 𝑑𝑥)

2

]

1/2𝑝

.

(4)

Recently, Tian in [13] proved the following reversed
versions of inequalities (3) and (4).

Theorem D. Let 𝐴𝑟 > 0, 𝐵𝑟 > 0 (𝑟 = 1, 2, . . . , 𝑛), let 1 −

𝑒𝑟 + 𝑒𝑠 ≥ 0 (𝑟, 𝑠 = 1, 2, . . . , 𝑛), and let 𝑞 < 0, 1/𝑝 + 1/𝑞 ≥ 0,
𝜇 = max{1/𝑝 + 1/𝑞, 1}, 𝜆 = max{1/𝑞, −1}. Then,

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟 ≤ 𝑛
1−𝜇

(

𝑛

∑
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𝑝

𝑟
)

1/𝑝

(
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∑
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𝑞
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1/𝑞

× [1 − (

∑
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∑
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∑
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𝜆/2
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(5)

Theorem E. Let 𝑓(𝑥), 𝑔(𝑥), and 𝑒(𝑥) be integrable func-
tions defined on [𝑎, 𝑏] and 𝑓(𝑥) > 0, 𝑔(𝑥) > 0, and

1 − 𝑒(𝑥) + 𝑒(𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ [𝑎, 𝑏], and let 𝑞 < 0, 1/𝑝 +

1/𝑞 ≥ 1, 𝜆 = max{−1, 1/𝑞}. Then,

∫

𝑏

𝑎

𝑓 (𝑥) 𝑔 (𝑥) d𝑥 ≥ (𝑏 − 𝑎)
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1/𝑝
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×
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∫
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𝑎
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𝑎
𝑔
𝑞
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)

2

]

]

]

𝜆/2

.

(6)

The aim of this paper is to give new reversed versions of
(3) and (4).Moreover, two applications of the obtained results
are presented. The rest of this paper is organized as follows.
In Section 2, we present reversed versions of (3) and (4).
Moreover, we give a new refinement of Hölder’s inequality.
In Section 3, we apply the obtained result to improve the
Popoviciu-Vasić inequality. Furthermore, we establish the
time scales version of Beckenbach-type inequality.

2. A New Reversed Version of a Generalized
Sharp Hölder’s Inequality

In order to prove the main results, we need the following
lemmas.

Lemma 1 (see, e.g., [11, page 12]). Let 𝐴𝑘𝑗 > 0 (𝑗 =

1, 2, . . . , 𝑚, 𝑘 = 1, 2, . . . , 𝑛), ∑𝑚
𝑗=1

1/𝑝𝑗 ≤ 1. If 𝑝1 > 0, 𝑝𝑗 <
0 (𝑗 = 2, 3, . . . , 𝑚), then

𝑛

∑

𝑘=1

𝑚

∏

𝑗=1

𝐴𝑘𝑗 ≥

𝑚

∏

𝑗=1

(

𝑛

∑

𝑘=1

𝐴

𝑝𝑗

𝑘𝑗
)

1/𝑝𝑗

. (7)

Lemma 2 (see [19, page 12]). If 𝑥 > −1, 𝛼 ≥ 1, or 𝛼 < 0, then

(1 + 𝑥)
𝛼
≥ 1 + 𝛼𝑥. (8)

The inequality is reversed for 0 < 𝛼 ≤ 1.

Lemma 3 (see [7, page 27]). If 𝑥𝑖 ≥ 0, 𝜆𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑛,
and 0 < 𝑝 ≤ 1, then

𝑛

∑

𝑖=1

𝜆𝑖𝑥
𝑝

𝑖
≤ (

𝑛

∑

𝑖=1

𝜆𝑖)

1−𝑝

(

𝑛

∑

𝑖=1

𝜆𝑖𝑥𝑖)

𝑝

. (9)

The inequality is reversed for 𝑝 ≥ 1 or 𝑝 < 0.

Next, we give a reversed version of inequality (3) as
follows.
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Theorem 4. Let 𝐴𝑟 ≥ 0,𝐵𝑟 > 0 (𝑟 = 1, 2, . . . , 𝑛), let 1 − 𝑒𝑟 +

𝑒𝑠 ≥ 0 (𝑟, 𝑠 = 1, 2, . . . , 𝑛), and let 𝑞 < 0, 𝑝 > 0, 𝜌 = max{1/𝑝 +
1/𝑞, 1}. Then,

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟 ≥ 𝑛
1−𝜌

(

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
)

1/𝑝−1/𝑞

× {[(

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
)(

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟
)]

2

− [(

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
𝑒𝑟)(

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟
)

− (

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
)(

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟
𝑒𝑟)]

2

}

1/2𝑞

.

(10)

Proof. We first consider the case (I) 1/𝑝 + 1/𝑞 ≤ 1. On one
hand, performing some simple computations, we have

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟

𝑛

∑

𝑠=1

𝐴 𝑠𝐵𝑠 (1 − 𝑒𝑟 + 𝑒𝑠)

=

𝑛

∑

𝑠=1

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟𝐴 𝑠𝐵𝑠 −

𝑛

∑

𝑠=1

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟𝐴 𝑠𝐵𝑠𝑒𝑟

+

𝑛

∑

𝑠=1

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟𝐴 𝑠𝐵𝑠𝑒𝑠

= (

𝑛

∑

𝑘=1

𝐴𝑘𝐵𝑘)

2

.

(11)

On the other hand, by using inequality (9), we have

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟

𝑛

∑

𝑠=1

𝐴 𝑠𝐵𝑠(1 − 𝑒𝑟 + 𝑒𝑠)
1/𝑝+1/𝑞

=

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴𝑟𝐵𝑟𝐴 𝑠𝐵𝑠(1 − 𝑒𝑟 + 𝑒𝑠)
1/𝑝+1/𝑞

≤ (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴𝑟𝐵𝑟𝐴 𝑠𝐵𝑠)

1−1/𝑝−1/𝑞

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴𝑟𝐵𝑟𝐴 𝑠𝐵𝑠 (1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑝+1/𝑞

= (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴𝑟𝐵𝑟A𝑠𝐵𝑠)
1−1/𝑝−1/𝑞

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴𝑟𝐵𝑟𝐴 𝑠𝐵𝑠 −

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴𝑟𝐵𝑟𝐴 𝑠𝐵𝑠𝑒𝑟

+

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴𝑟𝐵𝑟𝐴 𝑠𝐵𝑠𝑒𝑠)

1/𝑝+1/𝑞

= (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴𝑟𝐵𝑟𝐴 𝑠𝐵𝑠)

1−1/𝑝−1/𝑞

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴𝑟𝐵𝑟𝐴 𝑠𝐵𝑠)

1/𝑝+1/𝑞

=

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴𝑟𝐵𝑟𝐴 𝑠𝐵𝑠 = (

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟)

2

.

(12)

By using inequality (7), we have

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟

𝑛

∑

𝑠=1

𝐴 𝑠𝐵𝑠(1 − 𝑒𝑟 + 𝑒𝑠)
1/𝑝+1/𝑞

≥

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟(

𝑛

∑

𝑠=1

𝐴
𝑝

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑝

×(

𝑛

∑

𝑠=1

𝐵
𝑞

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞

=

𝑛

∑

𝑟=1

[(

𝑛

∑

𝑠=1

𝐴
𝑝

𝑟
𝐴
𝑝

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑝−1/𝑞

× (

𝑛

∑

𝑠=1

𝐴
𝑝

𝑟
𝐵
𝑞

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞

× (

𝑛

∑

𝑠=1

𝐵
𝑞

𝑟
𝐴
𝑝

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞

] .

(13)

Consequently, according to (1/𝑝 − 1/𝑞) + 1/𝑞 + 1/𝑞 ≤ 1,
by using inequality (7) on the right side of (13), we observe
that

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟

𝑛

∑

𝑠=1

𝐴 𝑠𝐵𝑠(1 − 𝑒𝑟 + 𝑒𝑠)
1/𝑝+1/𝑞

≥ (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴
𝑝

𝑟
𝐴
𝑝

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑝−1/𝑞

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴
𝑝

𝑟
𝐵
𝑞

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐵
𝑞

𝑟
𝐴
𝑝

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞

= (

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
)

2/𝑝−2/𝑞
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× [(

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟

𝑛

∑

𝑠=1

𝐵
𝑞

𝑠
−

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
𝑒𝑟

𝑛

∑

𝑠=1

𝐵
𝑞

𝑠
+

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟

𝑛

∑

𝑠=1

𝐵
𝑞

𝑠
𝑒𝑠)

× (

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟

𝑛

∑

𝑠=1

𝐴
𝑝

𝑠
−

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟
𝑒𝑟

𝑛

∑

𝑠=1

𝐴
𝑝

𝑠
+

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟

𝑛

∑

𝑠=1

𝐴
𝑝

𝑠
𝑒𝑠)]

1/𝑞

= (

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
)

2/𝑝−2/𝑞

× {[(

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
)(

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟
)]

2

− [(

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
𝑒𝑟)(

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟
)−(

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
)(

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟
𝑒𝑟)]

2

}

1/𝑞

.

(14)

Combining inequalities (12) and (14) leads to inequality (10)
immediately.

Secondly, we consider the case (II) 1/𝑝 + 1/𝑞 ≥ 1. Let
1/𝑝 + 1/𝑞 = 𝑡 (𝑡 ≥ 1), which implies that 1/𝑝𝑡 + 1/𝑞𝑡 = 1.
From Hölder’s inequality and (7), we have

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟

𝑛

∑

𝑠=1

𝐴 𝑠𝐵𝑠 (1 − 𝑒𝑟 + 𝑒𝑠)

=

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟

𝑛

∑

𝑠=1

𝐴 𝑠𝐵𝑠(1 − 𝑒𝑟 + 𝑒𝑠)
1/𝑝𝑡+1/𝑞𝑡

≥

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟 [(

𝑛

∑

𝑠=1

𝐴
𝑝𝑡

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑝𝑡

× (

𝑛

∑

𝑠=1

𝐵
𝑞𝑡

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞𝑡

]

=

𝑛

∑

𝑟=1

[(

𝑛

∑

𝑠=1

𝐴
𝑝𝑡

𝑟
𝐴
𝑝𝑡

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑝𝑡−1/𝑞𝑡

× (

𝑛

∑

𝑠=1

𝐵
𝑞𝑡

𝑟
𝐴
𝑝𝑡

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞𝑡

× (

𝑛

∑

𝑠=1

𝐴
𝑝𝑡

𝑟
𝐵
𝑞𝑡

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞𝑡

]

≥ (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴
𝑝𝑡

𝑟
𝐴
𝑝𝑡

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑝𝑡−1/𝑞𝑡

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐵
𝑞𝑡

𝑟
𝐴
𝑝𝑡

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞𝑡

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴
𝑝𝑡

𝑟
𝐵
𝑞𝑡

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞𝑡

.

(15)

Additionally, using Lemma 3 together with 𝑡 ≥ 1, we find

(

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴
𝑝𝑡

𝑟
𝐴
𝑝𝑡

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑝𝑡−1/𝑞𝑡

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐵
𝑞𝑡

𝑟
𝐴
𝑝𝑡

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞𝑡

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴
𝑝𝑡

𝑟
𝐵
𝑞𝑡

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞𝑡

≥ (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

(1 − 𝑒𝑟 + 𝑒𝑠))

(1−𝑡)(1/𝑝𝑡−1/𝑞𝑡)

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴
𝑝

𝑟
𝐴
𝑝

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑝−1/𝑞

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

(1 − 𝑒𝑟 + 𝑒𝑠))

(1−𝑡)/𝑞𝑡

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐵
𝑞

𝑟
𝐴
𝑝

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

(1 − 𝑒𝑟 + 𝑒𝑠))

(1−𝑡)/𝑞𝑡

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴
𝑝

𝑟
𝐵
𝑞

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞

= (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

(1 − 𝑒𝑟 + 𝑒𝑠))

1−𝑡

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴
𝑝

𝑟
𝐴
𝑝

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑝−1/𝑞

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐵
𝑞

𝑟
𝐴
𝑝

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞

× (

𝑛

∑

𝑟=1

𝑛

∑

𝑠=1

𝐴
𝑝

𝑟
𝐵
𝑞

𝑠
(1 − 𝑒𝑟 + 𝑒𝑠))

1/𝑞

= 𝑛
2−2𝑡

(

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
)

2/𝑝−2/𝑞

× (

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟

𝑛

∑

𝑠=1

𝐴
𝑝

𝑠
−

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟
𝑒𝑟

𝑛

∑

𝑠=1

𝐴
𝑝

𝑠
+

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟

𝑛

∑

𝑠=1

𝐴
𝑝

𝑠
𝑒𝑠)

1/𝑞

× (

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟

𝑛

∑

𝑠=1

𝐵
𝑞

𝑠
−

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
𝑒𝑟

𝑛

∑

𝑠=1

𝐵
𝑞

𝑠
+

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟

𝑛

∑

𝑠=1

𝐵
𝑞

𝑠
𝑒𝑠)

1/𝑞

= 𝑛
2(1−1/𝑝−1/𝑞)

(

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
)

2/𝑝−2/𝑞

× {[(

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
)(

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟
)]

2

− [(

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
𝑒𝑟)(

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟
)−(

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
)(

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟
𝑒𝑟)]

2

}

1/𝑞

.

(16)
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Combining inequalities (11), (15), and (16) leads to
inequality (10) immediately.

The proof of Theorem 4 is completed.

FromTheorem 4 and Lemma 2, we obtain the refinement
of Hölder’s inequality (1) as follows.

Corollary 5. Let 𝐴𝑟 > 0,𝐵𝑟 > 0 (𝑟 = 1, 2, . . . , 𝑛), let 1 −

𝑒𝑟 + 𝑒𝑠 ≥ 0 (𝑟, 𝑠 = 1, 2, . . . , 𝑛), and let 𝑞 < 0, 𝑝 > 0, and
𝜌 = max{1/𝑝 + 1/𝑞, 1}. Then,

𝑛

∑

𝑟=1

𝐴𝑟𝐵𝑟 ≥ 𝑛
1−𝜌

(

𝑛

∑

𝑟=1

𝐴
𝑝

𝑟
)

1/𝑝

(

𝑛

∑

𝑟=1

𝐵
𝑞

𝑟
)

1/𝑞

× [1 −

1

2𝑞

(

∑
𝑛

𝑟=1
𝐵
𝑞

𝑟
𝑒𝑟

∑
𝑛

𝑘=1
𝐵
𝑞

𝑟

−

∑
𝑛

𝑟=1
𝐴
𝑝

𝑟
𝑒𝑟

∑
𝑛

𝑟=1
𝐴
𝑝

𝑟

)

2

] .

(17)

Proof. Since

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∑
𝑛

𝑟=1
𝐵
𝑞

𝑟
𝑒𝑟

∑
𝑛

𝑘=1
𝐵
𝑞

𝑟

−

∑
𝑛

𝑟=1
𝐴
𝑝

𝑟
𝑒𝑟

∑
𝑛

𝑟=1
𝐴
𝑝

𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 1, (18)

by using Lemma 2 andTheorem 4, we obtain the assertion of
the corollary. The proof of Corollary 5 is completed.

Now, we give a reversed version of inequality (4) as
follows.

Theorem 6. Let 𝑓(𝑥), 𝑔(𝑥), and 𝑒(𝑥) be integrable functions
defined on [𝑎, 𝑏] and 𝑓(𝑥), 𝑔(𝑥) > 0, 1 − 𝑒(𝑥) + 𝑒(𝑦) ≥ 0 for
all 𝑥, 𝑦 ∈ [𝑎, 𝑏], and let 𝑞 < 0, 1/𝑝 + 1/𝑞 ≥ 1. Then,

∫

𝑏

𝑎

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥

≥ (𝑏 − 𝑎)
1−1/𝑝−1/𝑞

(∫

𝑏

𝑎

𝑓
𝑝
(𝑥) 𝑑𝑥)

1/𝑝−1/𝑞

× [(∫

𝑏

𝑎

𝑓
𝑝
(𝑥) 𝑑𝑥∫

𝑏

𝑎

𝑔
𝑞
(𝑥) 𝑑𝑥)

2

− (∫

𝑏

𝑎

𝑓
𝑝
(𝑥) 𝑒 (𝑥) 𝑑𝑥∫

𝑏

𝑎

𝑔
𝑞
(𝑥) 𝑑𝑥

− ∫

𝑏

𝑎

𝑓
𝑝
(𝑥) 𝑑𝑥∫

𝑏

𝑎

𝑔
𝑞
(𝑥) 𝑒 (𝑥) 𝑑𝑥)

2

]

1/2𝑞

.

(19)

Proof. For any positive integer 𝑛, we choose an equidistant
partition of [𝑎, 𝑏] as follows:

𝑎<𝑎+

𝑏−𝑎

𝑛

<⋅ ⋅ ⋅<𝑎+

𝑏−𝑎

𝑛

𝑘<⋅ ⋅ ⋅<𝑎+

𝑏−𝑎

𝑛

(𝑛−1)<𝑏,

𝑥𝑘 = 𝑎 +

𝑏 − 𝑎

𝑛

𝑘, Δ𝑥𝑘 =

𝑏 − 𝑎

𝑛

, 𝑘 = 0, 1, 2, . . . , 𝑛.

(20)

ApplyingTheorem 4, we obtain the following inequality:

𝑛

∑

𝑘=1

𝑓 (𝑥𝑘) 𝑔 (𝑥𝑘)

≥ 𝑛
1−1/𝑝−1/𝑞

(

𝑛

∑

𝑘=1

𝑓
𝑝
(𝑥𝑘))

1/𝑝−1/𝑞

×

{

{

{

[(

𝑛

∑

𝑘=1

𝑓
𝑝
(𝑥𝑘))(

𝑛

∑

𝑘=1

𝑔
𝑞
(𝑥𝑘))]

2

− [(

𝑛

∑

𝑘=1

𝑓
𝑝
(𝑥𝑘) 𝑒 (𝑥𝑘))(

𝑛

∑

𝑘=1

𝑔
𝑞
(𝑥𝑘))

− (

𝑛

∑

𝑘=1

𝑓
𝑝
(𝑥𝑘))

× (

𝑛

∑

𝑘=1

𝑔
𝑞
(𝑥𝑘) 𝑒 (𝑥𝑘))]

2
}

}

}

1/2𝑞

,

(21)

equivalently

𝑛

∑

𝑘=1

𝑓 (𝑥𝑘) 𝑔 (𝑥𝑘)

𝑏 − 𝑎

𝑛

≥ (𝑏 − 𝑎)
1−1/𝑝−1/𝑞

(

𝑛

∑

𝑘=1

𝑓
𝑝
(𝑥𝑘)

𝑏 − 𝑎

𝑛

)

1/𝑝−1/𝑞

×

{

{

{

[(

𝑛

∑

𝑘=1

𝑓
𝑝
(𝑥𝑘)

𝑏 − 𝑎

𝑛

)(

𝑛

∑

𝑘=1

𝑔
𝑞
(𝑥𝑘)

𝑏 − 𝑎

𝑛

)]

2

− [(

𝑛

∑

𝑘=1

𝑓
𝑝
(𝑥𝑘) 𝑒 (𝑥𝑘)

𝑏−𝑎

𝑛

)(

𝑛

∑

𝑘=1

𝑔
𝑞
(𝑥𝑘)

𝑏−𝑎

𝑛

)

− (

𝑛

∑

𝑘=1

𝑓
𝑝
(𝑥𝑘)

𝑏−𝑎

𝑛

)

× (

𝑛

∑

𝑘=1

𝑔
𝑞
(𝑥𝑘) 𝑒 (𝑥𝑘)

𝑏−𝑎

𝑛

)]

2
}

}

}

1/2𝑞

.

(22)

In view of the hypotheses that 𝑓(𝑥), 𝑔(𝑥), and 𝑒(𝑥) are
positive Riemann integrable functions on [𝑎, 𝑏], we conclude
that 𝑓𝑝(𝑥), 𝑔𝑞(𝑥), and 𝑔𝑞(𝑥)𝑒(𝑥) are also integrable on [𝑎, 𝑏].
Passing the limit as 𝑛 → ∞ in both sides of inequality
(22), we obtain inequality (19). The proof of Theorem 6 is
completed.
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Remark 7. Making similar technique as in the proof of
Corollary 5, fromTheorem 6 we obtain

∫

𝑏

𝑎

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥

≥ (𝑏 − 𝑎)
1−1/𝑝−1/𝑞

(∫

𝑏

𝑎

𝑓
𝑝
(𝑥) 𝑑𝑥)

1/𝑝

(∫

𝑏

𝑎

𝑔
𝑞
(𝑥) 𝑑𝑥)

1/𝑞

×
[

[

[

1−

1

2𝑞

(

∫

𝑏

𝑎
𝑓
𝑝
(𝑥) 𝑒 (𝑥) 𝑑𝑥

∫

𝑏

𝑎
𝑓
𝑝
(𝑥) 𝑑𝑥

−

∫

𝑏

𝑎
𝑔
𝑞
(𝑥) 𝑒 (𝑥) 𝑑𝑥

∫

𝑏

𝑎
𝑔
𝑞
(𝑥) 𝑑𝑥

)

2

]

]

]

.

(23)

3. Applications

In this section, we show two applications of the inequalities
newly obtained in Section 2.

Firstly, we provide an application of the obtained result to
improve the Popoviciu-Vasić inequality. In 1956, Aczél [20]
established the following inequality.

Theorem F. If 𝑎𝑖, 𝑏𝑖 (𝑖 = 1, 2, . . . , 𝑛) are positive numbers such
that 𝑎2

1
− ∑
𝑛

𝑖=2
𝑎
2

𝑖
> 0 or 𝑏2

1
− ∑
𝑛

𝑖=2
𝑏
2

𝑖
> 0, then

(𝑎
2

1
−

𝑛

∑

𝑖=2

𝑎
2

𝑖
)(𝑏
2

1
−

𝑛

∑

𝑖=2

𝑏
2

𝑖
) ≤ (𝑎1𝑏1 −

𝑛

∑

𝑖=2

𝑎𝑖𝑏𝑖)

2

. (24)

Inequality (24) is the well-known Aczél’s inequality,
which has many applications in the theory of functional
equations in non-Euclidean geometry. Due to the impor-
tance of Aczél’s inequality, this inequality has been given
considerable attention by mathematicians and has motivated
a large number of research papers involving different proofs,
various generalizations, improvements and applications (see,
e.g., [21–24] and the references therein).

One of the most important results in the references
mentioned above is the exponential generalization of (24)
asserted byTheorem G.

Theorem G. Let 𝑝 and 𝑞 be real numbers such that 𝑝, 𝑞 ̸= 0

and 1/𝑝 + 1/𝑞 = 1, and let 𝑎𝑖, 𝑏𝑖 (𝑖 = 1, 2, . . . , 𝑛) be positive
numbers such that 𝑎𝑝

1
− ∑
𝑛

𝑖=2
𝑎
𝑝

𝑖
> 0 and 𝑏

𝑞

1
− ∑
𝑛

𝑖=2
𝑏
𝑞

𝑖
> 0.

Then, for 𝑝 > 1, one has

(𝑎
𝑝

1
−

𝑛

∑

𝑖=2

𝑎
𝑝

𝑖
)

1/𝑝

(𝑏
𝑞

1
−

𝑛

∑

𝑖=2

𝑏
𝑞

𝑖
)

1/𝑞

≤ 𝑎1𝑏1 −

𝑛

∑

𝑖=2

𝑎𝑖𝑏𝑖.
(25)

If 𝑝 < 1 (𝑝 ̸= 0), one has the reverse inequality.

Remark 8. The case 𝑝 > 1 of Theorem G was proved by
Popoviciu [21]. The case 𝑝 < 1 was given in [24] by Vasić
and Pečarić.

Now, we give a refinement of inequality (25) by
Theorem 4 andTheorem B.

Theorem 9. Let 𝑎𝑖, 𝑏𝑖 ≥ 0, 𝑎𝑝
1
−∑
𝑛

𝑖=2
𝑎
𝑝

𝑖
> 0, and 𝑏𝑞

1
−∑
𝑛

𝑖=2
𝑏
𝑞

𝑖
>

0, let 1 − 𝑒𝑖 + 𝑒𝑗 ≥ 0 (𝑖, 𝑗 = 1, 2, . . . , 𝑛), and let 𝜇 = min{1/𝑝 +

1/𝑞, 1}, 𝜌 = max{1/𝑝 + 1/𝑞, 1}. Then, for 𝑝 ≥ 𝑞 > 0, one has

(𝑎
𝑝

1
−

𝑛

∑

𝑖=2

𝑎
𝑝

𝑖
)

1/𝑝

(𝑏
𝑞

1
−

𝑛

∑

𝑖=2

𝑏
𝑞

𝑖
)

1/𝑞

≤ 𝑛
1−𝜇

× 𝑏
1−𝑞/𝑝

1

×

{

{

{

𝑏
2𝑞

1
𝑎
2𝑝

1

− [𝑎
𝑝

1
(𝑏
𝑞

1
𝑒1 +

𝑛

∑

𝑖=2

𝑏
𝑞

𝑖
(𝑒𝑖 − 𝑒1))

− 𝑏
𝑞

1
(𝑎
𝑝

1
𝑒1 +

𝑛

∑

𝑖=2

𝑎
𝑝

𝑖
(𝑒𝑖 − 𝑒1))]

2
}

}

}

1/2𝑞

−

𝑛

∑

𝑖=2

𝑎𝑖𝑏𝑖.

(26)

If 𝑞 < 0, 𝑝 > 0, one has

(𝑎
𝑝

1
−

𝑛

∑

𝑖=2

𝑎
𝑝

𝑖
)

1/𝑝

(𝑏
𝑞

1
−

𝑛

∑

𝑖=2

𝑏
𝑞

𝑖
)

1/𝑞

≥ 𝑛
1−𝜌

× 𝑎
1−𝑝/𝑞

1

×

{

{

{

𝑎
2𝑝

1
𝑏
2𝑞

1

− [𝑏
𝑞

1
(𝑎
𝑝

1
𝑒1 +

𝑛

∑

𝑖=2

𝑎
𝑝

𝑖
(𝑒𝑖 − 𝑒1))

− 𝑎
𝑝

1
(𝑏
𝑞

1
𝑒1 +

𝑛

∑

𝑖=2

𝑏
𝑞

𝑖
(𝑒𝑖 − 𝑒1))]

2
}

}

}

1/2𝑞

−

𝑛

∑

𝑖=2

𝑎𝑖𝑏𝑖.

(27)

Proof. By substituting

𝐴
𝑝

1
󳨀→ 𝑎
𝑝

1
−

𝑛

∑

𝑖=2

𝑎
𝑝

𝑖
, 𝐵

𝑞

1
󳨀→ 𝑏
𝑞

1
−

𝑛

∑

𝑖=2

𝑏
𝑞

𝑖
,

𝐴 𝑖 󳨀→ 𝑎𝑖, 𝐵𝑖 󳨀→ 𝑏𝑖 (𝑖 = 2, 3, . . . , 𝑛) ,

(28)

in (3) and (10), respectively, we get Theorem 9.
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Remark 10. Let 𝑎1 ̸= 0, 𝑏1 ̸= 0, and let 1/𝑝+1/𝑞 = 1. If 𝑝 ≥ 𝑞 >

0, then we conclude fromTheorem 9:

(𝑎
𝑝

1
−

𝑛

∑

𝑖=2

𝑎
𝑝

𝑖
)

1/𝑝

(𝑏
𝑞

1
−

𝑛

∑

𝑖=2

𝑏
𝑞

𝑖
)

1/𝑞

≤ 𝑎1𝑏1 {1 − (

𝑏
𝑞

1
𝑒1 + ∑

𝑛

𝑖=2
𝑏
𝑞

𝑖
(𝑒𝑖 − 𝑒1)

𝑏
𝑞

1

−

𝑎
𝑝

1
𝑒1 + ∑

𝑛

𝑖=2
𝑎
𝑝

𝑖
(𝑒𝑖 − 𝑒1)

𝑎
𝑝

1

)

2

}

1/2𝑞

−

𝑛

∑

𝑖=2

𝑎𝑖𝑏𝑖.

(29)

Inequality (29) is reversed for 𝑞 < 0.
Next, we are to establish the time scales version of

Beckenbach-type inequality which is due to Wang [25]. In
1983, Wang [25] established the following Beckenbach-type
inequality.

Theorem H. Let 𝑓(𝑥), and 𝑔(𝑥) be positive integrable func-
tions defined on [𝑠, 𝑡], and let 1/𝑝 + 1/𝑞 = 1. If 0 < 𝑝 < 1,
then, for any of the positive numbers: 𝑎, 𝑏, or 𝑐, the inequality

(𝑎 + 𝑐 ∫

𝑡

𝑠
𝑘
𝑝
(𝑥) d𝑥)

1/𝑝

𝑏 + 𝑐 ∫

𝑡

𝑠
𝑘 (𝑥) 𝑔 (𝑥) d𝑥

≥

(𝑎 + 𝑐 ∫

𝑡

𝑠
𝑓
𝑝
(𝑥) d𝑥)

1/𝑝

𝑏 + 𝑐 ∫

𝑡

𝑠
𝑓 (𝑥) 𝑔 (𝑥) d𝑥

(30)

holds, where 𝑘(𝑥) = (𝑎𝑔(𝑥)/𝑏)
𝑞/𝑝.The sign of inequality in (30)

is reversed if 𝑝 > 1.

In order to present the time scales version of (30), we
recall the following concepts related to the notion of time
scales. A time scale T is an arbitrary nonempty closed subset
of the real numbers R. The forward jump operator and the
backward jump operator are defined by

𝜎 (𝑡) := inf {𝑠 ∈ T : 𝑠 > 𝑡} , 𝜌 (𝑡) := sup {𝑠 ∈ T : 𝑠 < 𝑡} ,

(31)

(supplemented by inf 0 = sup T and sup 0 = inf T). A point
𝑡 ∈ T is called right scattered, right dense, left scattered, and
left dense if 𝜎(𝑡) > 𝑡, 𝜎(𝑡) = 𝑡, 𝜌(𝑡) < 𝑡, and 𝜌(𝑡) = 𝑡 hold,
respectively.

A function 𝑓 : T → R is said to be rd-continuous if it is
continuous at each right dense point and if the left-sided limit
exists at every left dense point. The set of all rd-continuous
functions is denoted by 𝐶rd[T ,R].

Let

T
𝑘
:= {

T − 𝑚, if T has left scattered point in 𝑀,

T , otherwise.
(32)

Let 𝑓 be a function defined on R. Then 𝑓 is called differen-
tiable at 𝑡 ∈ T𝑘, with (delta) derivative 𝑓Δ(𝑡) if given 𝜖 > 0;
there exists a neighbourhood N of 𝑡 such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠) − 𝑓

Δ
(𝑡) (𝜎 (𝑡) − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜖 |𝜎 (𝑡) − 𝑠| (33)

for all 𝑠 ∈ N.

Remark 11. If T = R, then 𝑓
Δ
(𝑡) becomes the usual

derivative; that is, 𝑓Δ(𝑡) = 𝑓
󸀠
(𝑡). If T = Z, then 𝑓Δ(𝑡) reduces

to the usual forward difference; that is, 𝑓Δ(𝑡) = Δ𝑓(𝑡).

A function 𝐹 : T → R is called an antiderivative of 𝑓 :

T → R provided that 𝐹Δ = 𝑓(𝑡) holds for all 𝑡 ∈ T . In this
case, we define the integral of 𝑓 by

∫

𝑡

𝑠

𝑓 (𝜏) Δ𝜏 = 𝐹 (𝑡) − 𝐹 (𝑠) , (34)

where 𝑠, 𝑡 ∈ T .

Remark 12. If T = R, then the time scale integral is an
ordinary integral. If T = Z, then the time-scale integral is
a sum.

For more details on time scales theory, the readers may
consult [26–29] and the references therein. Now, we present
the time scales version of (30) by using Corollary 5.

Theorem 13. Let 𝑓(𝑥), 𝑔(𝑥), and ℎ(𝑥) ∈ 𝐶𝑟𝑑([𝑠, 𝑡], [0, +∞)),
where 𝐶𝑟𝑑([𝑠, 𝑡], [0, +∞)) denotes the set of rd-continuous
functions defined by 𝐶𝑟𝑑([𝑠, 𝑡], [0, +∞)) = {𝛼 | 𝛼 : [𝑠, 𝑡] →

[0, +∞) and 𝛼(𝑡) is an rd-continuous function} and let 1/𝑝 +

1/𝑞 = 1. If 𝑝 > 1, then, for any of the positive numbers 𝑎, 𝑏, or
𝑐, the inequality

(𝑎 + 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑘

𝑝
(𝑥) Δ𝑥)

1/𝑝

𝑏 + 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑘 (𝑥) 𝑔 (𝑥) Δ𝑥

≤

(𝑎 + 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑓

𝑝
(𝑥) Δ𝑥)

1/𝑝

𝑏 + 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑓 (𝑥) 𝑔 (𝑥) Δ𝑥

×
[

[

1 −

1

2𝑞

(

𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑓

𝑝
(𝑥) Δ𝑥

𝑎 + 𝑐 ∫

t
𝑠
ℎ (𝑥) 𝑓

𝑝
(𝑥) Δ𝑥

−

𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑔

𝑞
(𝑥) Δ𝑥

𝑎
−𝑞/𝑝

𝑏
𝑞
+ 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑔

𝑞
(𝑥) Δ𝑥

)

2

]

]

(35)

holds, where 𝑘(𝑥) = (𝑎𝑔(𝑥)/𝑏)
𝑞/𝑝.The sign of inequality in (35)

is reversed if 0 < 𝑝 < 1.

Proof. We only consider the case 0 < 𝑝 < 1. Noting that 1 +
𝑞/𝑝 = 𝑞, the left-hand side of (35) becomes

[𝑎 + 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) (𝑎𝑔 (𝑥) /𝑏)

𝑞
Δ𝑥]

1/𝑝

𝑏 + 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) (𝑎𝑔 (𝑥) /𝑏)

𝑞/𝑝
𝑔 (𝑥) Δ𝑥

=

(𝑎/𝑏)
𝑞/𝑝

[𝑎(𝑏/𝑎)
𝑞
+ 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑔

𝑞
(𝑥) Δ𝑥]

1/𝑝

(𝑎/𝑏)
𝑞/𝑝

[𝑏(𝑏/𝑎)
𝑞/𝑝

+ 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑔

𝑞
(𝑥) Δ𝑥]

= (𝑎
−𝑞/𝑝

𝑏
𝑞
+ 𝑐∫

𝑡

𝑠

ℎ (𝑥) 𝑔
𝑞
(𝑥) Δ𝑥)

−1/𝑞

.

(36)
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On the other hand, by using Hölder’s inequality and inequal-
ity (17) for 𝑒1 = 0, 𝑒2 = 1, we obtain

𝑏 + 𝑐∫

𝑡

𝑠

ℎ (𝑥) 𝑓 (𝑥) 𝑔 (𝑥) Δ𝑥

≥ 𝑏 + 𝑐 (∫

𝑡

𝑠

ℎ (𝑥) 𝑓
𝑝
(𝑥) Δ𝑥)

1/𝑝

× (∫

𝑡

𝑠

ℎ (𝑥) 𝑔
𝑞
(𝑥) Δ𝑥)

1/𝑞

(37)

= 𝑎
1/𝑝

(𝑏𝑎
−1/𝑝

) + (𝑐∫

𝑡

𝑠

ℎ (𝑥) 𝑓
𝑝
(𝑥) Δ𝑥)

1/𝑝

× (𝑐∫

𝑡

𝑠

ℎ (𝑥) 𝑔
𝑞
(𝑥) Δ𝑥)

1/𝑞

≥ (𝑎 + 𝑐∫

𝑡

𝑠

ℎ (𝑥) 𝑓
𝑝
(𝑥) Δ𝑥)

1/𝑝

× (𝑎
−𝑞/𝑝

𝑏
𝑞
+ 𝑐∫

𝑡

𝑠

ℎ (𝑥) 𝑔
𝑞
(𝑥) Δ𝑥)

1/𝑞

×
[

[

1 −

1

2𝑞

(

𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑓

𝑝
(𝑥) Δ𝑥

𝑎 + 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑓

𝑝
(𝑥) Δ𝑥

−

𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑔

𝑞
(𝑥) Δ𝑥

𝑎
−𝑞/𝑝

𝑏
𝑞
+ 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑔

𝑞
(𝑥) Δ𝑥

)

2

]

]

.

(38)

Combining inequalities (36) and (38) yields inequality
(35). The proof of Theorem 13 is completed.

In (35), taking 𝑐 ∫

𝑡

𝑠
ℎ(𝑥)𝑓

𝑝
(𝑥)Δ𝑥/(𝑎 + 𝑐 ∫

𝑡

𝑠
ℎ(𝑥)𝑓

𝑝
(𝑥)Δ𝑥)

= 𝑐 ∫

𝑡

𝑠
ℎ(𝑥)𝑔

𝑞
(𝑥)Δ𝑥/(𝑎

−𝑞/𝑝
𝑏
𝑞
+ 𝑐 ∫

𝑡

𝑠
ℎ(𝑥)𝑔

𝑞
(𝑥)Δ𝑥), from

Theorem 13 we obtain the time scales version of Beckenbach-
type inequality as follows.

Corollary 14. Let𝑓(𝑥), 𝑔(𝑥), and ℎ(𝑥) ∈ 𝐶𝑟𝑑([𝑠, 𝑡], [0, +∞)),
and let 1/𝑝 + 1/𝑞 = 1. If 𝑝 > 1, then, for any of the positive
numbers 𝑎, 𝑏, or 𝑐, the inequality

(𝑎 + 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑘

𝑝
(𝑥) Δ𝑥)

1/𝑝

𝑏 + 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑘 (𝑥) 𝑔 (𝑥) Δ𝑥

≤

(𝑎 + 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑓

𝑝
(𝑥) Δ𝑥)

1/𝑝

𝑏 + 𝑐 ∫

𝑡

𝑠
ℎ (𝑥) 𝑓 (𝑥) 𝑔 (𝑥) Δ𝑥

(39)

holds, where 𝑘(𝑥) = (𝑎𝑔(𝑥)/𝑏)
𝑞/𝑝.The sign of inequality in (39)

is reversed if 0 < 𝑝 < 1.
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