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We discuss the construction of solutions to the inverse Cauchy problem by using characteristics.

1. Forward-in-Time Motion

The goal of the present paper is to present a new approach
to the construction of asymptotic (approximating) solutions
for parabolic PDE by using bicharacteristics. This approach
allows one to construct global-in-time solutions not only to
the usual Cauchy problems, but also for the inverse problems.
We will work with Kolmogorov-Feller-type equations with
diffusion and jump terms. The equation under consideration
has the form:
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(1)

where 𝑃(𝑥, 𝜉) is the symbol of the Kolmogorov-Feller opera-
tor and 𝜀 → +0 is a small parameter characterizing the fre-
quency and the amplitude of jumps of the Markov stochastic
process with transition probability given by 𝑃(𝑥, 𝜉). To be
more precise, we will keep in mind the following form of
𝑃(𝑥, 𝜉):

𝑃 (𝑥, 𝜉) = (𝐴 (𝑥) 𝜉, 𝜉) + (𝐵 (𝑥) , 𝜉)

+ ∫

R𝑛
(𝑒

𝑖(𝜉,])
− 1) 𝜇 (𝑥, 𝑑]) ,

(2)

where 𝐴(𝑥) is a positive smooth matrix and 𝜇(𝑥, 𝑑]) is a
family of positive bounded measures smooth in 𝑥 such that

∫

R𝑛
]
𝑖
𝜇 (𝑥, 𝑑]) = 0, 𝑖 = 1, . . . , 𝑛, (3)

and 𝐵(𝑥) is smooth in 𝑥. The construction of a forward-in-
time global asymptotic solution to equations of this type was
developed byMaslov, [1–3]; for a version of this construction,
see also [4–6]. Maslov’s approach is based on ideas similar to
the ideas used in his famous canonical operator construction
(or in the later and similar theory of Fourier integral opera-
tors). This construction is based on some integral represen-
tations and cannot be used to construct backward-in-time
solutions. Another approach to the construction of global
asymptotic solutions was suggested in [7] and is based on
the construction of generalized solutions to the continuity
equation in a discontinuous velocity field [8].

In the present paper, we develop an algorithm for con-
structing asymptotic solutions. Some steps of this algorithm
are rigorously justified only in the one-dimensional case,
but all the required facts can be checked “experimentally,”
while the problem is considered in themultidimensional case.
Therefore, we give general formulations but sometimes prove
them only in the one-dimensional case.
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We assume that the solutions under consideration admit
the following limits:

(1) the logarithmic pointwise limit lim
𝜀→0

(−𝜀 ln 𝑢). We
denote this limit by 𝑆 = 𝑆(𝑥, 𝑡) and assume that it is a
piecewise smooth function with bounded first deriv-
atives and singular support in the form of a stratified
manifold𝑀.

(2) the weak limit of the expression exp(2𝑆/𝜀)𝑢2. We
denote it by 𝜌 and assume that 𝜌 is the sum of a func-
tion smooth outside𝑀 (𝜌reg) and theDirac 𝛿 function
on 𝑀. Note that here we deal with the limit in the
weighted weak sense.

If 𝑆 and 𝜌 are smooth functions, then the following rep-
resentation is true (in the usual sense):

𝑢 = exp(−𝑆
𝜀

)
√
𝜌reg (1 + 𝑜 (𝜀)) .

(4)

Definition 1. A solution to the Cauchy problem under con-
sideration is called a generalized WKB solution if it satisfies
conditions (1) and (2).

Example 2. One can see that if

𝑢|𝑡=0
= exp(−

𝑆

0

𝜀

) 𝜑

0
(𝑥) ,

(5)

where 𝑆
0
≥ 0 is a smooth function, 𝜑0 ∈ 𝐶

∞

0
, then the WKB-

like approach can be used (Kifer, [9];Maslov, [1–3]).This gives
an asymptotic (approximating) solution of the form (cf. [10])

𝑢as = 𝑢as (𝑥, 𝑡, 𝜀)

= exp (−𝑆 (𝑥, 𝑡)
𝜀

) (𝜑

0
(𝑥, 𝑡) + ⋅ ⋅ ⋅ + 𝜀

𝑘
𝜑

𝑘
(𝑥, 𝑡))

(6)

for arbitrary 𝑘. Here, 𝑆(𝑥, 𝑡) is the solution to the Cauchy
problem for the Hamilton-Jacobi equation

𝑆

𝑡
+ 𝑃 (𝑥, ∇𝑆) = 0, 𝑆

𝑡=0
= 𝑆

0
(𝑥) , (7)

and 𝜑
0
= 𝜑

0
(𝑥, 𝑡) is the solution to the transport equation

𝜑
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0
) +

𝜑

0

2

tr (𝑃
𝜉𝜉
(𝑥, ∇𝑆) 𝑆

𝑥𝑥
) = 0,

𝑆

𝑡=0
= 𝑆

0
(𝑥) .

(8)

Both of the solutions 𝑆 and 𝜑
0
are defined via solutions of the

Hamiltonian system

𝑥̇ = ∇

𝜉
𝑃 (𝑥, 𝑝) , 𝑥|𝑡=0

= 𝛼,

̇

𝑝 = −∇

𝑥
𝑃 (𝑥, 𝑝) , 𝑝|

𝑡=0
= ∇𝑆

0
(𝛼) .

(9)

They are smooth, while

𝐷𝑥

𝐷𝛼

̸= 0.
(10)

There are symplectic geometry objects corresponding to
this construction:

(1) the phase space R2𝑛

𝑥,𝑝
= R𝑛

𝑥
×R𝑛

𝑝
,

(2) a Lagrangian manifold Λ𝑡

𝑛
∈ R2𝑛

𝑥,𝑝
,

Λ

0

𝑛
= (𝑥 = 𝛼, 𝑝 = ∇𝑆

0
(𝛼)) , Λ

𝑡

𝑛
= 𝑔

𝑡

𝑃
Λ

0

𝑛
,

(11)

where 𝑔𝑡
𝑃
is a shift mapping along the Hamiltonian

system trajectories,
(3) the projection mapping 𝜋 : Λ

𝑡

𝑛
→ R𝑛

𝑥
with Jacobi

matrix 𝜕𝑥/𝜕𝛼.

The main assumption that we must prove is the following
one.

The Hamiltonian system trajectories form a fibration of
the phase space (at least in the area of the phase space where
we are working).

Let 𝐷𝑥/𝐷𝛼 ̸= 0 for 𝑡 ∈ [0, 𝑇], then we have the following
statement (Maslov, [1, 2]; see also Danilov, [4–6]).

Theorem 3. The inequality

Re𝑃 (𝑥, 𝑝 + 𝑖𝜂) ≤ 𝑃 (𝑥, 𝑝) , 𝜂 ∈ R
𝑛 (12)

is necessary and sufficient for the estimate
󵄩

󵄩

󵄩

󵄩
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󵄩

󵄩

󵄩

exp(𝑆 (𝑥, 𝑡)
𝜀

) (𝑢 as − 𝑢)

󵄩
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󵄩
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󵄩

󵄩

󵄩𝐶(R𝑛
𝑥
)

≤ 𝐶

𝑀
𝜀

𝑀
, (13)

where 𝑀 = 𝑀(𝑘) → ∞ as 𝑘 → ∞ and the function 𝑆 is
a solution to the Hamilton-Jacobi equation with Hamiltonian
𝑃(𝑥, 𝑝).

It is easy to verify that the function 𝑃 = 𝑃(𝑥, 𝜉)—the
symbol introduced above—satisfies the inequalitymentioned
in the theorem.

Example 4. In the special case corresponding to Example 2,
we have

−𝜀𝑢

𝑡
+ 𝜀

2
𝑢

𝑥𝑥
= 0, 𝑢|

𝑡=0
= exp (−

𝑆

0

𝜀

) 𝜑

0
.

(14)

The corresponding system is

𝑆

𝑡
+ (𝑆

𝑥
)

2

= 0, (Hamilton-Jacobi equation) ,

𝜑

0𝑡
+ 2𝑆

𝑥
𝜑

0𝑥
+ 𝑆

𝑥𝑥
𝜑

0
= 0, (transport equation) ,

𝑥̇ = 2𝑝, 𝑥|𝑡=0
= 𝛼,

̇

𝑝 = 0, 𝑝

󵄨

󵄨

󵄨

󵄨𝑡=0
=

𝜕𝑆

0

𝜕𝛼

,

(Hamiltonian system) .

(15)

Its solution has the form

𝑥 = 𝛼 + 2𝑡

𝜕𝑆

0

𝜕𝛼

, 𝑝 = 𝑝

󵄨

󵄨

󵄨

󵄨𝑡=0
,

𝐷𝑥

𝐷𝛼

= 1 + 2𝑡

𝜕

2
𝑆

0

𝜕𝛼

2
.

(16)

We have two different cases, see Figures 1 and 2.
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𝛼

𝑝 = 𝑆󳰀0𝛼

Figure 1: Solution 𝛼 = 𝛼(𝑥, 𝑡) exists for all 𝑡.

𝛼

𝑝 = 𝑆󳰀0𝛼

Figure 2: Solution 𝛼 = 𝛼(𝑥, 𝑡) exists for 𝑡 < 𝑡

∗
= max |2𝑆󸀠󸀠

0𝛼𝛼
|

−1.

For 𝑡 > 𝑡

∗ in case corresponding to Figure 2 we get Λ1

𝑡
of

the shape plotted in Figure 3.
One can see that there are three values of 𝑆 at the point 𝑥

in the last case.This means that we can present an asymptotic
solution near this point as the linear combination

𝑢 =

3

∑

𝑗=1

𝑐

𝑗
𝑢

𝑗
, (17)

where each of the functions 𝑢
𝑗
= exp(−𝑆

𝑗
/𝜀)𝜑

𝑗
, and 𝑗 =

1, 2, 3, satisfy the equation with the same accuracy. But the
functions themselves are not equivalent in contrast to the
hyperbolic case.

For example, it is clear that if the inequality

𝑆

1
(𝑥, 𝑡) > 𝑆

2
(𝑥, 𝑡) (18)

holds at a certain point 𝑥, then the “WKB” solutions 𝑢
1
and

𝑢

2
at the point 𝑥 satisfy the relation

𝑢

1

󵄨

󵄨

󵄨

󵄨𝑥=𝑥
= 𝑒

−𝑆1(𝑥,𝑡)/𝜀
𝜑

1
(𝑥, 𝑡)
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−𝑆1(𝑥,𝑡)/𝜀
𝜑

2
(𝑥, 𝑡) (

𝑒

−(𝑆1−𝑆2)/𝜀
𝜑

1

𝜑

2

)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑥=𝑥

= 𝑢

2
|

𝑥=𝑥
𝑂(𝜀

𝑁
) ,

(19)

where 𝑁 > 0 is an arbitrary number. This follows from the
fact that the difference (𝑆

1
− 𝑆

2
)|

𝑥
in parentheses in the expo-

nent is positive.

𝛼

𝑝

𝑥

Figure 3: Lagrangian curve for 𝑡 > 𝑡

∗.

𝑝

𝑥𝑥

Figure 4

Thus, at each point in formula (17), it is necessary to
choose the term, where the function 𝑆

𝑗
is minimal. Such a

choice leads to an expression of the form

𝑢 = 𝑒

−Φ(𝑥,𝑡)/𝜀
𝜑 (𝑥, 𝑡) ,

(20)

whereΦ = Φ(𝑥, 𝑡) = min
𝑥
{𝑆

𝑗
(𝑥, 𝑡)}. It is clear that the expres-

sion (20) is the leading term of the approximate solution.
The corresponding Lagrangian manifold is shown in

Figure 4.
The vertical line is located so that the dashed squares are

equal to each other; see Figure 4.
It is interesting to note that, in the one-dimensional case,

there is a direct connection between the Hamilton-Jacobi
equation

𝑆

𝑡
+ 𝐻 (𝑥, 𝑆

𝑥
) = 0 (21)

and conservation law of the form

𝑢

𝑡
+

𝜕

𝜕𝑥

𝐻 (𝑥, 𝑢) = 0,

(22)
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where 𝑢 = 𝑆

𝑥
and the velocity of the vertical line is defined

by the Rankine-Hugoniot condition corresponding to the
conservation law. If the Lagrangianmanifold has a jump, then
the first derivative of the corresponding value function

Φ (𝑥, 𝑡) = min
𝑥

𝑆 (𝑥, 𝑡) (23)

also has a jump.
Thus, we can state that the Lagrangian manifold is a key

point for construction and investigation of asymptotic solu-
tions.

It follows from the real analyticity assumption for all
objects that there is no “concentration of singularities,” that is,
each of them can be considered separately in a certain sense,
and one can construct a value function as a solution of the
Hamilton-Jacobi-Bellman equation.

What about the amplitude function? As was mentioned
above, it is a solution of the transport equation

𝜑

0𝑡
+ (𝑥̇, ∇𝜑

0
) +

𝜑

0

2

tr (𝑃
𝜉𝜉
(𝑥, ∇𝑆)) 𝑆

𝑥𝑥
= 0. (24)

Generally, the velocity field calculated from the Hamilto-
nian systemhas a jump simultaneously with a jump in𝑝 = ∇𝑆

(and then in 𝑥̇). Thus, the problem (which is still open!) is to
solve the transport equation in a discontinuous velocity field.
We avoid this problem by considering a squared solution of
the transport equation 𝜌 = 𝜑

2

0
.Madelung [11] (about 100 years

ago!) noticed that it satisfies the continuity equation

𝜌

𝑡
+ (∇, 𝑥̇𝜌) +

𝜌

2

tr𝑃
𝑥𝜉
= 0 (25)

in the smooth case.
Our case is more complicated, namely, we again have a

discontinuous velocity field. There are a few approaches to
the solution of this problem: the theory of measure solutions
[12–17], the box approximation [18], the weak asymptotics
method [19–22], the method of generalized characteristics
[23–25]. The last approach allows one to construct a solution
to the continuity equation in the case where the singular sup-
port of the velocity field is a stratified manifold with smooth
strata which are transversal to the (incoming!) trajectories of
the velocity field.

If the singular support of the velocity field preserves its
structure on some time interval [𝑡

1
, 𝑡

2
] (the mapping of the

singular support induced by a shift along the Hamiltonian
flow is a diffeomorphism), then one can show that the sin-
gular support of the velocity field has the required structure.
If the structure is changing (e.g., a jump appears see Figures 5
and 4, the last step of evolution with time), then one can
use the weak asymptotics method to construct the global
solution to the Hamilton-Jacobi and continuity equations.
This approach is based on a “new method of (generalized)
characteristics” constructed by Danilov andMitrovic [23–25]
in the casewhere the strata of the singular support are of codi-
mension 1.

The main idea of this approach is to consider the singu-
larity creation as the result of interaction of solitary nonlinear
waves.

𝑝𝑝

𝑥 𝑥𝑥

Figure 5

A simple example is the Hamiltonian flow corresponding
to the heat equation in the previous example. The Hamilton-
Jacobi equation in this case is equivalent to theHopf equation
for the momentum 𝑝:

𝑝

𝑡
+ (𝑝

𝑥
)

2

= 0.

(26)

The solution in this example has the form

𝑝 = 𝑃

0
𝐻(𝑥 − 𝜙

1
) + 𝑃

1
𝐻(𝜙

2
− 𝑥)

+ 𝑎 (𝐻 (𝜙

1
− 𝑥) (𝜙

1
− 𝑥) − 𝐻 (𝜙

2
− 𝑥) (𝜙

2
− 𝑥)) ,

(27)

and is plotted below in Figure 8 (here, 𝐻 is the Heaviside
function, and 𝑎 = (𝑃

0
(𝜙

1
, 𝑡) − 𝑃

1
(𝜙

2
, 𝑡))/(𝜙

2
− 𝜙

1
)).

To consider 𝑝2 we have to calculate the product

𝐻(𝜙

1
− 𝑥)𝐻 (𝜙

2
− 𝑥) . (28)

Here, the following equality holds:

𝐻(𝜙

1
− 𝑥)𝐻 (𝜙

2
− 𝑥)

= 𝐵(

𝜙

2
− 𝜙

1

𝜇

)𝐻 (𝜙

1
− 𝑥)

+ (1 − 𝐵(

𝜙

2
− 𝜙

1

𝜇

))𝐻 (𝜙

2
− 𝑥) + 𝑂

𝐷
󸀠 (𝜇) ,

(29)

where 𝜇 → 0 + 0 is a new small parameter and 𝑂

𝐷
󸀠(𝜇) is a

small quantity in the sense of distributions,

(𝑂

𝐷
󸀠 (𝜇) , 𝜓) = 𝑂 (𝜇) , (30)

for each 𝜓 which is a test function. The time evolution of the
function 𝑝 is such that the slanting intercept of the straight
line preserves its shape until it takes vertical position, and
then a jump propagates. This means that at every instant of
time the solution anzatz can be presented in the form of a
linear combination of Heaviside functions.This allows one to
use a formula expressing the product of Heaviside functions
as their linear combination up to a remainder, that is, small in
the𝐷󸀠-sense. Hence, we conclude that the functions 𝑝 and 𝑝2
(the latter up to a small quantity) uniformly in-time belong
to the same linear space; for detail, see [23–26]. This allows
one to apply the same procedure as in [23–26] to solve this
problem uniformly in-time.
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Taking 𝜙

1
− 𝜙

2
= 𝑂(𝜀

𝛿
), 0 < 𝛿 < 1, at some initial

instant of time and choosing an interval [𝜙
2
, 𝜙] to include

the point of overturning, we obtain a small correction to
our Lagrangian manifold, that is, negligible as 𝜀 → 0.
But this correction allows one to apply the above technique
for constructing the global-in-time solution describing the
singularity appearance in the framework of the method of
characteristics. In this framework we have new nonintersect-
ing characteristics (Figure 7) instead of classical intersecting
characteristics (Figure 6).

It remains to explain how we can go back from a general-
ized solution of the continuity equation to a solution of the
transport equation. As was shown in [12, 13, 15–17] and in
other papers listed above, the generalized solution to the con-
tinuity equation in this case has the form

𝜌 = 𝜌reg + 𝐸 ⋅ 𝛿

Γ
, (31)

where 𝜌reg is a smooth function outside Γ, Γ is a stratified
manifold (singular support) of 𝜌 coinciding with the singular
support of ∇𝜙, 𝐸 is a function whose domain is Γ, and 𝛿

Γ

is the Dirac 𝛿-function on Γ. Using the algorithm given in
[23–26], one does not obtain expression (31) but obtains its
regularization, where the key point is the regularization of the
𝛿-function. Here, the following lemma can be used.

Lemma 5. Let 0 ≤ 𝜔(𝑥, 𝑡, 𝑧) ∈ 𝐶

∞
(R𝑚

× [0, 𝑇] × 𝑅

1
), and let

𝜓(𝑥) ∈ 𝐶

∞, |∇𝜓| ̸= 0. Let also the following estimate hold:

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕

|𝛼|+𝛽
𝜔 (𝑥, 𝑡, 𝑧)

𝜕𝑥

𝛼1

1
⋅ ⋅ ⋅ 𝜕𝑥

𝛼𝑚
𝑚 𝜕𝑧

𝛽

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶

𝛼𝛽|
𝑧|

−2𝑚−𝜘
, (32)

where 𝜘 > 0.
Then, in𝐷󸀠

(R𝑚
) one has

(i) 𝜀𝜔(𝑥, 𝑡, (𝜓(𝑥) − 𝑡)/𝜀) = 𝐴(𝑥, 𝑡)𝛿(𝜓(𝑥) − 𝑡) + 𝑂

𝐷
󸀠(𝜀),

(ii) [𝜀−1𝜔(𝑥, 𝑡, (𝜓(𝑥) − 𝑡)/𝜀)]

2
= 𝑂

𝐷
󸀠(𝜀

1/2
).

Proof. Let 𝜓󸀠

𝑥1
̸= 0. Then, we make the change of variables

𝜓(𝑥)− 𝑡 = 𝑧𝜀, 𝑥
2
= 𝑥

2
, . . . , 𝑥

𝑚
= 𝑥

𝑚
, and for all test functions

𝜂(𝑥) ∈ 𝐶

∞

0
(R𝑚

) we obtain

∫

R𝑚
𝜀

−1
𝜔(𝑥, 𝑡,

𝜓 (𝑥) − 𝑡

𝜀

) 𝜂 (𝑥) 𝑑𝑥

= ∫𝜔 (𝑥, 𝑡, 𝑧) (𝜓

󸀠

𝑥1
)

−1

𝜂 (𝑥

1
(𝑧, 𝑥̌, 𝜀) , 𝑥̌) 𝑑𝑧 𝑑𝑥̌,

(33)

where 𝑥̌ = (𝑥

2
, . . . , 𝑥

𝑚
). The last integral converges due to

(32), and we obtain the first statement of the lemma with

𝐴 (𝑥, 𝑡) = ∫

{𝜓(𝑥)=𝑡}

∫

R1
𝜔 (𝑥, 𝑡, 𝑧) 𝑑] (𝑥) 𝑑𝑧, (34)

where 𝑑](𝑥) = |𝜓

󸀠

𝑥
|

−1
𝑑𝑥 is the Leray measure on the surface

{𝜓(𝑥) = 𝑡}. The general case can be considered similarly (also
see [21]).

𝑡

𝑥𝑥

Figure 6: Classical characteristics.

∼𝜀

𝑥

Figure 7: New characteristics.

Using the same procedure for item (ii), we obtain

∫ 𝜀

−1/2
√

𝜔(𝑥, 𝑡,

𝜓 (𝑥) − 𝑡

𝜀

)𝜂 (𝑥) 𝑑𝑥

= 𝜀

1/2
∫

√

𝜔 (𝑥, 𝑡, 𝑧)𝜓

−1

𝑥1
𝜂 (𝑥

1
(𝑧, 𝑥̌, 𝜀) , 𝑥̌) 𝑑𝑥̌.

(35)

Hence, the proof of the lemma is complete.

Now, we can consider the case of stratified manifold.
Each 𝑘th stratum can be presented as a level surface for

some function 𝜓

𝑘
(𝑥), and we can use the statement of the

above lemma for each stratum.
Here, the last remark concerns expression (31). We have

√

𝜌reg + 𝜀

−1
𝜔(𝑥, 𝑡,

𝜓 (𝑥) − 𝑡

𝜀

) −

√

𝜌reg

=

𝜀

1/2
𝜔 (𝑥, 𝑡, (𝜓 (𝑥) − 𝑡) /𝜀)

√2𝜀𝜌reg + 𝜔 (𝑥, 𝑡, (𝜓 (𝑥) − 𝑡) /𝜀)

,

(36)
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𝑥

𝑢
𝑃1(𝑥, 𝑡)

𝑃0(𝑥, 𝑡)

𝜑2 𝜑1

Figure 8: Plot of the function 𝑝.

and the above considerations lead to the following conclu-
sion:

√
𝜌reg + 𝜀

−1
𝜔 (𝑥, 𝑡, (𝜓 (𝑥) − 𝑡) /𝜀) =

√

𝜌reg + 𝑂

𝐷
󸀠 (𝜀

1/2
)

(37)

or in the limit form and in the weak sense to

√𝜌reg + 𝐸𝛿

Γ
=

√

𝜌reg. (38)

Thus, we can prove the following theorem.

Theorem6. Suppose that the following conditions are satisfied
for 𝑡 ∈ [0, 𝑇], 𝑇 > 0:

(1) there exists a smooth solution of the Hamiltonian
system,

(2) the singularities of the velocity field

𝑢 = ∇

𝜉
𝑃 (𝑥, ∇𝑆) (39)

form a stratified manifold with smooth strata and
Hess

𝜉
𝑃(𝑥, 𝜉) > 0.

Then, there exists a generalized solution 𝜌 of the Cauchy
problem for the continuity equation in the sense of the integral
identity introduced in [21, 22], and at the points where the
projection 𝜋 is bijective, the asymptotic solution of the Cauchy
problem for Kolmogorov-Feller-type equation has the form

𝑢 = exp(−𝑆 (𝑥, 𝑡)
𝜀

) (

√

𝜌 reg + 𝑂 (𝜀)) .
(40)

2. Backward-in-Time Motion

As was shown above, all that we need to go forward-in-time
is the Hamiltonian system:

𝑥̇ = ∇

𝜉
𝑃 (𝑥, 𝑝) , 𝑥|𝑡=0

= 𝛼,

̇

𝑝 = −∇

𝑥
𝑃 (𝑥, 𝑝) , 𝑝

󵄨

󵄨

󵄨

󵄨𝑡=0
= 𝑝 (𝛼) .

(41)

We change the time direction as 𝑡→−𝑡, and then we have

−

̇

𝑋 = ∇

𝜉
𝑃 (𝑥, Ξ) ,

−

̇

Ξ = −∇

𝑥
𝑃 (𝑥, Ξ) .

(42)

We want to solve the inverse problem:

𝑋(𝛼, 0) = 𝑥 (𝛼, 𝑇) , Ξ (𝛼, 0) = 𝑝 (𝛼, 𝑇) . (43)

The right-hand sides are considered as given data, and we are
looking for 𝑋(𝛼, 𝑡) and Ξ(𝛼, 𝑡) for 0 ≤ 𝑡 ≤ 𝑇. Obviously, in
our case, the solutions have the form

𝑋(𝛼, 𝑡) = 𝑥 (𝛼, 𝑇 − 𝑡) , Ξ (𝛼, 𝑡) = 𝑝 (𝛼, 𝑇 − 𝑡) . (44)

We draw the following conclusion: the “same” trajectories
can be used to move forward and backward in time. But
the incoming trajectories become outcoming ones, and vice
versa.

Corollary 7. Stable jumps become unstable.

But if there are no jumps (no singularities of the projec-
tion mapping 𝜋 : Λ

𝑡

𝑛
→ R𝑛

𝑥
), then our geometry (and the

asymptotic solution!) is invertible in-time. This means that if
we take the Cauchy problem solution 𝑢 for the parabolic PDE
such that

𝑢|𝑡=0
= exp(−

𝑆

0
(𝑥)

𝜀

) 𝜑

0
(𝑥) , (45)

then the leading term of the asymptotic solution for 𝑡 = 𝑇 has
the “WKB” form

𝑢as
󵄨

󵄨

󵄨

󵄨𝑡=𝑇
= exp (−𝑆 (𝑥, 𝑇)

𝜀

) 𝜑

0
(𝑥, 𝑇) .

(46)

Then, taking the last function as the initial data for the
parabolic PDE in the inverse time (let Vas(𝑥, 𝑡) be its asymp-
totic solution), we obtain (recall that𝑇 is an instant of inverse
time)

Vas (𝑥, 𝑇) = exp(−
𝑆

0
(𝑥)

𝜀

) 𝜑

0
(𝑥) (1 + 0 (𝜀))

= 𝑢|

𝑡=0
(1 + 𝑂 (𝜀)) .

(47)

And surely these initial data will give the same leading term
of the asymptotic solution for 𝑡 = 0. We want to stress once
again that this statement is true if the projection mapping 𝜋 :

Λ

𝑡

𝑛
→ R𝑛

𝑥
has no singularities. But a jump brings problems.

By “measurements” one cannot recognize a multivalued
function 𝑆(𝑥, 𝑡) (see Figure 3 and (17)). It is possible to “see”
only the function Φ(𝑥, 𝑡) = min 𝑆(𝑥, 𝑡), and thus only a
Lagrangian manifold with a jump can be determined. Of
course, one can try to make a smooth regularization of
the jump like it is shown in Figure 9 (the left-hand side)
with equal squares of dashed areas, but obviously such a
regularization is not unique. It is interesting to note that if one
uses a manifold with a jump, then the problem of backward-
in-time motion becomes similar to the well-known problem
of unstable jump decay.
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𝑝𝑝

“Terra
incognita”

𝑥 𝑥𝑥

Figure 9

By reconstruction of the Lagrangian manifold, we mean
the following. We choose an approximation of a jump by a
smooth curve and then move the whole curve (Lagrangian
manifold) backward-in-time along characteristics (42). After
that if the projection map to 𝑥-axis is not unique, we form
a jump as a vertical segment with the condition of equal
squares; see, for example, Figure 4. The last rule means that
the action function corresponding to the shifted manifold
is continuous. This property can be used to construct a
Lagrangian manifold shifted backward-in-time in a multidi-
mensional case, but we do not explain this here.

It is clear that all points of the Lagrangian manifold
shifted backwards which are not the shifted points of a
regularization curve (do not lie under the “terra incognita”)
coincide with the points of the initial Lagrangian manifold
corresponding to generalized WKB solution (if such a solu-
tion exists) at 𝑡 = 𝑇. Generally speaking, the one-to-one cor-
respondence between the global-in-time generalized WKB
solutions (more precisely, their logarithmic week limits) and
the Lagrangian manifolds in the form that we are using does
not hold. Butwewill assume thatwe areworkingwith a subset
of generalized WKB solutions which uniquely correspond
to stratified Lagrangian manifolds globally in-time. Under
this assumption and previous explanations we can uniquely
reconstruct the Lagrangian manifold and the leading term of
corresponding generalized WKB solution outside the “terra
incognita.’’

But fortunately we can move ahead using the weak sense
considerations.The main point is that it may happen that the
function 𝑆 does not attain its minimum (maximum) inside
the “terra incognita.”This allows one to calculate the integrals
containing the reconstructed solution without taking the
“terra incognita” into account in the case where the integrand
support contains this “terra incognita”, and we can formulate
the following statement.

Theorem 8. Let the symbol 𝑃(𝑥, 𝜉) defined by (2) be such
that the function 𝐵 and the measure 𝜇 do not depend on 𝑥

and 𝑉 = 0. Let 𝑢
𝜀
(𝑥, 𝑡) be a solution of the Cauchy problem

for a Kolmogorov-Feller-type equation. Suppose that, for some
𝑡 ∈ (0, 𝑇), the logarithmic limit (action function) 𝑆(𝑥, 𝑡) =

lim
𝜀→0

(−𝜀 ln 𝑢
𝜀
) and the generalized amplitude 𝜌 = 𝑤 −

lim
𝜀→0

exp(2𝑆/𝜀)𝑢2
𝜀
exist.

Let the singular support of 𝑆(𝑥, 𝑡) be a stratified manifold
Γ, 𝜌, has the form (31), and, 𝜌reg be the regular part of the
generalized solution to the continuity equation in the sense of
distributions.Then, for an arbitrary test function 𝜙 = 𝜙(𝑥) > 0

from the Schwartz space and for all 𝑡 ∈ [0, 𝑇], the limit as
𝜀 → 0 of the integral

𝐶∫(𝑢

𝜀
− 𝜌

1/2

reg exp(−
𝑆

𝜀

)) 𝜙 𝑑𝑥 (48)

is equal to 0, where 𝐶−1
= ∫𝑢

𝜀
𝜙𝑑𝑥.

In fact, these statements mean that from the viewpoint
of the weak sense (momentum), the density reconstructed
outside the “terra incognita” can be used in the same manner
as the leading term of the asymptotic solution constructed
earlier by Maslov’s tunnel canonical operator and its modi-
fications, [1–6].

Before we explain how to prove this statement, we briefly
recall the essence of the Laplace method which is the main
tool for investigating the integrals considered in the theorem.

This approach was developed to calculate integrals of the
form

𝐼 (𝜀) = ∫

Ω

𝑓 (𝑥) 𝑒

𝑆(𝑥)/𝜀
𝑑𝑥, (49)

where Ω is either a closed domain in R𝑛 or an interval. The
leading term of 𝐼(𝜀) as 𝜀 → 0 + 0 is the sum of terms corre-
sponding to the points at which the function 𝑆(𝑥) attains its
minimal values.

For 𝑛 = 1, one has either

(1) 𝐼(𝜀) = 𝜀((𝑓(𝑎) + 𝑂(𝜀))/𝑆

󸀠
(𝑎))𝑒

−𝑆(𝑎)/𝜀, where Ω = [𝑐,

𝑑] andmin
𝑥∈Ω

𝑆(𝑥) = 𝑆(𝑎), 𝑆󸀠(𝑎) ̸= 0,

or

(2) 𝐼(𝜀) = √

2𝜋𝜀/𝑆

󸀠󸀠
(𝑎)[𝑓(𝑎) + 𝑂(𝜀)]𝑒

𝑆(𝑎)/𝜀, where 𝑎 ∈ (𝑐,

𝑑), min
𝑥∈Ω

𝑆(𝑥) = 𝑆(𝑎).

If 𝑎 is an interior point ofΩ ∈ R𝑛, then

𝐼 (𝜀) = (2𝜋𝜀)

𝑛/2
[det 𝑆󸀠󸀠

𝑥𝑥
(𝑎)]

−1/2

[𝑓 (𝑎) + 𝑂 (𝜀)] 𝑒

−𝑆(𝑎)/𝜀
.

(50)

Below, we consider the case where (for one spatial vari-
able) the point 𝑥 = 𝑎 of the function 𝑆 minimal value is an
interior point of the segment (𝑐, 𝑑), but the functions 𝑆 and 𝑓
are only piecewise continuous with jumps of derivatives (for
𝑆) and with jumps of the function 𝑓 and its derivatives at
𝑥 = 𝑎. In this case, formula (1) should be modified as

𝐼 (𝜀) = exp (−𝑆 (𝑎)
𝜀

) [

𝑓

+
(𝑎)

𝑆

󸀠

+
(𝑎)

+

𝑓

−
(𝑎)

𝑆

󸀠

−
(𝑎)

] + 𝑂 (𝜀) , (51)

where 𝑓

±
(𝑎) and 𝑆

󸀠

±
(𝑎) are the values of corresponding

functions and derivatives from the right (−) and from the left
(−).

Other possible situations including the cases where the
above-listed derivatives of the function 𝑆 can be equal to zero
are described in [27, 28].
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Any way, the above considerations lead to the following
conclusion: under the assumption that the minimum of 𝑆 is
attained on the boundary of the domain of integration, the
value of the integral (with a high accuracy) depends only on
the boundary values of the integrand (and its derivatives as
well).

Now, I will briefly outline the proofs of the above state-
ment. about invertibility in time. It can be divided in two
parts.The first is to prove that, for all smooth reconstructions
of the Lagrangian manifold in the “terra incognita” domain;
the corresponding function 𝑆

0
= 𝑆

0
(𝑥) (for some fixed 𝑡)

cannot attain its minimum value inside this domain, see the
lemma below. This allows one to use the Laplace method to
calculate the integrals mentioned in that statements taking
into account that, due to this method and the lemma, the
results of these calculations do not depend on the integrand
values inside the “terra incognita” domain. The proof is
finished by taking account of the estimate

𝑢as − 𝑢 = 𝑂 (𝜀) 𝑢as, (52)

which is true outside the singular support of the function 𝑆;
see the theorem above.

We will concentrate our efforts on one-dimensional con-
siderations and the case with the symbol 𝑃(𝜉, 𝑥) = 𝑃(𝜉).

Now, I formulate the lemma as follows.

Lemma 9. Let the symbol 𝑃(𝑥, 𝜉) defined by (2) be such that
the function 𝐵 and the measure 𝜇 do not depend on 𝑥. Then the
function 𝑆, which is the action function corresponding to the
Lagrangian manifold, cannot attain the minimal value inside
the “terra incognita” domains.

We begin our consideration with a special case where the
operator symbol 𝑃(𝑥, 𝜉) does not depend on 𝑥 and restrict
ourselves to the study of the one-dimensional case. Let (𝑎, 𝑏)
be an interval inside the “terra incognita” domain, and let𝑥

0
∈

(𝑎, 𝑏). We prove this by contradiction. First, we describe the
“terra incognita” domain. It is easy to see that the upper end
of the jump segment moves with horizontal speed −𝑃

𝜉
(𝑝

+
)

and the lower end moves with the speed −𝑃

𝜉
(𝑝

−
), where 𝑝

±

are 𝑝-coordinates of the upper (+) and lower (−) ends. At the
same time, the horizontal speed of a jump is

𝜙

𝑡
= −

𝑃

𝜉
(𝑝

+
) − 𝑃

𝜉
(𝑝

−
)

𝑝

+
− 𝑝

−

.

(53)

By the assumption 𝑃
𝜉𝜉
> 0, we immediately obtain

−𝑃

𝜉
(𝑝

+
) < 𝜙

𝑡
< −𝑃

𝜉
(𝑝

−
) . (54)

The last inequality describes the “terra incognita,” which is a
set of points between projections of the jump upper and lower
ends shifted backwards. Let us consider some instant of time
𝑡

−
∈ (0, 𝑇) and take the obtained manifold as the initial one.

It is clear that for each projection of the trajectory starting
inside the “terra incognita,” there is another (at least one) pro-
jection of the trajectory starting inside the “terra incognita”
which intersects with the first one. It follows from the picture
in Figure 9 that each point on the boundary of the dashed

domain has at least another one with the same projection
on the 𝑥-axis. This means that along each projection of the
trajectory starting inside the “terra incognita,” the Jacobian
𝜕𝑥/𝜕𝑥

0
is equal to zero at some instant of time.

Assume that the function 𝑆 attains its minimal value at
the point 𝑥

0
∈ (𝑎, 𝑏) ((𝑎, 𝑏) is a “terra incognita” domain). We

prove that the following inequality is true along the trajectory
of the Hamiltonian system whose projection starts at 𝑥

0
∈

(𝑎, 𝑏):

𝐷𝑥

𝐷𝑥

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑥0=𝑥0

̸= 0. (55)

This inequality leads to contradiction because, by assump-
tion, 𝑥

0
belongs to the “terra incognita” domain, and hence

it belongs to the projection of the image of the singular
(vertical) part of the Lagrangianmanifold under a backward-
in-time shift along the trajectories of theHamiltonian system.
In turn, this means that the projections of all trajectories
such that the starting points of their projections belong to
the “terra incognita” must intersect at a point in the case of
the forward-in-time motion. So, the above inequality, leads
to a contradiction. To prove this inequality let us write the
projection of theHamiltonian system trajectory starting at𝑥

0
.

It has the form

𝑥 = 𝑥

0
+ 𝑡𝑃

𝜉
(𝑝

0
) , 𝑝

0
= 𝑆

0𝑥0
(𝑥

0
) . (56)

It is clear that 𝑝
0
= 𝑆

0𝑥0
(𝑥

0
) = 0. Thus,

𝜕𝑥

𝜕𝑥

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑥0=𝑥0

= 1 + 𝑡𝑃

𝜉𝜉
(0) 𝑆

0𝑥0𝑥0
(𝑥

0
) . (57)

Taking into account the fact that

𝜕

2
𝑃

𝜕𝜉

2
> 0

(58)

because of convexity of 𝑃 and

𝜕

2
𝑆

0

𝜕𝑥

2

0

≥ 0 (59)

due to the assumption that 𝑥
0
is a point of minimal value,

we obtain the required inequality (55).Themultidimensional
case differs from this case in that the scalar values 𝑃

𝜉
and

𝑆

0𝑥0
must be replaced by vectors (gradients). In turn, this

leads to matrix inequality in (58) and (59). The problem is to
derive that the eigenvalues of the matrix 𝑃

𝜉𝜉
(0)𝑆

0𝑥0𝑥0
(𝑥

0
) are

nonnegative by using (58) and (59). For this, we can make
a change of variables that reduces the matrix 𝑆

0𝑥0𝑥0
(𝑥

0
) to

diagonal form. This transformation induces the correspond-
ing transformation in the 𝑝-plane that transforms the matrix
𝑃

𝑝𝑝
(0) into a new symmetric positive matrix. Now, we note

that the principal minors of the new matrix product are
products of matrix-factor principal minors (because the
second has diagonal form). The determinants of the matrix-
factor principal minors are nonnegative, so the spectrum of
the matrix 𝑃

𝜉𝜉
(0)𝑆

0𝑥0𝑥0
(𝑥

0
) is also nonnegative, and we again

obtain (55). To finish our consideration,we have to investigate
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the case, where the symbol 𝑃 = 𝑃(𝑥, 𝜉) depends on 𝑥. We
again will stay at the point 𝑥

0
, where the function 𝑆

0
attains its

minimum. If so, then

𝑝|

𝑡=0
=

𝜕𝑆

0
(𝑥

0
)

𝜕𝑥

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑥0=𝑥0

= 0, (60)

and by assumptions, 𝑝 = 0 for 𝑡 > 0.
The system for the matrices 𝜕𝑥/𝜕𝑥

0
and 𝜕𝑝/𝜕𝑥

0
follows

from the Hamiltonian system and has the form

𝑑

𝑑𝑡

𝜕𝑥

𝜕𝑥

0

=

𝜕

2
𝑃

𝜕𝜉𝜕𝑥

𝜕𝑥

𝜕𝑥

0

+

𝜕

2
𝑃

𝜕𝜉

2

𝜕𝑝

𝜕𝑥

0

,
(61)

𝑑

𝑑𝑡

𝜕𝑝

𝜕𝑥

0

=

𝜕

2
𝑃

𝜕𝑥𝜕𝜉

𝜕𝑝

𝜕𝑥

0

+

𝜕

2
𝑃

𝜕𝑥

2

𝜕𝑥

𝜕𝑥

0

.
(62)

Because of our assumptions (see the statement of the lemma),
we have 𝑃|

𝜉=0
= 0, 𝑃

𝑥𝑥
|

𝜉=0
= 0, and 𝑃

𝜉𝑥
|

𝜉=0
= 0. This means

that, along the Hamiltonian system trajectory starting from
the point 𝑥 = 𝑥

0
, 𝑝 = 0, we have 𝑝 = 0 and (𝑑/𝑑𝑡)(𝜕𝑝/𝜕𝑥

0
) =

0. Thus, along the trajectory mentioned above, (61) and (62)
have the form

𝑑

𝑑𝑡

𝜕𝑥

𝜕𝑥

0

=

𝜕

2
𝑃 (𝑥

0
, 0)

𝜕𝜉

2

𝜕𝑝

𝜕𝑥

0

,

(63)

𝑑

𝑑𝑡

𝜕𝑝

𝜕𝑥

0

= 0. (64)

Integrating with respect to 𝑡, we can transform the first
equation to the form of (56) and apply all above arguments
concerning this equality. This ends the proof.

The statement of the lemma can be generalized as follows.
Let 𝐵 be a linear function in 𝑥,

⟨𝐵, 𝜉⟩ =

𝑛

∑

𝑘=1

𝑏

𝑘
𝑥

𝑘
𝜉

𝑘
. (65)

Then, instead of (64), we obtain

𝑑

𝑑𝑡

𝜕𝑝

𝜕𝑥

0

=

𝜕𝐵

𝜕𝑥

𝜕𝑝

𝜕𝑥

0

, (66)

where the matrix 𝜕𝐵/𝜕𝑥 has diagonal form with elements
equal to constants.

Then,

𝜕𝑝

𝜕𝑥

0

= 𝑒

𝑡(𝜕𝐵/𝜕𝑥) 𝜕𝑝0

𝜕𝑥

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑡=0

,

𝜕𝑥

𝜕𝑥

0

= 𝐸 +

𝜕

2
𝑃

𝜕𝜉

2
∫

𝑡

0

𝑒

𝑡
󸀠
(𝜕𝐵/𝜕𝑥0)

𝑑𝑡

󸀠
⋅

𝜕𝑝

0

𝜕𝑥

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑡=0

= ∫

𝑡

0

𝑒

𝑡
󸀠
(𝜕𝐵/𝜕𝑥)

𝑑𝑡

󸀠

× ((∫

𝑡

0

𝑒

𝑡
󸀠
(𝜕𝐵/𝜕𝑥)

𝑑𝑡

󸀠
)

−1

+

𝜕

2
𝑃

𝜕𝜉

2

𝜕𝑝

0

𝜕𝑥

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑡=0

)

≥ 0.

(67)

Here, we used the fact that the matrix

∫

𝑡

0

𝑒

𝑡
󸀠
(𝜕𝐵/𝜕𝑥)

𝑑𝑡

󸀠 (68)

has diagonal form with positive eigenvalues.
Thus, we came to the relation with the same properties as

(56). One can do more and extend the statement for the case
of arbitrary drift at least for the symbol of the form (2). But up
to now, the presence of a potential destroys our picture, and I
will further think about this.
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