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The paper explores the optimal vibration control design problem for a half-car suspension working on in-vehicle networks in
delta domain. First, the original suspension system with ECU-actuator delay and sensor-ECU delay is modeled. By using delta
operators, the original system is transformed into an associated sampled-data systemwith time delays in delta domain. Aftermodel
transformation, the sampled-data system equation is reduced to one without actuator delays and convenient to calculate the states
with nonintegral time delay. Therefore, the sampled-data optimal vibration control law can be easily obtained deriving from a
Riccati equation and a Stein equation of delta domain. The feedforward control term and the control memory terms designed in
the control law ensure the compensation for the effects produced by disturbance and actuator delay, respectively. Moreover, an
observer is constructed to implement the physical realizability of the feedforward term and solve the immeasurability problem of
some state variables. A half-car suspension model with delays is applied to simulate the responses through the designed controller.
Simulation results illustrate the effectiveness of the proposed controller and the simplicity of the designing approach.

1. Introduction

In the past years, communication networks have been applied
greatly and widely into the advanced vehicle systems, such as
electronic control units (ECUs), sensors, and actuators which
are all connected over the high-speed in-vehicle networks
(IVNs), for example, Local Interconnect Network, Controller
Area Network, Media Oriented Systems Transport [1–3], and
so forth. However, in this kind of IVNs, two important
issues emerge for the controller design problems. One is
the network-induced delay issue. Over communication net-
works, the time delays generated between sensor-controller,
controller-actuator, ECU computation delay, and so forth
are unavoidably encountered. As well known, even a small
time delay can make the systems disastrously unstable or
generate oscillations [4–6]. So, this issue should be taken
into account when we design a controller for a system over
networks. The next issue is the system modeling problem.
Actually, signals processed by microprocessors are digital,

and most of those produced by sensors or put into actuators
are analogs. Thus, the continuous-time plant is combined
with a discrete-time controller, where A/D and D/A converts
are used to combine these two different signals. Therefore,
a sampled-data system is more appropriate for the reality
of networked-control system. In previous studies, there are
two main approaches to get the sampled-data systems, those
are, indirect approach of continuous-time domain and direct
approach of discrete-time domain. However, the former is
only suitable for simple control algorithms, and the latter
has two drawbacks: one is that the discrete-time model is
unable to approach to its corresponding continuous-time one
as the sampling frequency increases; and the other is that
the discretized system can cause oscillations and unstable
phenomenon as the sampling frequency increases.

Consequentially, we present two strategies to deal with
these above-mentioned issues. First, we introduce the delta
operator approach to build a sampled-data model for the
networked-control system due to its accurate approximation
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to the continuous-time model under rapid sampling condi-
tions [7–11].This advantage can be demonstrated by citing an
instance.

Consider a continuous-time system consisted of (𝐴, 𝐵) in
the state-space representation. The associated discrete-time
system can be got as (𝐴

𝑧
, 𝐵
𝑧
)with𝐴

𝑧
= e𝐴𝑇, 𝐵

𝑧
= ∫
𝑇

0
e𝐴𝑡d𝑡𝐵,

and 𝑇 the sampling period. Alternatively, the associated
sampled-data system in delta domain is (𝐴

𝛿
, 𝐵
𝛿
) with 𝐴

𝛿
=

(𝐴
𝑧
− 𝐼)/𝑇, 𝐵

𝛿
= 𝐵
𝑧
/𝑇, and 𝐼 a unit matrix. Apparently,

𝐴
𝑧
→ 𝐼, 𝐵

𝑧
→ 0 and 𝐴

𝛿
→ 𝐴, 𝐵

𝛿
→ 𝐵 while 𝑇 → 0.

From this instance, it is clear that the discrete-timemodel
cannot approximate to its original continuous-time onewhen
sampling fast. On the contrary, the delta-domain sampled-
data one enables approximating to the continuous accurately.
See that this is our reason to apply the delta operators
approachmodeling a sampled-data system for an IVNs-based
suspension.

The other contribution of this paper is developing the
model transformation method [11–13] to solve optimal vibra-
tion control (OVC) design problem for sampled-data systems
with time delays in delta domain. The model transformation
method is based on the finite spectrum assignment method-
ology [14], and we have developed it solving the OVC design
problems for time-delay systems in continuous-time domain
or in discrete-time domain. It was proved able to transform
the original time-delay system into a delay-free one such that
the original solution problem is reduced from an infinite-
dimension space to a finite-dimension space, and so that the
controller design problem is greatly simplified [11–14].

In brief, as a result, the obtained control law in this paper
consists of a feedforward term and some control memory
terms which can be stored in memories beforehand. Hence,
the persistent road excitation suffered by suspension can be
reduced via the feedforward term, and the time-delay effect
of the system can be compensated by the control memory
terms. At last, we carry out some simulations to validate
the effectiveness and the simplicity of the designed OVC
comparing with the open-loop system (OLS).

The paper’s organization displays as follows. After this
introduction of Section 1, in Section 2, the system description
and problem formulation have been done. In Section 3,
the OVC is designed accompanied with the observer-based
control law design. Numerical examples are simulated in
Section 4. Concluding remarks are given in Section 5.

2. Problem Statement

2.1. System Modeling. Consider a four-degree-of-freedom
half-car model (refered to in [15]) where the suspension
motion is determined by the following dynamic equations:

𝑚
𝑠
𝑥̈
𝑐
(𝑡) + 𝑘

𝑓
[𝑥
𝑠𝑓
(𝑡) − 𝑥

𝑢𝑓
(𝑡)] + 𝑘

𝑟
[𝑥
𝑠𝑟
(𝑡) − 𝑥

𝑢𝑟
(𝑡)]

+ 𝑏
𝑓
[𝑥̇
𝑠𝑓
(𝑡) − 𝑥̇

𝑢𝑓
(𝑡)] + 𝑏

𝑟
[𝑥̇
𝑠𝑟
(𝑡) − 𝑥̇

𝑢𝑟
(𝑡)]

= 𝑢
𝑓
(𝑡 − 𝜏) + 𝑢

𝑟
(𝑡 − 𝜏) ,

𝐼𝜙̈ (𝑡) + 𝑙
𝑓
𝑘
𝑓
[𝑥
𝑠𝑓
(𝑡) − 𝑥

𝑢𝑓
(𝑡)] + 𝑙

𝑟
𝑘
𝑟
[𝑥
𝑠𝑟
(𝑡) − 𝑥

𝑢𝑟
(𝑡)]

+ 𝑙
𝑓
𝑏
𝑓
[𝑥̇
𝑠𝑓
(𝑡) − 𝑥̇

𝑢𝑓
(𝑡)] + 𝑙

𝑟
𝑘
𝑟
[𝑥̇
𝑠𝑟
(𝑡) − 𝑥̇

𝑢𝑟
(𝑡)]

= 𝑙
𝑓
𝑢
𝑓
(𝑡 − 𝜏) + 𝑙

𝑟
𝑢
𝑟
(𝑡 − 𝜏) ,

− 𝑚
𝑢𝑓
𝑥̈
𝑢𝑓
(𝑡) + 𝑘

𝑓
[𝑥
𝑠𝑓
(𝑡) − 𝑥

𝑢𝑓
(𝑡)] − 𝑘

𝑡𝑓
[𝑥
𝑢𝑓
(𝑡) − 𝑥

𝑟𝑓
(𝑡)]

+ 𝑏
𝑓
[𝑥̇
𝑠𝑓
(𝑡) − 𝑥̇

𝑢𝑓
(𝑡)] = 𝑢

𝑓
(𝑡 − 𝜏) ,

− 𝑚
𝑢𝑟
𝑥̈
𝑢𝑟
(𝑡) + 𝑘

𝑟
[𝑥
𝑠𝑟
(𝑡) − 𝑥

𝑢𝑟
(𝑡)] − 𝑘

𝑡𝑟
[𝑥
𝑢𝑟
(𝑡) − 𝑥

𝑟𝑟
(𝑡)]

+ 𝑏
𝑟
[𝑥̇
𝑠𝑟
(𝑡) − 𝑥̇

𝑢𝑟
(𝑡)] = 𝑢

𝑟
(𝑡 − 𝜏) ,

(1)

through Newton-Euler method. In this half-car suspension
model, the sprung mass 𝑚

𝑠
and unsprung one 𝑚

𝑢
are

separated by spring, damper, and actuator, which are placed
in parallel. The tire of the vehicle is modeled as a spring.
Vertical motion 𝑥

𝑐
(𝑡) and pitch motion 𝜙(𝑡) of the sprung

mass are considered, as well as the verticalmotion of the front
unsprung mass 𝑥

𝑢𝑓
(𝑡) and the rear one 𝑥

𝑢𝑟
(𝑡).

Consider it working on an IVNs-based environment, as
depicted in Figure 1, where 𝑥, 𝑢, and 𝑦

𝑚
denote the system

state, control input, and measured output, respectively; V is
the road excitation input; 𝜏, 𝜎 are constant ECU-actuator
delay and sensor-ECU delay, respectively, (actuator delay and
sensor delay for short) which are always assumed to be known
and constant in such IVNs environment.

With the purpose of replacing (1) into the state-space
representation, define the state, control, and disturbance
vectors as

𝑥 (𝑡) = [𝑥
𝑠𝑓
(𝑡) − 𝑥

𝑢𝑓
(𝑡) , 𝑥
𝑠𝑟
(𝑡) − 𝑥

𝑢𝑟
(𝑡) ,

𝑥
𝑢𝑓
(𝑡) − 𝑥

𝑟𝑓
(𝑡) , 𝑥
𝑢𝑟
(𝑡) − 𝑥

𝑟𝑟
(𝑡) ,

𝑥̇
𝑠𝑓
(𝑡), 𝑥̇
𝑠𝑟
(𝑡), 𝑥̇
𝑢𝑓
(𝑡), 𝑥̇
𝑢𝑟
(𝑡)]
𝑇

,

𝑢 (𝑡) = [𝑢
𝑓
(𝑡) , 𝑢
𝑟
(𝑡)]
𝑇

,

V (𝑡) = [𝑥̇
𝑟𝑓
(𝑡) , 𝑥̇
𝑟𝑟
(𝑡)]
𝑇

,

(2)

the controlled output vector as

𝑦
𝑐
(𝑡) = [𝑥̈

𝑐
(𝑡) , 𝜙̈ (𝑡) , 𝑥

𝑠𝑓
(𝑡) − 𝑥

𝑢𝑓
(𝑡) , 𝑥
𝑠𝑟
(𝑡) − 𝑥

𝑢𝑟
(𝑡) ,

𝑥
𝑢𝑓
(𝑡) − 𝑥

𝑟𝑓
(𝑡), 𝑥
𝑢𝑟
(𝑡) − 𝑥

𝑟𝑟
(𝑡) ]
𝑇

= [𝑥̈
𝑐
(𝑡) , 𝜙̈ (𝑡) , 𝑥

1
(𝑡) , 𝑥
2
(𝑡) , 𝑥
3
(𝑡) , 𝑥
4
(𝑡)]
𝑇

,

(3)



Abstract and Applied Analysis 3

Actuator Suspension Sensor

ECU A/DD/A

Communication Communication

𝑣(𝑡)

𝑢(𝑡 − 𝜏

𝜏

)

𝑢(𝑡)
𝑢[𝑡𝑘] 𝑦𝑚[𝑡𝑘 − 𝜎]

𝜎

𝑦𝑚(𝑡)

𝑦𝑚(𝑡 − 𝜎)

Figure 1: Suspension system working on IVNs.

and the measured output vector as

𝑦
𝑚
(𝑡) = [𝑥

𝑠𝑓
(𝑡 − 𝜎) − 𝑥

𝑢𝑓
(𝑡 − 𝜎) ,

𝑥
𝑠𝑟
(𝑡 − 𝜎) − 𝑥

𝑢𝑟
(𝑡 − 𝜎), 𝑥̇

𝑠𝑓
(𝑡 − 𝜎), 𝑥̇

𝑠𝑟
(𝑡 − 𝜎)]

𝑇

= [𝑥
1
(𝑡 − 𝜎) , 𝑥

2
(𝑡 − 𝜎) , 𝑥

5
(𝑡 − 𝜎) , 𝑥

6
(𝑡 − 𝜎)]

𝑇

.

(4)

Together with the associated dynamic equations

𝑥
𝑠𝑓
(𝑡) = 𝑥

𝑐
(𝑡) + 𝑙

𝑓
𝜙 (𝑡) ,

𝑥
𝑢𝑟
(𝑡) = 𝑥

𝑐
(𝑡) − 𝑙

𝑟
𝜙 (𝑡)

(5)

and the definitions (2)–(4), the system (1) thus is rewritten in
the state-space representation as

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡 − 𝜏) + 𝐷V (𝑡) ,

𝑦
𝑚
(𝑡) = 𝐶

1
𝑥 (𝑡 − 𝜎) ,

𝑦
𝑐
(𝑡) = 𝐶

2
𝑥 (𝑡) + 𝐸𝑢 (𝑡 − 𝜏) ,

𝑥 (𝑡) = 𝛼 (𝑡) , 𝑡 ∈ [−𝜎, 0] ,

𝑢 (𝑡) = 0, 𝑡 ∈ [−𝜏, 0) ,

(6)

with 𝑥(𝑡) ∈ R8, 𝑢(𝑡) ∈ R2, 𝑦
𝑚
(𝑡) ∈ R4, and 𝑦

𝑐
(𝑡) ∈ R6

as the state vector, control output, measurement vector, and
controlled output, respectively, 𝐴, 𝐵, 𝐶

1
, 𝐶
2
, 𝐷, and 𝐸 as the

real constant matrices of appropriate dimensions, and 𝛼(𝑡) ∈
C([−𝜎, 0];R8) as the initial state vector.

Consequently, the sampled-data system form of the sys-
tem (6) can be got by applying the sampled-data controller
where there is a zero-order holder

𝑢 (𝑡) = 𝑢 [𝑡
𝑘
] , 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1
) ,

𝑢 [𝑡
𝑘
] = 𝑢 (𝐾𝑥 (𝑡

𝑘−ℎ
2
−𝑑
2

)) , 𝑘 ∈ N
0
,

𝑢 [𝑡
𝑘
] = 0, 𝑘 < 0,

(7)

with {𝑡
𝑘
} as the sampling times, 𝑥(𝑡

𝑘
) as the state on time of

𝑡
𝑘
= 𝑘𝑇, and 𝐾 as a constant data controller gain, denoting

the actuator delay 𝜏 = ℎ
1
𝑇 + 𝑑

1
𝑇 and the sensor delay 𝜎 =

ℎ
2
𝑇 + 𝑑

2
𝑇 with ℎ

𝑖
∈ N and 0 ≤ 𝑑

𝑖
< 1 (𝑖 = 1, 2). Notice

that the delays are expressed in either integers or nonintegers.
Then, the sampled-data system of (1) can be described by

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡
𝑘−ℎ
1
−𝑑
1

) + 𝐷V (𝑡) ,

𝑦
𝑚
(𝑡) = 𝐶

1
𝑥 (𝑡
𝑘−ℎ
2
−𝑑
2

) ,

𝑦
𝑐
(𝑡) = 𝐶

2
𝑥 (𝑡) + 𝐸𝑢 (𝑡

𝑘−ℎ
1
−𝑑
1

) , 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1
) ,

𝑢 (𝑡
𝑘−ℎ
1
−𝑑
1

) = 𝑢 (𝐾𝑥 (𝑡
𝑘−ℎ−𝑑

)) ,

(8)

where ℎ = ℎ
1
+ ℎ
2
and 𝑑 = 𝑑

1
+ 𝑑
2
. Here, the triple (𝐴, 𝐵, 𝐶

1
)

is assumed to be completely controllable and observable.
Further, the sampled-data system (8) will be converted

to delta domain and without actuator delays. There are
two situations that should be considered concerning the
nonintegral part 𝑑 of the time delay: 𝑑 ∈ [0, 1] and 𝑑 ∈ [1, 2].
However, the derivation procedures of these two situations
are similar. So, for the sake of simplicity, the derivation
procedure of the former situation will be presented in what
follows.

Introducing the delta operator as

𝛿 (⋅) (𝑡
𝑘−𝑑
2

) ≜

{{{

{{{

{

(⋅) (𝑡
𝑘+1−𝑑

2

) − (⋅) (𝑡
𝑘−𝑑
2

)

𝑇
, 𝑇 ̸= 0

d (⋅) (𝑡)
d𝑡

, 𝑇 = 0

(9)

and letting 𝑡 = (𝑘 + 1 − 𝑑
2
)𝑇 and 𝑡

0
= (𝑘 − 𝑑

2
)𝑇 discretize the

sampled-data system (8) in the delta-domain form

𝛿𝑥 (𝑡
𝑘−𝑑
2

) = 𝐴𝑥 (𝑡
𝑘−𝑑
2

) + 𝐵
1
𝑢 [𝑡
𝑘−ℎ
1

]

+ 𝐵
2
𝑢 [𝑡
𝑘−ℎ
1
−1
] + 𝐷V (𝑡

𝑘−𝑑
2

) ,

𝑥 (𝑡
−𝑑
2

) = 𝛼
0
,

𝑦
𝑚
(𝑡
𝑘
) = 𝐶
1
𝑥 (𝑡
𝑘−ℎ
2
−𝑑
2

) ,

𝑦
𝑐
(𝑡
𝑘−𝑑
2

) = 𝐶
2
𝑥 (𝑡
𝑘−𝑑
2

) + 𝐸𝑢 [𝑡
𝑘−ℎ
1
−1
] .

(10)

Noting that the system (10) is the delta-domain sampled-
data system with actuator delays, for the convenience of
calculation, it will be transformed without actuator delays
using the model transformation approach. From the first
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difference equation in (10), it follows the analytical expression
of state response

𝑥 (𝑡
𝑘−𝑑
2

) = 𝐴
𝑘

𝑧
𝑥 (𝑡
−𝑑
2

) +

𝑘−1

∑
𝑗=0

𝐴
𝑘−1−𝑗

𝑧
𝐵𝑢 [𝑡
𝑗
]

+

𝑘−1

∑
𝑗=0

𝐴
𝑘−1−𝑗

𝑧
𝐷
𝑧
V (𝑡
𝑗−𝑑
2

) −

𝑘−1

∑
𝑗=𝑘−ℎ

1

𝐴
𝑘−1−𝑗

𝑧
𝐵
1
𝑢 [𝑡
𝑗
]

−

𝑘−1

∑
𝑗=𝑘−ℎ

1
−1

𝐴
𝑘−1−𝑗

𝑧
𝐵
2
𝑢 [𝑡
𝑗
] ,

(11)

where

𝐴 =
𝐴
𝑧
− 𝐼

𝑇
, 𝐵

1
=
𝐵
𝑧1

𝑇
, 𝐵

2
=
𝐵
𝑧2

𝑇
,

𝐷 =
𝐷
𝑧

𝑇
, 𝐴

𝑧
= e𝐴𝑇, 𝐵 = 𝐵

1
+ 𝐵
2
,

𝐵
1
= 𝐴
−ℎ
1

𝑧
𝐵
𝑧1
, 𝐵

2
= 𝐴
−ℎ
1
−1

𝑧
𝐵
𝑧2

𝐵
𝑧1
= ∫
(1−𝑑)𝑇

0

e𝐴𝑠d𝑠𝐵, 𝐵
𝑧2
= ∫
𝑇

(1−𝑑)𝑇

e𝐴𝑠d𝑠𝐵,

𝐷
𝑧
= ∫
𝑇

0

e𝐴𝑠d𝑠𝐷.

(12)

Consequently, define a new state vector as

𝑧 (𝑡
𝑘−𝑑
2

) = 𝑥 (𝑡
𝑘−𝑑
2

) +

𝑘−1

∑
𝑖=𝑘−ℎ

1

𝐴
𝑘−1−𝑖

𝑧
𝐵
1
𝑢 [𝑡
𝑖
]

+

𝑘−1

∑
𝑗=𝑘−ℎ

1
−1

𝐴
𝑘−1−𝑗

𝑧
𝐵
2
𝑢 [𝑡
𝑗
] .

(13)

Equation (10) yields the analytical expression of state
response for the transformed system

𝑧 (𝑡
𝑘−𝑑
2

) = 𝐴
𝑘

𝑧
𝑧 (𝑡
−𝑑
2

) +

𝑘−1

∑
𝑚=0

𝐴
𝑘−1−𝑚

𝑧
𝐵𝑢 [𝑡
𝑚
]

+

𝑘−1

∑
𝑙=0

𝐴
𝑘−1−𝑙

𝑧
𝐷
𝑧
V (𝑡
𝑙−𝑑
2

) ,

𝑧 (𝑡
−𝑑
2

) = 𝛼
0
,

(14)

which produces its state equation in delta-domain form

𝛿𝑧 (𝑡
𝑘−𝑑
2

) = 𝐴𝑧 (𝑡
𝑘−𝑑
2

) + 𝐵𝑢 [𝑡
𝑘
] + 𝐷V (𝑡

𝑘−𝑑
2

) ,

𝑧 (𝑡
−𝑑
2

) = 𝛼
0
.

(15)

Through the same way, defining the new measured and
controlled outputs

𝑦
𝑚
(𝑡
𝑘
) = 𝑦
𝑚
(𝑡
𝑘
)

+ 𝐶
1

[

[

𝑘−1

∑
𝑙=𝑘−ℎ

2

𝐴
𝑘−1−𝑙

𝑧
𝐷
𝑧
V (𝑡
𝑙−𝑑
2

) +

𝑘−1

∑
𝑖=𝑘−ℎ

𝐴
𝑘−1−𝑖

𝑧
𝐵
1
𝑢 [𝑡
𝑖
]

+

𝑘−1

∑
𝑗=𝑘−ℎ−1

𝐴
𝑘−1−𝑗

𝑧
𝐵
2
𝑢 [𝑡
𝑗
]]

]

,

𝑦
𝑐
(𝑡
𝑘−𝑑
2

)

= 𝑦
𝑐
(𝑡
𝑘−𝑑
2

)

+𝐶
2

[

[

𝑘−1

∑
𝑖=𝑘−ℎ

1

𝐴
𝑘−1−𝑖

𝑧
𝐵
1
𝑢 [𝑡
𝑖
] +

𝑘−1

∑
𝑗=𝑘−ℎ

1
−1

𝐴
𝑘−1−𝑗

𝑧
𝐵
2
𝑢 [𝑡
𝑗
]]

]

− 𝐸𝑢 [𝑡
𝑘−ℎ
1
−1
] ,

(16)

with 𝐶
1
= 𝐶
1
𝐴−ℎ2
𝑧

, the output equations of the transformed
system are got as follows

𝑦
𝑚
(𝑡
𝑘
) = 𝐶

1
𝑧 (𝑡
𝑘−𝑑
2

) ,

𝑦
𝑐
(𝑡
𝑘−𝑑
2

) = 𝐶
2
𝑧 (𝑡
𝑘−𝑑
2

) .

(17)

Then, the state equation (15) and the output equation (17)
consist the transformed equivalent sampled-data system in
delta domain without actuator delays:

𝛿𝑧 (𝑡
𝑘−𝑑
2

) = 𝐴𝑧 (𝑡
𝑘−𝑑
2

) + 𝐵𝑢 [𝑡
𝑘
] + 𝐷V (𝑡

𝑘−𝑑
2

) ,

𝑧 (𝑡
−𝑑
2

) = 𝛼
0
,

𝑦
𝑚
(𝑡
𝑘
) = 𝐶
1
𝑧 (𝑡
𝑘−𝑑
2

) ,

𝑦
𝑐
(𝑡
𝑘−𝑑
2

) = 𝐶
2
𝑧 (𝑡
𝑘−𝑑
2

) .

(18)

Furthermore, the road excitation should be described by
an exosystem in delta domain in order to employ the state-
space representation designing the OVC.

2.2. Road DisturbanceModeling. According to ISO 2631 stan-
dards, the road displacement power spectral density (PSD) is
usually approximately represented in the formulation of

𝑆 (Ω) = 𝐶
𝑠
Ω
−2

= 4
𝑘

× 10
−7

⋅ Ω
−2

, (19)

with Ω as the spatial frequency, 𝐶
𝑠
as the road roughness

constant, and 𝑘 as the sort of the road as shown in Table 1.
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Table 1: Road grades and PSDs.

Road grade A B C D E
𝐶
𝑠
(×10−7m3/rad) 1 4 16 64 245

Road sort 𝑘 0 1 2 3 4

Due to the low-pass-filter characteristic of vehicle tires
and suspension, the road displacement 𝑥

𝑟𝑖
(𝑡) (𝑖 = 𝑓, 𝑟) can

be approximately simulated by a finite Fourier series sum

𝑥
𝑟𝑖
(𝑡) =

𝑝

∑
𝑗=1

𝜉
𝑗
(𝑡) ≜

𝑝

∑
𝑗=1

𝜙
𝑗
sin (𝜔

𝑗
𝑡 + 𝜃
𝑗
) , (20)

where 𝜙
𝑗
= 2𝑘/103𝑗√𝑙/10𝜋 are the amplitudes, 𝜔

𝑗
= 𝑗𝜔
0

are the frequencies with the time frequency internal 𝜔
0
=

2𝜋V
0
/𝑙, 𝜃
𝑗
are the random phases which follow a uniform

distribution in [0, 2𝜋), V
0
is a constant horizontal velocity, 𝑙 is

the given road segment length, and positive integer 𝑝 limits
the considered frequency band.

Letting the disturbance state vector

𝑤 (𝑡)

=[𝜉
1
(𝑡) , 𝜉
2
(𝑡) , . . . , 𝜉

𝑝
(𝑡) , 𝜉̇
1
(𝑡) , 𝜉̇
2
(𝑡) , . . . , 𝜉̇

𝑝
(𝑡)]
𝑇

∈ R
𝑝

,

(21)

the road velocity V(𝑡) = [𝑥̇
𝑟𝑓
(𝑡), 𝑥̇
𝑟𝑟
(𝑡)]
𝑇 then is described by

the exosystem

𝑤̇ (𝑡) = 𝐺𝑤 (𝑡) ,

V (𝑡) = 𝐹𝑤 (𝑡)
(22)

with

𝐺 = [
0 I
𝑝

𝐺
1

0
] ∈ R

2𝑝×2𝑝

,

𝐺
1
= diag {−𝜔2

1
, −𝜔
2

2
, . . . , −𝜔

2

𝑝
} ∈ R

𝑝×𝑝

,

𝐹 = [
0
𝑝
1 ⋅ ⋅ ⋅ 1

0
𝑝
1 ⋅ ⋅ ⋅ 1

] ∈ R
2×2𝑝

,

(23)

in which 0 and I
𝑝
represent the zero matrix and the 𝑝-

order identity matrix, respectively. Using delta operator (9),
exosystem (22) is transformed into the delta-domain form

𝛿𝑤 (𝑡
𝑘−𝑑
2

) = 𝐺𝑤 (𝑡
𝑘−𝑑
2

) ,

V (𝑡
𝑘−𝑑
2

) = 𝐹𝑤 (𝑡
𝑘−𝑑
2

) ,

V (𝑡
𝑘
) = 0, 𝑘 < 0,

(24)

where 𝐺 = (e𝐺𝑇 − 𝐼)/𝑇.
Hence, both the original system and the exosystem are

transformed into the delta-domain sampled-data systems so
that we would design the OVC for them.

2.3. Problem Formulation. The principal variables for the
evaluation of the suspension system are sprung mass accel-
eration 𝑥̈

𝑐
and 𝜙̈ determining the ride comfort, suspension

deflection 𝑥
𝑠𝑖
− 𝑥
𝑢𝑖

indicating the limit of vehicle body
motion, and tire deflection 𝑥

𝑢𝑖
−𝑥
𝑟𝑖
ensuring the road holding

ability. The purpose is to reduce the acceleration of vehicle
body and decrease the dynamic tire forces for improving the
road holding ability and the stability of vehicles facing road
excitation.

In practice, control 𝑢 and controlled output 𝑦
𝑐
are unable

synchronously zero so that the general infinite-horizon per-
formance index is not convergent. In this case, an average
infinite-horizon performance index could be chosen as

𝐽 (⋅) = lim
𝑁→∞

1

𝑁

𝑁

∑
𝑘=0

[𝑧
𝑇

(𝑡
𝑘−𝑑
2

)𝑄𝑧 (𝑡
𝑘−𝑑
2

) + 𝑢
𝑇

[𝑡
𝑘
] 𝑅𝑢 [𝑡

𝑘
]]

(25)

with 𝑄 = 𝐶𝑇
2
𝑄
0
𝐶
2
, 𝑄
0
= diag{𝑞

𝑖
} (𝑖 = 1, 2, . . . , 6) as positive

semidefinite matrices and𝑅 = diag{𝑟
𝑗
} (𝑗 = 1, 2) as a positive

definite matrix, assuming that 𝐶𝑇𝐶 = 𝑄 with 𝐶 an arbitrary
matrix and the triple (𝐴, 𝐵, 𝐶) completely controllable and
observable.

Remark 1. When 𝑑 ∈ [1, 2], the delta-domain sampled-data
system is described by

𝛿𝑥 (𝑡
𝑘−𝑑
2

) = 𝐴𝑥 (𝑡
𝑘−𝑑
2

) + 𝐵
1
𝑢 [𝑡
𝑘−ℎ
1
−1
]

+ 𝐵
2
𝑢 [𝑡
𝑘−ℎ
1
−2
] + 𝐷V (𝑡

𝑘−𝑑
2

) ,

𝑥 (𝑡
−𝑑
2

) = 𝛼
0
,

𝑦
𝑚
(𝑡
𝑘
) = 𝐶
1
𝑥 (𝑡
𝑘−ℎ
2
−𝑑
2

) ,

𝑦
𝑐
(𝑡
𝑘−𝑑
2

) = 𝐶
2
𝑥 (𝑡
𝑘−𝑑
2

) + 𝐸𝑢 [𝑡
𝑘−ℎ
1
−2
] ,

(26)

with

𝐵
1
=
1

𝑇
∫
(𝑑−1)𝑇

0

e𝐴𝑠d𝑠𝐵, 𝐵
2
=
1

𝑇
∫
𝑇

(𝑑−1)𝑇

e𝐴𝑠d𝑠𝐵. (27)

The derivation procedure of this situation is similar to that of
𝑑 ∈ [0, 1]. It is omitted for the simplification reason.

3. Optimal Vibration Controller Design

3.1. Sampled-Data OVC Design

Theorem 2. Consider the optimal vibration control problem
described by the time-delay sampled-data system (10) under
disturbance (24) respecting the average performance index
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(25). The optimal vibration control law is existent and unique
and given by

𝑢
∗

[𝑡
𝑘
] = − 𝑅

−1

𝐵
𝑇

(𝑇𝐴
𝑇

+ 𝐼)
−1

×
{

{

{

(𝑃 − 𝑇𝑄)[

[

𝑥 (𝑡
𝑘−𝑑
2

) +

𝑘−1

∑
𝑖=𝑘−ℎ

1

𝐴
𝑘−1−𝑖

𝑧
𝐵
1
𝑢 [𝑡
𝑖
]

+

𝑘−1

∑
𝑗=𝑘−ℎ

1
−1

𝐴
𝑘−1−𝑗

𝑧
𝐵
2
𝑢 [𝑡
𝑗
]]

]

+𝑃
1
𝑤(𝑡
𝑘−𝑑
2

)
}

}

}

,

(28)

where 𝑃 is the unique positive definite solution of Riccati
equation:

(𝑇𝐴
𝑇

+ 𝐼)𝑃(𝐼 + 𝑇𝐵𝑅
−1

𝐵
𝑇

𝑃)
−1

(𝑇𝐴 + 𝐼) + 𝑇𝑄 = 𝑃,

(29)

𝑃
1
is the unique solution of Stein equation:

(𝑇𝐴
𝑇

+ 𝐼)𝑇 [𝐼 − 𝑇𝑃(𝐼 + 𝑇𝐵𝑅
−1

𝐵
𝑇

𝑃)
−1

𝐵𝑅
−1

𝐵
𝑇

] 𝑃
1
𝐺 − 𝑃
1

= −𝑇(𝑇𝐴
𝑇

+ 𝐼)𝑃(𝐼 + 𝑇𝐵𝑅
−1

𝐵
𝑇

𝑃)
−1

𝐷𝐹.

(30)

Proof. According to Pontryagin’s minimum principle, the
optimal control problem combined by the system (18) and
the performance index (25) results in the two-point boundary
value problem in delta-operator form:

[

[

𝛿𝑧 (𝑡
𝑘−𝑑
2

)

𝛿𝜆 (𝑡
𝑘−𝑑
2

)

]

]

= [

[

𝐴 −𝐵𝑅−1𝐵
𝑇

−𝑄 −𝐴
T
]

]

[

[

𝑧 (𝑡
𝑘−𝑑
2

)

𝜆 (𝑡
𝑘+1−𝑑

2

)

]

]

+ [
𝐷

0
] V (𝑡
𝑘−𝑑
2

) ,

[
𝑧 (𝑡
−𝑑
2

)

𝜆 (𝑡
∞
)
] = [

𝛼
0

0
] ,

(31)

which yields

𝑧 (𝑡
𝑘+1−𝑑

2

) = (𝑇𝐴 + 𝐼) 𝑧 (𝑡
𝑘−𝑑
2

)

− 𝑇𝐵𝑅
−1

𝐵
𝑇

𝜆 (𝑡
𝑘+1−𝑑

2

) + 𝐷V (𝑡
𝑘−𝑑
2

) ,

(32a)

𝜆 (𝑡
𝑘−𝑑
2

) = 𝑇𝑄𝑧 (𝑡
𝑘−𝑑
2

) + (𝑇𝐴
𝑇

+ 𝐼) 𝜆 (𝑡
𝑘+1−𝑑

2

) , (32b)

with the optimal control law

𝑢
∗

[𝑡
𝑘
] = −𝑅

−1

𝐵
𝑇

𝜆 (𝑡
𝑘+1−𝑑

2

) . (33)

From (31) or (32a) and (32b) it is clear that 𝜆 and 𝑧 are the
linear relationship, so denote the costate vector

𝜆 (𝑡
𝑘−𝑑
2

) = 𝑃𝑧 (𝑡
𝑘−𝑑
2

) + 𝑃
1
𝑤(𝑡
𝑘−𝑑
2

) . (34)

Consequently, on one hand, together with (34) and (32a), it
gives

𝑧 (𝑡
𝑘+1−𝑑

2

) = (𝐼 + 𝐵𝑅
−1

𝐵
𝑇

𝑃)
−1

× [ (𝑇𝐴 + 𝐼) 𝑧 (𝑡
𝑘−𝑑
2

)

+ (𝐷𝐹 − 𝐵𝑅
−1

𝐵
𝑇

𝑃
1
𝐺)𝑤 (𝑡

𝑘−𝑑
2

)] .

(35)

On the other hand, from (34) and (32b), the following
equation holds:

(𝑃 − 𝑇𝑄) 𝑧 (𝑡
𝑘−𝑑
2

) = (𝑇𝐴
𝑇

+ 𝐼)𝑃𝑧 (𝑡
𝑘+1−𝑑

2

)

+ [(𝑇𝐴
𝑇

+ 𝐼)𝑃
1
𝐺 − 𝑃
1
]𝑤 (𝑡

𝑘−𝑑
2

) .

(36)

Substituting (35) into (36) yields

[(𝑇𝐴
𝑇

+ 𝐼)𝑃(𝐼 + 𝑇𝐵𝑅
−1

𝐵
𝑇

𝑃)
−1

× (𝑇𝐴 + 𝐼) + 𝑇𝑄 − 𝑃] 𝑧 (𝑡
𝑘−𝑑
2

)

+ [ (𝑇𝐴
𝑇

+ 𝐼)𝑃
1
𝐺 − 𝑃
1

− (𝑇𝐴
𝑇

+ 𝐼)𝑃(𝐼 + 𝑇𝐵𝑅
−1

𝐵
𝑇

𝑃)
−1

×𝑇 (𝐵𝑅
−1

𝐵
𝑇

𝑃
1
𝐺 − 𝐷𝐹) ]𝑤 (𝑡

𝑘−𝑑
2

) = 0.

(37)

Due to 𝑧(𝑡
𝑘−𝑑
2

) and 𝑤(𝑡
𝑘−𝑑
2

) arbitrarily satisfying (37), it
results in Riccati equation (29) and Stein equation (30).

Further, the uniqueness is to be proved. According to
linear optimal regulator theory, there exists a unique positive
definite solution 𝑃 for Riccati equation (26) and the closed-
loop system of (18) is asymptotically stable, which implies
that matrix

(𝑇𝐴 + 𝐼)
𝑇

𝑇[𝐼 − 𝑇𝑃(𝐼 + 𝑇𝐵𝑅
−1

𝐵
𝑇

𝑃)
−1

𝐵𝑅
−1

𝐵
𝑇

] (38)

is Hurwitz, that is,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑇𝜇
𝑖
((𝑇𝐴 +𝐼)

𝑇

𝑇[𝐼 − 𝑇𝑃(𝐼 +𝑇𝐵𝑅
−1

𝐵
𝑇

𝑃)
−1

𝐵𝑅
−1

𝐵
𝑇

]) +1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1

(39)

for 𝑖 = 1, 2, . . . , 𝑛. Moreover, since road disturbances are
persistent and not asymptotically stable, this means that

󵄨󵄨󵄨󵄨󵄨
𝑇𝜇
𝑗
(𝐺) + 1

󵄨󵄨󵄨󵄨󵄨
= 1 (40)
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Figure 2: Acceleration responses of OLS.
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(b) Rear suspension deflection

Figure 3: Suspension deflection responses of OLS.

for 𝑗 = 1, 2, . . . , 𝑝. Therefore, from (39) and (40), the follow-
ing inequality holds:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
[𝑇𝜇
𝑖
((𝑇𝐴 + 𝐼)

𝑇

𝑇

× [𝐼 − 𝑇𝑃(𝐼 + 𝑇𝐵𝑅
−1

𝐵
𝑇

𝑃)
−1

𝐵𝑅
−1

𝐵
𝑇

]) + 1]

⋅ [𝑇𝜇
𝑗
(𝐺) + 1]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 1.

(41)

As a result, Stein equation (30) has the unique solutionmatrix
𝑃
1
[16]. The uniqueness of 𝑃 and 𝑃

1
leads to the uniqueness

of OVC (28). This ends the proof.

3.2. Physical Realization of OVC. The optimal control law
𝑢∗[𝑡
𝑘
] (28) contains the physically unrealizable distur-

bance state 𝑤(𝑡
𝑘−𝑑
2

) and some unmeasurable variables in
𝑥(𝑡
𝑘−𝑑
2

) for economical or practical reasons. In this case, a
reduced-order observer can be constructed to reconstruct
theses states. Defining the augmented vector 𝜁(𝑡

𝑘−𝑑
2

) =

[𝑧𝑇(𝑡
𝑘−𝑑
2

), 𝑤𝑇(𝑡
𝑘−𝑑
2

)]
𝑇 and 𝜂(𝑡

𝑘−𝑑
2

) = [𝑦
𝑇

𝑚
(𝑡
𝑘
), V𝑇(𝑡

𝑘−𝑑
2

)]
𝑇

yields the following augmented system in delta domain
combined by (18) and (24):

𝛿𝜁 (𝑡
𝑘−𝑑
2

) = 𝐴̃𝜁 (𝑡
𝑘−𝑑
2

) + 𝐵̃𝑢 [𝑡
𝑘
] ,

𝜂 (𝑡
𝑘−𝑑
2

) = 𝐶̃𝜁 (𝑡
𝑘−𝑑
2

) ,

(42)

with

𝐴̃ = [
𝐴 𝐷𝐹

0 𝐺
] , 𝐵̃ = [

𝐵

0
] , 𝐶̃ = [

𝐶
1
0

0 𝐹
] . (43)

The pair (𝐴̃, 𝐶̃) can be proved to be completely observable.

Choosing an arbitrary matrix𝐻 such that Γ = [𝐶̃𝑇 𝐻𝑇]
𝑇

is nonsingular and defining Π = Γ−1 = [Π
1
Π
2
] give 𝐶̃Γ−1 =

[𝐼 0]. Let the nonsingular transformation be as follows:

𝜁 (𝑡
𝑘−𝑑
2

) = Γ𝜁 (𝑡
𝑘−𝑑
2

) ≜ [

[

𝜁
1
(𝑡
𝑘−𝑑
2

)

𝜁
2
(𝑡
𝑘−𝑑
2

)

]

]

, (44)

where 𝜂(𝑡
𝑘−𝑑
2

) = 𝜁
1
(𝑡
𝑘−𝑑
2

). The new state equations follow in
the delta-domain form:

𝛿𝜁
2
(𝑡
𝑘−𝑑
2

) = 𝐻𝐴̃Π
2
𝜁
2
(𝑡
𝑘−𝑑
2

) + 𝐻𝐴̃Π
1
𝜂 (𝑡
𝑘−𝑑
2

) + 𝐻𝐵̃𝑢 [𝑡
𝑘
] ,

𝛿𝜂 (𝑡
𝑘−𝑑
2

) = 𝐶̃𝐴̃Π
2
𝜁
2
(𝑡
𝑘−𝑑
2

) + 𝐶̃𝐴̃Π
1
𝜂 (𝑡
𝑘−𝑑
2

) + 𝐶̃𝐵̃𝑢 [𝑡
𝑘
] .

(45)

Defining a new variable

𝜓 (𝑡
𝑘−𝑑
2

) = 𝜁
2
(𝑡
𝑘−𝑑
2

) − 𝐿𝜂 (𝑡
𝑘−𝑑
2

) (46)

with 𝐿 the gain matrix to be selected, (46) and (45) give

𝛿𝜓 (𝑡
𝑘−𝑑
2

) = (𝐻 − 𝐿𝐶̃) [𝐴̃Π
2
𝜓 (𝑡
𝑘−𝑑
2

) + 𝐴̃ (Π
1
+ Π
2
𝐿)

× 𝜂 (𝑡
𝑘−𝑑
2

) + 𝐵̃𝑢 [𝑡
𝑘
]] ,

𝜁
2
(𝑡
𝑘−𝑑
2

) = 𝜓 (𝑡
𝑘−𝑑
2

) + 𝐿𝜂 (𝑡
𝑘−𝑑
2

) .

(47)
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Figure 4: Tire deflection responses of OLS.
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Figure 5: Acceleration responses under OVC with 𝜏 = 0.015 s, 𝜎 = 0.02 s.

Noting that

𝜁 (𝑡
𝑘−𝑑
2

) = Π
1
𝜂 (𝑡
𝑘−𝑑
2

) + Π
2
𝜁
2
(𝑡
𝑘−𝑑
2

) (48)

and substituting (47) into (48) yield

𝛿𝜓 (𝑡
𝑘−𝑑
2

) = (𝐻 − 𝐿𝐶̃) [𝐴̃Π
2
𝜓 (𝑡
𝑘−𝑑
2

) + 𝐴̃ (Π
1
+ Π
2
𝐿)

× 𝜂 (𝑡
𝑘−𝑑
2

) + 𝐵̃𝑢 [𝑡
𝑘
]] ,

𝜁 (𝑡
𝑘−𝑑
2

) = Π
2
𝜓 (𝑡
𝑘−𝑑
2

) + (Π
1
+ Π
2
𝐿) 𝜂 (𝑡

𝑘−𝑑
2

) .

(49)

Corresponding to (49), the reduced-order observer is con-
structed:

𝛿𝜓̂ (𝑡
𝑘−𝑑
2

) = (𝐻 − 𝐿𝐶̃) [𝐴̃Π
2
𝜓̂ (𝑡
𝑘−𝑑
2

) + 𝐴̃ (Π
1
+ Π
2
𝐿)

× 𝜂 (𝑡
𝑘−𝑑
2

) + 𝐵̃𝑢 [𝑡
𝑘
]] ,

𝜁̂ (𝑡
𝑘−𝑑
2

) = Π
2
𝜓̂ (𝑡
𝑘−𝑑
2

) + (Π
1
+ Π
2
𝐿) 𝜂 (𝑡

𝑘−𝑑
2

) ,

(50)

where 𝜓̂(𝑡
𝑘−𝑑
2

) and 𝜁̂(𝑡
𝑘−𝑑
2

) are the state and output of the
observer, respectively. Denoting observer errors 𝜓̃(𝑡

𝑘−𝑑
2

) =

𝜓̂(𝑡
𝑘−𝑑
2

) − 𝜓(𝑡
𝑘−𝑑
2

) and 𝑒(𝑡
𝑘−𝑑
2

) = 𝜁̂(𝑡
𝑘−𝑑
2

) − 𝜁(𝑡
𝑘−𝑑
2

), from
(50) and (49), the error state equation is got:

𝛿𝜓̃ (𝑡
𝑘−𝑑
2

) = (𝐻 − 𝐿𝐶̃) 𝐴̃Π
2
𝜓̃ (𝑡
𝑘−𝑑
2

) ,

𝑒 (𝑡
𝑘−𝑑
2

) = Π
2
𝜓̃ (𝑡
𝑘−𝑑
2

) .

(51)

Hence, the error equation gain 𝐿 should be regulated tomake
(51) asymptotically stable, such that lim

𝑘→∞
𝑒(𝑡
𝑘−𝑑
2

) = 0.

The observable pair (𝐴̃, 𝐶̃) results in the observable pair
(𝐶̃𝐴̃Π

2
, 𝐻𝐴̃Π

2
). Consequentially, the gain 𝐿 is enabled to

make the eigenvalues of (𝐻 − 𝐿𝐶̃)𝐴̃Π
2
assigned in the left-

half complex plane, which means that error equation (51) is
asymptotically stable. Therefore, the reconstructed states can
replace the unavailable ones. Through this mean, states in
OVC (28) are replaced by the augmented state

𝑢 [𝑡
𝑘
] = −𝑅

−1

𝐵
𝑇

(𝑇𝐴
𝑇

+ 𝐼)
−1

[𝑃 − 𝑇𝑄 𝑃
1
] 𝜁̂ (𝑡
𝑘−𝑑
2

) ,

(52)

which gives the dynamical control law

𝛿𝜓̂ (𝑡
𝑘−𝑑
2

) = (𝐻 − 𝐿𝐶̃) [𝐴̃Π
2
𝜓̂ (𝑡
𝑘−𝑑
2

) + 𝐴̃ (Π
2
𝐿 + Π

1
)

× 𝜂 (𝑡
𝑘−𝑑
2

) + 𝐵̃𝑢 [𝑡
𝑘
] ] ,

𝑢 [𝑡
𝑘
] = −𝑅

−1

𝐵
𝑇

(𝑇𝐴
𝑇

+ 𝐼)
−1

[𝑃 − 𝑇𝑄 𝑃
1
]

× [Π
2
𝜓̂ (𝑡
𝑘−𝑑
2

) + (Π
1
+ Π
2
𝐿) 𝜂 (𝑡

𝑘−𝑑
2

)] ,

(53)

with 𝜂(𝑡
𝑘−𝑑
2

) = [𝑦
𝑇

𝑚
(𝑡
𝑘
), V𝑇(𝑡

𝑘−𝑑
2

)]
𝑇 in which 𝑦

𝑚
(𝑡
𝑘
) is

defined in (16).

4. Simulation Examples

In this section, a half-car suspension model will be employed
to carry out the simulations. We will take two cases of the
simulations: firstly, to demonstrate the closed-loop matrices
of the continues time, discrete time, and the delta domain
taking different sampling period𝑇 in order to verify the delta-
domain matrix enables approximating to the continues-time
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Figure 6: Suspension deflection responses under OVC with 𝜏 = 0.015 s, 𝜎 = 0.02 s.
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Figure 7: Tire deflection responses under OVC with 𝜏 = 0.015 s, 𝜎 = 0.02 s.
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Figure 8: Control inputs of OVC with 𝜏 = 0.015 s, 𝜎 = 0.02 s.

Table 2: Parameters of a half-car suspension.

Parameter Variable Value Unit
Sprung mass 𝑚

𝑠
500 Kg

Sprung mass moment of inertia about pitch axis 𝐼 910 Kg ⋅m2

Front unsprung mass 𝑚
𝑢𝑓

30 Kg
Rear unsprung mass 𝑚

𝑢𝑟
40 Kg

Front suspension spring 𝑘
𝑓

10,000 N/m
Rear suspension spring 𝑘

𝑟
10,000 N/m

Front tire spring 𝑘
𝑡𝑓

100,000 N/m
Rear tire spring 𝑘

𝑡𝑟
100,000 N/m

Front suspension damper 𝑏
𝑓

1,000 N ⋅ s/m
Rear suspension damper 𝑏

𝑟
1,000 N ⋅ s/m

Distance from the center of mass to the front suspension attachment point 𝑙
𝑓

1.25 M
Distance from the center of mass to the rear suspension attachment point 𝑙

𝑟
1.45 M
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one as 𝑇 decreases; secondly, to apply the designed OVC to
the half-car suspension model with delays comparing with
the OLS in order to verify that the OVC guarantees the
system stability and the desired suspension performance.The
parameter values are shown in Table 2 (refer to in [15]).

To generate D Grade road profile, select 𝐶
𝑠
= 64 ×

10−7m3/rad and 𝑘 = 3. Setting V
0
= 20m/s, 𝑙 = 400m, and

𝑝 = 200 in (20) takes the frequency band from 0.05Hz to
20Hz. Take the performance index (24) with 𝑞

1
= 𝑞
2
= 10,

𝑞
3
= 𝑞
4
= 103, 𝑞

5
= 𝑞
6
= 100, 𝑟

1
= 𝑟
2
= 10−3, and delays

𝜏 = 0.015 s, 𝜎 = 0.02 s.

Case 1. Taking different sampling periods 𝑇 = 2ms, 0.2ms,
0.02ms, the relative closed-loop matrices of continues-time
𝐴
𝑐
, discrete-time 𝐴

𝑐𝑧
, and delta-domain 𝐴

𝑐𝛿
are listed from

(54) to (56c); respectively.

(i) 𝐴
𝑐
is the continuous-time closed-loop matrix:

𝐴
𝑐
=

[
[
[
[
[
[
[
[
[
[

[

−7.2 135.7 −18.4 260.9 −0.8 380.6 −5 −0.5

−17.6 113.6 118.1 221.3 −3.2 368.7 −1.1 −1.8

4.5 −16.7 −39.8 −32.9 0.7 −62.1 0.8 0.2

17.4 −111.9 −116.7 −218.1 3.1 −362.3 1.1 1.7

141 −2223.8 −418.1 −4215.2 34.5 −7390.5 56 13.8

−1.9 12.8 13.5 19 −0.3 33 0 −0.4

544.3 −127.5 −5667.5 −295.7 63.7 −1220.3 −2.3 6.3

148.9 −711.3 −995.1 −4372.8 26.7 −3084.4 9.4 −18.7

]
]
]
]
]
]
]
]
]
]

]

. (54)

(ii)𝐴
𝑐𝑧
is the discrete-time closed-loopmatrix setting𝑇 =

2ms, 0.2ms, 0.02ms:

𝑇 = 2ms,

𝐴
𝑐𝑧
=

[
[
[
[
[
[
[
[
[
[

[

0.9826 0.2581 0.0035 0.4948 −0.0019 0.7223 −0.0098 −0.0009

−0.0342 1.2207 0.2305 0.4353 −0.0061 0.7161 −0.0020 −0.0034

0.0094 −0.0325 0.9160 −0.0644 0.0015 −0.1222 0.0015 0.0003

0.0337 −0.2174 −0.2277 0.5710 0.0061 −0.7038 0.0020 0.0034

0.3096 −4.3354 −1.2278 −8.2039 1.0709 −14.4298 0.1099 0.0272

−0.0037 0.0260 0.0266 0.0406 −0.0006 1.0675 −0.0001 −0.0008

1.0441 −0.2057 −10.9210 −0.5015 0.1222 −2.2585 0.9883 0.0121

0.1870 −0.7301 −1.2585 −7.2354 0.0336 −3.8741 0.0112 0.9538

]
]
]
]
]
]
]
]
]
]

]

,
(55a)

𝑇 = 0.2ms,

𝐴
𝑐𝑧
=

[
[
[
[
[
[
[
[
[
[

[

0.9985 0.0270 −0.0033 0.0519 −0.0002 0.0757 −0.0010 −0.0001

−0.0035 1.0227 0.0236 0.0442 −0.0006 0.0735 −0.0002 −0.0003

0.0009 −0.0033 0.9920 −0.0066 0.0001 −0.0124 0.0002 0.0000

0.0035 −0.0223 −0.0233 0.9565 0.0006 −0.0723 0.0002 0.0003

0.0285 −0.4436 −0.0877 −0.8408 1.0069 −1.4746 0.0112 0.0028

−0.0004 0.0026 0.0027 0.0038 −0.0001 1.0066 0.0000 −0.0001

0.1084 −0.0250 −1.1295 −0.0582 0.0127 −0.2422 0.9995 0.0013

0.0286 −0.1351 −0.1915 −0.8591 0.0051 −0.5932 0.0018 0.9962

]
]
]
]
]
]
]
]
]
]

]

,
(55b)

𝑇 = 0.02ms,

𝐴
𝑐𝑧
=

[
[
[
[
[
[
[
[
[
[

[

0.9999 0.0027 −0.0004 0.0052 0.0000 0.0076 −0.0001 0.0000

−0.0004 1.0023 0.0024 0.0044 −0.0001 0.0074 0.0000 0.0000

0.0001 −0.0003 0.9992 −0.0007 0.0000 −0.0012 0.0000 0.0000

0.0003 −0.0022 −0.0023 0.9956 0.0001 −0.0072 0.0000 0.0000

0.0028 −0.0445 −0.0084 −0.0843 1.0007 −0.1478 0.0011 0.0003

0.0000 0.0003 0.0003 0.0004 0.0000 1.0007 0.0000 0.0000

0.0109 −0.0025 −0.1133 −0.0059 0.0013 −0.0244 1.0000 0.0001

0.0030 −0.0142 −0.0198 −0.0873 0.0005 −0.0615 0.0002 0.9996

]
]
]
]
]
]
]
]
]
]

]

.
(55c)
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(iii) 𝐴
𝑐𝛿

is the delta-domain closed-loop matrix setting
𝑇 = 2ms, 0.2ms, 0.02ms:

𝑇 = 2ms,

𝐴
𝑐𝛿
=

[
[
[
[
[
[
[
[
[
[

[

−8.7 129.1 1.7 247.4 −0.9 361.2 −4.9 −0.5

−17.1 110.4 115.2 217.7 −3.1 358 −1 −1.7

4.7 −16.2 −42 −32.2 0.8 −61.1 0.8 0.2

16.9 −108.7 −113.8 −214.5 3 −351.9 1 1.7

154.8 −2167.7 −613.9 −4101.9 35.4 −7214.9 55 13.6

−1.9 13 13.3 20.3 −0.3 33.7 0 −0.4

522 −102.8 −5460.5 −250.7 61.1 −1129.2 −5.9 6

93.5 −365.1 −629.3 −3617.7 16.8 −1937.1 5.6 −23.1

]
]
]
]
]
]
]
]
]
]

]

,
(56a)

𝑇 = 0.2ms,

𝐴
𝑐𝛿
=

[
[
[
[
[
[
[
[
[
[

[

−7.4 135 −16.3 259.5 −0.8 378.6 −0.5 −0.5

−17.6 113.3 117.9 221 −3.2 367.6 −1.1 −1.7

4.6 −16.6 −40 −32.9 0.7 −62 0.8 0.2

17.4 −111.6 −116.5 −217.7 3.1 −361.3 1.1 1.7

142.5 −2218.2 −438.3 −4203.8 34.6 −7372.8 55.9 13.8

−1.9 12.9 13.5 19.2 −0.3 33.1 0 −0.4

542.2 −125 −5647.6 −291.1 63.4 −1211.2 −2.7 6.3

143.2 −675.5 −957.6 −4295.4 25.7 −2966.1 9 −19.1

]
]
]
]
]
]
]
]
]
]

]

,
(56b)

𝑇 = 0.02ms,

𝐴
𝑐𝛿
=

[
[
[
[
[
[
[
[
[
[

[

−7.2 135.6 −18.2 260.8 −0.8 380.4 −5 −0.5

−17.6 113.6 118.1 221.3 −3.2 368.6 −1.1 −1.8

4.5 −16.7 −39.8 −32.9 0.7 −62.1 0.8 0.2

17.4 −111.9 −116.7 −218 3.1 −362.2 1.1 1.7

141.2 −2223.3 −420.2 −4214.1 34.6 −7388.7 56 13.8

−1.9 12.8 13.5 19 −0.3 33 0 −0.4

544.1 −127.2 −5665.5 −295.2 63.7 −1219.4 −2.3 6.3

148.3 −707.7 −991.3 −4365 26.6 −3072.6 9.4 −18.7

]
]
]
]
]
]
]
]
]
]

]

.
(56c)

Comparing with the continuous-time closed-loopmatrix
(54), from (55a) to (55c) we can see the discretized matrices
approach to the unit matrix as the sampling period 𝑇

decreases; from (56a) to (56c) we can see that the delta-
domain matrices approach to the original continuous-time
matrix (54) as 𝑇 decreases. Evidently, the delta-domain
approach is more appropriate for the high-sampling IVNs
system.

Case 2. Setting sampling period 𝑇 = 0.2 s and comparing
with the responses of the accelerations, deflections of sus-
pension and tire, and control input of OLS shown in Figures
2, 3, and 4, the suspension responses controlled by OVC are
shown in Figures 5, 6, 7, and 8.

System responses in Figures 2–4 show that they diverged
when without control (of OLS). On the contrary, in Fig-
ures 5–8, when the suspension was controlled under OVC,
the suspension responses were stabilized. Moreover, they
achieved relatively low magnitude and satisfied the desired
requirement.

5. Conclusions

This paper has presented the OVC design for sampled-
data system with time delays with its application to a
half-car suspension using delta-domain approach. Through
this approach, the built model provides more realistic and
appropriate property. The delay compensators guarantee
the closed-loop stability and requested performance. The
simulation has demonstrated that the designed controller
can efficiently make the system performance achieve the
desired goal and the design approach proposed in this study
is effective and feasible.
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