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We investigate in this paper a perpetual prepayment option related to a corporate loan.The default intensity of the firm is supposed
to follow a CIR process. We assume that the contractual margin of the loan is defined by the credit quality of the borrower and
the liquidity cost that reflects the funding cost of the bank. Two frameworks are discussed: firstly a loan margin without liquidity
cost and secondly a multiregime framework with a liquidity cost dependent on the regime. The prepayment option needs specific
attention as the payoff itself is an implicit function of the parameters of the problem and of the dynamics. In the unique regime
case, we establish quasianalytic formulas for the payoff of the option; in both cases we give a verification result that allows for
the computation of the price of the option. Numerical results that implement the findings are also presented and are completely
consistent with the theory; it is seen that when liquidity parameters are very different (i.e., when a liquidity crisis occurs) in the
high liquidity cost regime, the exercise domain may entirely disappear, meaning that it is not optimal for the borrower to prepay
during such a liquidity crisis. The method allows for quantification and interpretation of these findings.

1. Introduction

When a firm needs money, it can turn to its bank which lends
it against, for example, periodic payments in a form of a loan.
In almost every loan contract, the borrower has the option
to prepay a portion or all the nominal at any time without
penalties.

We assume in this model that the riskless interest rate,
denoted by 𝑟, is constant and known. The liquidity cost
dynamics will be described later. The interest rate of the loan
is the sum of the constant interest rate, a margin defined
according to the credit quality of the borrower, and a liquidity
cost that reflects the funding costs of the lender, the bank.

In order to decide whether the exercise of the option is
worthwhile, the borrower (the firm) compares the actualized
value of the remaining payments with the nominal value to
pay. If the remaining payments exceed the nominal value,
then it is optimal for the borrower to refinance his debt at a
lower rate.

When the borrower is subject to default, the computation
of the actualization is less straightforward. It starts with

considering all possible scenarios of evolution for the default
intensity in a risk-neutral framework and computing the
average value of the remaining payments (including the final
payment of the principal if applicable); this quantity will be
called “PVRP” (denoted by 𝜉) and is the present value of the
remaining payments, that is, the cash amount equivalent, both
for borrower and lender in this model of the set of remaining
payments. The PVRP is compared with the nominal: if the
PVRP value is larger than the nominal, then the borrower
should prepay, otherwise not. Recall that at the initial time
the payments correspond to a rate, the sum of the interest rate
and a contractual margin 𝜌

0
, which is precisely making the

two quantities equal. Note that in order to compute the price
of the embedded prepayment option, the lender also uses the
PVRP as it will be seen below.

For a bank, the prepayment option is essentially a rein-
vestment risk, that is, the risk that the borrower decides to
repay earlier his/her loan and that the bank cannot reinvest
its excess of cash in a new loan. So the longer the maturity
of the loan, the riskier the prepayment option. Therefore,
it is interesting to study long-term loans that are set for
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more than three years and can run for more than twenty
years. The valuation problem of the prepayment option can
be modeled as an American embedded option on a risky
debt owned by the borrower. AsMonte-Carlo simulations are
slow to converge and the binomial tree techniques are time
consuming for long-term loans (cf. works by Cossin and Lu
[1]), we decided to focus, in this paper, on the prepayment
option for perpetual loan.

When valuing financial products with long maturity,
the robustness with respect to shocks and other exogenous
variabilities is important. Among problems that have to be
treated is the liquidity and its variability. Liquidity is crucial
for the stability of the financial system. Past events like the
Asian crisis of 1997 [2]; the Russian financial crisis of 1998 [3];
the defaults of hedge funds and investment firms like LTCM,
Enron, Worldcom, and Lehman Brothers defaults, sovereign
debts crisis of 2010-11, and so on prove that banks hold
significant liquidity risk in their balance sheets. A liquidity
crisis can have a severe impact on bank’s funding costs,
its market access (reputation risk), and short-term funding
capabilities.

Following the state of the economic environment, the
liquidity can be defined by distinct states. Between two crises,
investors are confident and banks find it easier to launch
their long-term refinancing programs through regular bonds
issuances. Thus the liquidity market is stable. Unfortunately,
during crisis, liquidity becomes scarce, pushing the liquidity
curve to very high levels which can only decrease if confi-
dence returns to themarket.The transition between these two
distinct behaviors is rarely smooth but rather sudden.

In order to model the presence of distinct liquidity
behaviors, we will simulate the liquidity cost by a continuous
time Markov chain that can have a discrete set of possible
values, one for each regime that is encountered in the liquidity
evolution.

From a technical point of view, this paper faces several
nonstandard conditions: although the goal is to value a
perpetual American option, the payoff of the option is highly
nonstandard (is dependent on the PVRP). As a consequence,
the characterization of the exercise region is not standard and
technical conditions have to be met. Furthermore, our focus
here is on a specific type of dynamics (of CIR type) with even
more specific interest on the situation when several regimes
are present.

The balance of the paper is as follows: in the remainder
of this section (Section 1.1) we review the related existing
literature; in Section 2, we consider that the liquidity cost
is negligible and that the borrower credit risk is defined
by his/her default intensity (called in the following simply
“intensity”) which follows a CIR stochastic process. In this
situation, we are able to obtain a quasianalytic formula for
the PVRP. In Section 3 we explore the situation when the
liquidity cost, defined as the cost of the lender to access
the cash on the market, has several distinct regimes that we
model by a Markov chain. We write the pricing formulas and
theoretically support an algorithm to identify the boundary
of the exercise region; numerical examples and concluding
remarks close the paper.

1.1. Related Literature. There exist few articles (e.g., works by
Cossin and Lu [1]) on the loan prepayment option but a close
subject, the prepayment option in a fixed-rate mortgage loan,
has been widely covered in several papers by Hilliard et al.
[4] and more recent works by Chen et al. [5]. To approximate
the PDE satisfied by the prepayment option, they define two
state variables (interest rate and house price). Their approach
is based on a bivariate binomial option pricing techniquewith
a stochastic interest rate and a stochastic house value.

Another contribution by Cossin and Lu [1] applies the
binomial tree technique (but of course it is time consuming
for long-term loans due to the nature of binomial trees) to
corporate loans. They consider a prepayment option with a
1-year loan with a quarterly step, but it is difficult to have an
accurate assessment of the option price for a 10-year loan.

There also exist mortgage prepayment decision models
based on Poisson regression approach for mortgage loans
(see, e.g., Schwartz and Torous [6]). Unfortunately, the
volume and history of data are very weak in the corporate
loan market.

Due to the form of their approach, these papers did not
have to consider the geometry of the exercise region because
it is explicitly given by the numerical algorithm.This is not the
case for us and requires that particular care be taken when
stating the optimality of the solution. Furthermore, to the
best of our knowledge, none of these approaches explored the
circumstance when several regimes exist.

The analysis of Markov-modulated regimes has been
investigated in the literature when the underlying(s) follow
the Black-Scholes dynamics with drift and volatility having
Markov jumps; several works are of interest in this area: Guo
and Zhang [7] have derived the closed-form solutions for
vanilla American put; Guo analyses in [8] Russian (i.e., per-
petual look-back) options and is able to derive explicit solu-
tions for the optimal stopping time; in [9] Xu andWu analyse
the situation of a two-asset perpetual American option where
the payoff function is a homogeneous function of degree one;
Mamon and Rodrigo [10] find explicit solutions to vanilla
European options. Buffington and Elliott [11] study European
and American options and obtain equations for the price.
A distinct approach (Wiener-Hopf factorization) is used by
Jobert and Rogers [12] to derive very good approximations
of the option prices for, among others, American puts. Other
contributions include [13, 14].

Works involving Markov switched regimes and CIR
dynamics appear in [15] where the bond valuation problem is
considered (but not in the form of an American option; their
approach will be relevant to the computation of the payoff of
our American option although in their model only the mean
reverting level is subject to Markov jumps) and in [16] where
the term structure of the interest rates is analysed.

On the other hand numerical methods are proposed in
[17] where it is found that a fixed point policy iteration
coupled with a direct control formulation seems to perform
best.

Finally, we refer to [18] for theoretical results concerning
the pricing of American options in general.
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2. Perpetual Prepayment Option with
a Stochastic Intensity CIR Model

We assume throughout the paper that the interest rate 𝑟 is
constant. Therefore, the price of the prepayment option only
depends on the intensity evolution over time. We model the
intensity dynamics by a Cox-Ingersoll-Ross process (see [19–
21] for theoretical and numerical aspects of CIR processes
and the situations where the CIR process has been used in
finance):

𝑑𝜆
𝑠
= 𝛾 (𝜃 − 𝜆

𝑠
) 𝑑𝑠 + 𝜎√𝜆

𝑠
𝑑𝑊

𝑠
, 𝛾, 𝜃, 𝜎 > 0, 𝜆

0
= 𝜆

0
.

(1)

It is known that if 2𝛾𝜃 ≥ 𝜎
2, then CIR process ensures an

intensity strictly positive. Fortunately, as it will be seen in the
following, the PVRP is given by an analytic formula.

2.1. Analytical Formulas for the PVRP. Assume a loan with
a fixed coupon defined by the interest rate 𝑟 and an initial
contractual margin 𝜌

0
. Here 𝜌

0
does not take into account

any commercial margin (see Remark 1). Let 𝜉(𝑡, 𝑇, 𝜆) be the
present value of the remaining payments at time 𝑡 of a
corporate loan with initial contractual margin 𝜌

0
(depending

on 𝜆
0
), intensity at time 𝑡, 𝜆

𝑡
, following the risk-neutral

equation (1) with 𝜆
𝑡
= 𝜆; the loan has nominal amount𝐾 and

contractual maturity 𝑇. Here the assignment 𝜆
𝑡
= 𝜆 means

that the dynamics of 𝜆
𝑡
start at time 𝑡 from the numerical

value 𝜆. All random variables will be conditional by this event
(see, e.g., (3)).

Therefore the loan value LV(𝑡, 𝑇, 𝜆) is equal to the present
value of the remaining payments 𝜉(𝑡, 𝑇, 𝜆)minus the prepay-
ment option value 𝑃(𝑡, 𝑇, 𝜆):

LV (𝑡, 𝑇, 𝜆) = 𝜉 (𝑡, 𝑇, 𝜆) − 𝑃 (𝑡, 𝑇, 𝜆) . (2)

The present value of the cash flows discounted at the
(instantaneous) risky rate 𝑟 + 𝜆

𝑡
is denoted by 𝜉. The

infinitesimal cash flow at time 𝑡 is 𝐾(𝑟 + 𝜌
0
) and the final

payment of the principal𝐾. Then

𝜉 (𝑡, 𝑇, 𝜆)

= E [𝐾 ⋅ (𝑟 + 𝜌
0
) ∫

𝑇

𝑡

𝑒
−∫
̃

𝑡

𝑡

(𝑟+𝜆
𝑢

)𝑑𝑢
𝑑𝑡̃ + 𝐾𝑒

−∫
𝑇

𝑡

𝑟+𝜆
𝑢

𝑑𝑢
| 𝜆

𝑡
= 𝜆] .

(3)

For a perpetual loan the maturity 𝑇 = +∞. Since 𝜆
𝑡
is

always positive, 𝑟 + 𝜆
𝑡
> 0, and thus the last term tends to

zero when 𝑇 → ∞. A second remark is that since 𝛾, 𝜃, and
𝜎 are independent of time, 𝜉 is independent of the starting
time 𝑡:

𝜉 (𝑡, 𝜆) = E [𝐾 ⋅ (𝑟 + 𝜌
0
) ∫

+∞

𝑡

𝑒
−∫
̃

𝑡

𝑡

𝑟+𝜆
𝑢

𝑑𝑢
𝑑𝑡̃ | 𝜆

𝑡
= 𝜆] (4)

= E [𝐾 ⋅ (𝑟 + 𝜌
0
) ∫

+∞

0

𝑒
−∫
̃

𝑡

0

𝑟+𝜆
𝑢

𝑑𝑢
𝑑𝑡̃ | 𝜆

0
= 𝜆]

=: 𝜉 (𝜆) ,

(5)

where the last equality is a definition. For a CIR stochastic
process, we obtain (see [19, 21])

𝜉 (𝜆) = 𝐾 ⋅ (𝑟 + 𝜌
0
) ∫

+∞

0

𝑒
−𝑟𝑡

𝐵 (0, 𝑡̃, 𝜆) 𝑑𝑡̃, (6)

where for general 𝑡, 𝑡̃ we use the notation

𝐵 (𝑡, 𝑡̃, 𝜆) = E [𝑒
−∫
̃

𝑡

𝑡

𝜆
𝑢

𝑑𝑢
| 𝜆

𝑡
= 𝜆] . (7)

Note that𝐵(𝑡, 𝑡̃, 𝜆) is a familiar quantity, and analytic formulas
are available for (7) (see Lando [22, page 292]). The intensity
is following a CIR dynamic; therefore, for general 𝑡, 𝑡̃

𝐵 (𝑡, 𝑡̃, 𝜆) = 𝛼 (𝑡, 𝑡̃) 𝑒
−𝛽(𝑡,̃𝑡)𝜆 (8)

with

𝛼 (𝑡, 𝑡̃) = (

2ℎ 𝑒
(𝛾+ℎ)((̃𝑡−𝑡)/2)

2ℎ + (𝛾 + ℎ) (𝑒
( 𝑡̃−𝑡)ℎ

− 1)

)

2𝛾𝜃/𝜎
2

,

𝛽 (𝑡, 𝑡̃) =

2 (𝑒
( 𝑡̃−𝑡)ℎ

− 1)

2ℎ + (𝛾 + ℎ) (𝑒
( 𝑡̃−𝑡)ℎ

− 1)

,

where ℎ = √𝛾
2
+ 2𝜎

2
,

(9)

where 𝛾 and 𝜎 are the parameters of the CIR process of the
intensity in (1). Obviously𝐵(0, 𝑡, 𝜆) is monotonic with respect
to 𝜆; thus the same holds for 𝜉.

Themargin 𝜌
0
is the solution of the following equilibrium

equation:

𝜉 (𝜆
0
) = 𝐾 (10)

which can be interpreted as the fact that the present value
of the cash flows (according to the probability of survival) is
equal to the nominal𝐾:

𝜌
0
=

1

∫

+∞

0
𝑒
−𝑟𝑡

𝐵 (0, 𝑡̃, 𝜆
0
) 𝑑𝑡̃

− 𝑟. (11)

Note that we assume no additional commercial margin.

Remark 1. If an additional commercial margin 𝜇
0
is consid-

ered, then 𝜌
0
is first computed as above and then replaced

by 𝜌
0

= 𝜌
0
+ 𝜇

0
in (6). Equations (10) and (11) will not be

verified as such but will still hold with some 𝜆
0
instead of 𝜆

0
;

for instance, we will have

𝜌
0
=

1

∫

+∞

0
𝑒
−𝑟𝑡

𝐵(0, 𝑡̃, 𝜆
0
)𝑑𝑡̃

− 𝑟. (12)

With these changes all results in the paper are valid, except
that when computing for operational purposes once the price
of the prepayment option is computed for all 𝜆, one will use
𝜆 = 𝜆

0
as price relevant to practice.
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Remark 2. Some banks allow (per year) a certain percentage
of the prepaid amount without penalty and the rest with a
penalty. This circumstance could be incorporated into the
model by changing the definition of the payoff by subtracting
the penalty. This will impact formula (15).

From definition (7) of 𝐵(𝑡, 𝑡̃, 𝜆) it follows that 𝐵(𝑡, 𝑡̃, 𝜆) <

1; thus

𝑒
−𝑟𝑡

𝐵 (0, 𝑡̃, 𝜆
0
) < 𝑒

−𝑟𝑡 (13)

and as a consequence

∫

+∞

0

𝑒
−𝑟𝑡

𝐵 (0, 𝑡̃, 𝜆
0
) 𝑑𝑡̃ < ∫

+∞

0

𝑒
−𝑟𝑡

𝑑𝑡̃ =

1

𝑟

(14)

which implies that 𝜌
0
> 0.

2.2. Valuation of the Prepayment Option. The valuation
problem of the prepayment option can be modeled as an
American call option on a risky debt owned by the borrower.
Here the prepayment option allows borrower to buy back and
refinance his/her debt according to the current contractual
margin at any time during the life of the option. As the
perpetual loan, the option value will be assumed independent
of the time 𝑡.

As discussed above, the prepayment exercise results in
a payoff (𝜉(𝑡, 𝑇, 𝜆) − 𝐾)

+ for the borrower. The option is
therefore an American call option on the risky asset 𝜉(𝑡, 𝑇, 𝜆

𝑡
)

and the principal𝐾 (the amount to be reimbursed) being the
strike. Otherwise we can see it as an American option on the
risky 𝜆

𝑡
with payoff

𝜒 (𝑡, 𝜆) := (𝜉 (𝑡, 𝜆) − 𝐾)
+ (15)

or, for our perpetual option,

𝜒 (𝜆) := (𝜉 (𝜆) − 𝐾)
+
. (16)

We will denote by A the characteristic operator (cf. [23,
Chapter 7.5]) of the CIR process, that is, the operator that acts
on any 𝐶

2 class function V by

(AV) (𝜆) = 𝛾 (𝜃 − 𝜆) 𝜕
𝜆
V (𝜆) +

1

2

𝜎
2
𝜆𝜕

𝜆𝜆
V (𝜆) . (17)

Denote for 𝑎, 𝑏 ∈ R and 𝑥 ≥ 0 by 𝑈(𝑎, 𝑏, 𝑥) the solution
to the confluent hypergeometric differential (also known as
the Kummer) equation [24]:

𝑥𝑧
󸀠󸀠
(𝑥) + (𝑏 − 𝑥) 𝑧

󸀠
(𝑥) − 𝑎𝑧 (𝑥) = 0 (18)

that increases at most polynomially at infinity and is finite
(not null) at the origin. Recall also that this function is
proportional to the confluent hypergeometric function of the
second kind 𝑈(𝑎, 𝑏, 𝑥) (also known as the Kummer function
of the second kind, Tricomi function, or Gordon function);
for 𝑎, 𝑥 > 0 the function 𝑈(𝑎, 𝑏, 𝑥) is given by the formula

𝑈 (𝑎, 𝑏, 𝑥) =

1

Γ (𝑎)

∫

+∞

0

𝑒
−𝑥𝑡

𝑡
𝑎−1

(1 + 𝑡)
𝑏−𝑎−1

𝑑𝑡. (19)

When 𝑎 ≤ 0, one uses other representations (see the cited
references; for instance, one can use a direct computation or
the recurrence formula 𝑈(𝑎, 𝑏, 𝑥) = (2𝑎 − 𝑏 + 𝑧 − 2)𝑈(𝑎 +

1, 𝑏, 𝑥) − (𝑎 + 1)(𝑎 − 𝑏 + 2)𝑈(𝑎 + 2, 𝑏, 𝑥)) it is known that
𝑈(𝑎, 𝑏, 𝑥) behaves as 𝑥−𝑎 at infinity. Also introduce for 𝑥 ≥ 0

𝑊 (𝑥) = 𝑒
𝑥((𝛾−ℎ)/𝜎

2

)
𝑥
(𝜎
2

−2𝛾𝜃)/𝜎
2

× 𝑈(−

−𝑟𝜎
2
− 𝜎

2
ℎ + 𝛾

2
𝜃 + 𝛾ℎ𝜃

𝜎
2
ℎ

, 2 −

2𝛾𝜃

𝜎
2
,

2ℎ

𝜎
2
𝑥) ,

(20)

where ℎ = √𝛾
2
+ 2𝜎

2.

Theorem 3. (1) Introduce for Λ > 0 the family of functions:
𝑃
Λ
(𝜆) such that

𝑃
Λ
(𝜆) = 𝜒 (𝜆) ∀𝜆 ∈ [0, Λ] , (21)

(A𝑃
Λ
) (𝜆) − (𝑟 + 𝜆) 𝑃

Λ
(𝜆) = 0, ∀𝜆 > Λ, (22)

lim
𝜆→Λ

𝑃
Λ
(𝜆) = 𝜒 (Λ) , (23)

lim
𝜆→∞

𝑃
Λ
(𝜆) = 0. (24)

Then

𝑃
Λ
(𝜆) =

{
{

{
{

{

𝜒 (𝜆) ∀𝜆 ∈ [0, Λ]

𝜒 (Λ)

𝑊 (Λ)

𝑊 (𝜆) ∀𝜆 ≥ Λ.

(25)

(2) Suppose now a Λ
∗
∈ ]0, 𝜌

0
∧ 𝜆

0
[ exists such that

𝑑𝑃
Λ
∗ (𝜆)

𝑑𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜆= (Λ

∗

)
+

=

𝑑𝜒(𝜆)

𝑑𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜆= (Λ

∗

)
−

. (26)

Then the price of the prepayment option is 𝑃(𝜆) = 𝑃
Λ
∗(𝜆).

Proof. We start with the first item: it is possible to obtain a
general solution of (22) in an analytic form. We recall that
𝑧(𝑋) = 𝑈(𝑎, 𝑏, 𝑋) is the solution of the Kummer equation
(18). A cumbersome but straightforward computation shows
that the general solution vanishing at infinity of the PDE (22)
is𝑊(𝜆); thus

𝑃
Λ
(𝜆) = 𝐶

Λ
𝑊(𝜆) ∀𝜆 > Λ (27)

with some 𝐶
Λ
> 0 to be determined. Now use the boundary

conditions. If 𝜆 = Λ, by continuity 𝜒(Λ) = 𝑃
Λ
(Λ) = 𝐶

Λ
𝑊(Λ).

Thus, 𝐶
Λ
= 𝜒(Λ)/𝑊(Λ). Division by𝑊 is legitimate because

by definition,𝑊(𝑥) > 0 for all 𝑥 > 0.
We now continue with the second part of the theorem.

The valuation problem of an American option goes through
several steps: first one introduces the admissible trading and
consumption strategies (cf. [25, Chapter 5]); then one realizes
using results in the cited reference (also see [21, 26]) that
the price 𝑃(𝜆) of the prepayment option involves computing
a stopping time associated to the payoff. Denote by T the
ensemble of (positive) stopping times; we conclude that

𝑃 (𝜆) = sup
𝜏∈T

E (𝑒
−∫
𝜏

0

𝑟+𝜆
𝑢

𝑑𝑢
𝜒 (𝜆

𝜏
) | 𝜆

0
= 𝜆) . (28)
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Further results derived for the situation of a perpetual
(standard) American put options [18, 27] show that the
stopping time has a simple structure: a critical level exists that
splits the positive axis into two regions: the exercise region
(to the left) where it is optimal to exercise and where the
price equals the payoff and a continuation region (to the
right) where the price satisfies a partial differential equation
similar to Black-Scholes equation. We refer to [28] for how
to adapt the theoretical arguments for the situation when the
dynamics is not Black-Scholes-like but a CIR process.

The result builds heavily on the fact that the discounted
payoff of the standard situation of an American put 𝑒−𝑟𝑡(𝑆 −

𝐾)
− is a submartingale. For us the discounted payoff is

𝑒
−∫
𝑡

0

𝑟+𝜆
𝑢

𝑑𝑢
𝜒 (𝜆

𝑡
) = 𝑒

−∫
𝑡

0

𝑟+𝜆
𝑢

𝑑𝑢
(𝜉 (𝜆

𝑡
) − 𝐾)

+
, (29)

and checking this condition requires here more careful
examination which is the object of Lemma 4. It is now
possible to apply Theorem 10.4.1 [23, Section 10.4, page 227]
(see also [28] for specific treatment of the CIR process) which
will show that 𝑃(𝜆) is the true option price if the following
conditions are satisfied:

(1) on ]0, Λ
∗
[we have 𝑃(𝜆) = 𝜒(𝜆) = (𝜉(𝜆)−𝐾)

+ and the
relation (35) holds;

(2) the solution candidate 𝑃(𝜆) satisfies the relation

(A𝑃) (𝜆) − (𝑟 + 𝜆) 𝑃 (𝜆) = 0, ∀𝜆 > Λ
∗
; (30)

(3) the function 𝑃(𝜆) is 𝐶
1 everywhere, continuous at

the origin and 𝐶
2 on each subinterval ]0, Λ∗

[ and
]Λ

∗
,∞[.

The theorem also says that the borrower exercises his
option on the exercise region [0, Λ

∗
]while on the continuation

region ]Λ
∗
,∞[ the borrower keeps the option because it is

worth more nonexercised.
We now show that 𝑃

Λ
∗ verifies all conditions above which

will allow to conclude that 𝑃 = 𝑃
Λ
∗ . The requirement 1 is

proved in Lemma 4; the requirement 3 amounts to asking that
the optimal frontier value Λ∗ is chosen such that

𝑑𝑃
Λ
∗ (𝜆)

𝑑𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜆= (Λ

∗

)
+

=

𝑑𝜒 (𝜆)

𝑑𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜆= (Λ

∗

)
−

. (31)

The requirement 2 implies that in the continuation region
the price is the solution of the following PDE:

(A𝑃) (𝜆) − (𝑟 + 𝜆) 𝑃 (𝜆) = 0, ∀𝜆 > Λ
∗
. (32)

For this PDE we need boundary conditions.The condition at
𝜆 = Λ

∗ is

𝑃 (𝜆)|𝜆=Λ
∗ = 𝜒 (𝜆)

󵄨
󵄨
󵄨
󵄨𝜆=Λ

∗

. (33)

When 𝜆 = +∞, the default intensity is infinite; thus the time
to failure is zero, and thus the borrower has failed; in this case
the option is worthless; that is,

lim
𝜆→∞

𝑃 (𝜆) = 0. (34)

These conditions give exactly the definition of 𝑃
Λ
∗ .

Lemma 4. The following inequality holds:

(A𝜒) (𝜆) − (𝑟 + 𝜆) 𝜒 (𝜆) < 0, ∀𝜆 < 𝜌
0
∧ 𝜆

0
. (35)

Proof. Recall that 𝜒(𝜆) = (𝜉(𝜆) − 𝐾)
+; definition (5) of 𝜉

implies (cf. [23, Section 8.2 and exercise 9.12, page 203]) that
𝜉 is solution of the following PDE:

(A𝜉) (𝜆) − (𝑟 + 𝜆) 𝜉 (𝜆) + (𝑟 + 𝜌
0
)𝐾 = 0, ∀𝜆 > 0. (36)

For 𝜆 < 𝜆
0
we have 𝜉(𝜆) > 𝐾 = 𝜉(𝜆

0
); thus

(A(𝜉 (⋅) − 𝐾)
+
) (𝜆) − (𝑟 + 𝜆) (𝜉 (𝜆) − 𝐾)

+

= (A (𝜉 (⋅) − 𝐾)) (𝜆) − (𝑟 + 𝜆) (𝜉 (𝜆) − 𝐾)

= (A𝜉) (𝜆) − (𝑟 + 𝜆) 𝜉 (𝜆) + (𝑟 + 𝜆)𝐾

= − (𝑟 + 𝜌
0
)𝐾 + (𝑟 + 𝜆)𝐾

= (𝜆 − 𝜌
0
)𝐾 < 0 ∀𝜆 < 𝜌

0
∧ 𝜆

0
.

(37)

Note that Theorem 3 is only a sufficient result (a so-
called “verification” result); under the assumption that a Λ

∗

fulfilling the hypotheses of the theorem exists the question is
how to find it.

Two approaches can be considered; first, it is enough
to find a zero of the following function Λ 󳨃→ Υ(Λ) :=

((𝜕𝑃
Λ
(𝜆)/𝜕𝜆)|

𝜆=Λ
+ − (𝜕𝜒(𝜆)/𝜕𝜆)|

𝜆=Λ
−) (the last equality

is a definition). Of course (𝜕𝜒(𝜆)/𝜕𝜆)|
𝜆=𝜆
0

+𝜖
= 0 and

(𝜕𝑃
𝜆
0

+𝜖
(𝜆)/𝜕𝜆)|

𝜆=𝜆
0

+𝜖
< 0; thus Υ(𝜆

0
+ 𝜖) < 0 for any 𝜖 > 0

and hence Υ(𝜆
0
) ≤ 0. Thus it is natural not to look for Λ

∗

outside the interval [0, 𝜆
0
]. The theorem asks furthermore to

restrict the search to the interval [0, 𝜆
0
∧ 𝜌

0
].

A different convenient procedure to find the critical Λ∗

is to consider the dependence Λ 󳨃→ 𝑃
Λ
(𝜆

0
). Let us consider

the stopping time 𝜏
Λ
that stops upon entering the domain

[0, Λ]. We remark that by a Feynman-Kac formula (cf. [23,
page 203]),

𝑃
Λ (𝜆) = E (𝑒

−∫
𝜏

Λ

0

𝑟+𝜆
𝑢

𝑑𝑢
𝜒 (𝜆

𝜏
Λ

) | 𝜆
0
= 𝜆) . (38)

From (28) 𝑃(𝜆) ≥ 𝑃
Λ
(𝜆) for any 𝜆; thus Λ∗ is the value that

maximizes (with respect to Λ) the function Λ 󳨃→ 𝑃
Λ
(𝜆

0
). To

comply with the theorem, the maximization is performed in
the interval [0, 𝜆

0
∧ 𝜌

0
].

2.3. Numerical Application. We consider a perpetual loan
(𝑇 = +∞) with a nominal amount 𝐾 = 1 and the borrower
default intensity 𝜆

𝑡
follows a CIR dynamics with parameters:

initial intensity 𝜆
0

= 300 bps, volatility 𝜎 = 0.05, average
intensity 𝜃 = 200 bps, and reversion coefficient 𝛾 = 0.5. We
assume a constant interest rate 𝑟 = 300 bps; that is, 𝑟 = 3%.
Recall that a basis point, denoted by “1 bps”, equals 10−4.

In order to find the initial contractual margin, we use (11)
and find 𝜌

0
= 208 bps.
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Figure 1: We illustrate here the dependence of 𝑃
Λ
(𝜆

0
) as a function

ofΛ; this allows for finding the optimal valueΛ∗ that maximizes the
option price. For the numerical example described here we obtain
Λ

∗
= 123 bps.

At inception, the present value of cash flows is at par,
so 𝜉(𝜆

0
) = 1. The prepayment option price is 𝑃(+∞, 𝜆

0
) =

0.0232; that is, 𝑃(𝜆
0
) = 2.32% ⋅ 𝐾. Therefore the loan value

equals 𝜉(𝜆
0
) − 𝑃(𝜆

0
) = 0,9768.

The valueΛ∗
= 123 bps is obtained bymaximizing𝑃

Λ
(𝜆

0
)

as indicated in the remarks above; the dependence of 𝑃
Λ
(𝜆

0
)

with respect to Λ is illustrated in Figure 1. The loan value will
be equal to par if the intensity decreases until the exercise
region (𝜆 < Λ

∗) (see Figure 2).The continuation and exercise
regions are depicted in Figure 3. We postpone to Section 3.5
the description of the numerical method to solve (22).

3. Perpetual Prepayment Option with
a Switching Regime

In this second part, the perpetual prepayment option is still
an option on the credit risk, intensity, and also the liquidity
cost. The liquidity cost is defined as the specific cost of a
bank to access the cash on the market. This cost will be
modeled with a switching regime with a Markov chain of
finite states of the economy.The interest rate 𝑟 is still assumed
constant. Therefore, the assessment of the loan value and
its prepayment option is an 𝑁-dimensional problem. The
intensity is still defined by a Cox-Ingersoll-Ross process with
2𝑘𝜃 ≥ 𝜎

2:

𝑑𝜆
𝑡
= 𝛾 (𝜃 − 𝜆

𝑡
) 𝑑𝑡 + 𝜎√𝜆

𝑡
𝑑𝑊

𝑡
, 𝜆

0
= 𝜆

0
. (39)

3.1. Theoretical Regime Switching Framework. We assume the
economic state of the market is described by a finite state
Markov chain X = {𝑋

𝑡
, 𝑡 ≥ 0}. The state space X can be

taken to be, without loss of generality, the set of unit vectors
𝐸 = {𝑒

1
, 𝑒

2
, . . . , 𝑒

𝑁
}, 𝑒

𝑖
= (0, . . . , 0, 1, 0, . . . , 0)

𝑇
∈ R𝑁. Here 𝑇

is the transposition operator.

1

0.98

0.96

0.94

0.92

0.9

0.88

0.86
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

𝜆

Figure 2: Loan value as a function of the intensity.The loan value is
decreasing when there is a degradation of the credit quality (i.e., 𝜆
increases) and converges to 0.

0.06

0.05

0.04

0.03

0.02

0.01

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

𝜆

Price
Payoff

Figure 3: Prepayment option price 𝑃(𝜆) (solid line) and payoff 𝜒(𝜆)

(dashed line) as a function of the intensity 𝜆. Two regions appear:
the continuation region 𝜆 > Λ

∗ and the exercise region 𝜆 ≤ Λ
∗.

Assuming the process𝑋
𝑡
is homogeneous in time and has

a rate matrix 𝐴, then if 𝑝
𝑡
= E[𝑋

𝑡
] ∈ R𝑁,

𝑑𝑝
𝑡

𝑑𝑡

= 𝐴𝑝
𝑡
,

𝑋
𝑡
= 𝑋

0
+ ∫

𝑡

0

𝐴𝑋
𝑢
𝑑𝑢 + 𝑀

𝑡
,

(40)

where M = {𝑀
𝑡
, 𝑡 ≥ 0} is a martingale with respect to the

filtration generated by X. In differential form

𝑑𝑋
𝑡
= 𝐴𝑋

𝑡
𝑑𝑡 + 𝑑𝑀

𝑡
, 𝑋

0
= 𝑋

0
. (41)
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We assume the instantaneous liquidity cost of the bank
depends on the state X of the economy, so that

𝑙
𝑡
= ⟨l, 𝑋

𝑡
⟩ . (42)

Denote by 𝑎
𝑘,𝑗

the entry on the line 𝑘 and the column 𝑗 of the
𝑁 × 𝑁 matrix 𝐴 with 𝑎

𝑘,𝑗
≥ 0 for 𝑗 ̸= 𝑘 and ∑

𝑁

𝑗=1
𝑎
𝑘,𝑗

= 0 for
any 𝑘.

3.2. Analytical Formulas for the PVRP. Assume a loan has a
fixed coupon defined by the constant interest rate 𝑟 and an
initial contractual margin 𝜌

0
calculated at the inception for a

par value of the loan. Let 𝜉(𝑡, 𝑇, 𝜆
𝑡
, 𝑋

𝑡
) be the present value of

the remaining payments at time 𝑡 of a corporate loan, where
𝜆
𝑡
is the intensity at time 𝑡, 𝑇 is the contractual maturity, 𝐾

is the nominal amount, and 𝑋
𝑡
is the state of the economy at

time 𝑡.
The loan value LV(𝑡, 𝑇, 𝜆) is still equal to the present value

of the remaining payments 𝜉(𝑡, 𝑇, 𝜆) minus the prepayment
option value 𝑃(𝑡, 𝑇, 𝜆):

LV (𝑡, 𝑇, 𝜆) = 𝜉 (𝑡, 𝑇, 𝜆) − 𝑃 (𝑡, 𝑇, 𝜆) . (43)

The PVRP 𝜉 is the present value of the cash flows
discounted at the risky rate, where the risky rate at time 𝑡 is
the constant risk-free rate 𝑟 plus the liquidity cost 𝑙

𝑡
and the

intensity 𝜆
𝑡
. Similar to the discussion in the Section 2.1, 𝜉 is

not depending on time when 𝑇 = +∞ (perpetual loan). So
we denote that,

𝜉 (𝜆,𝑋) := 𝐾 (𝑟 + 𝜌
0
)

× E [∫

+∞

0

𝑒
−∫
̃

𝑡

0

𝑟+𝑙
𝑢

+𝜆
𝑢

𝑑𝑢
𝑑𝑡̃ | 𝜆

0
= 𝜆,𝑋

0
= 𝑋] .

(44)

We consider that there is no correlation between the credit
risk, that is, the intensity 𝜆

𝑡
, of the borrower and the cost to

access the cash on the market, that is, the liquidity cost 𝑙
𝑡
, of

the lender. Therefore, we have

𝜉 (𝜆,𝑋) = 𝐾 (𝑟 + 𝜌
0
) ∫

+∞

0

𝑒
−𝑟𝑡

E [𝑒
−∫
̃

𝑡

0

𝜆
𝑢

𝑑𝑢
| 𝜆

0
= 𝜆]

× E [𝑒
−∫
̃

𝑡

0

𝑙
𝑢

𝑑𝑢
| 𝑋

0
= 𝑋]𝑑𝑡̃.

(45)

Remark 5. The crucial information here is that the coeffi-
cients 𝛾, 𝜃, and 𝜎 of the CIR process are not depending on
the regime 𝑋; thus we can separate the CIR dynamics and
the Markov dynamics at this level. A different approach can
extend this result by using the properties of the PVRP as
explained in the next section.

Note that (cf. Section 2.1, equation (7))

E [𝑒
−∫
𝑡

0

𝜆
𝑢

𝑑𝑢
| 𝜆

0
= 𝜆] = 𝐵 (0, 𝑡, 𝜆) (46)

and 𝐵(0, 𝑡, 𝜆) is evaluated using (8)–(11). In order to compute

E [𝑒
−∫
̃

𝑡

0

𝑙
𝑢

𝑑𝑢
| 𝑋

0
= 𝑋] , (47)

let 𝑓
𝑘
(𝑡) be defined by

𝑓
𝑘 (

𝑡) = E [𝑒
−∫
𝑡

0

𝑙
𝑢

𝑑𝑢
| 𝑋

0
= 𝑒

𝑘
] . (48)

Let 𝜏 be the time of the first jump from 𝑋
0

= ⟨X, 𝑒
𝑘
⟩ to

some other state. We know (cf. Lando [22] paragraph 7.7,
page 211) that 𝜏 is a random variable following an exponential
distribution of parameter 𝛼

𝑘
with

𝛼
𝑘
= ∑

𝑗 ̸= 𝑘

𝑎
𝑘,𝑗
. (49)

We also know that conditional to the fact that a jump has
occurred at time 𝜏, the probability that the jump is from state
𝑒
𝑘
to state 𝑒

𝑗
is 𝑝

𝑘,𝑗
, where

𝑝
𝑘,𝑗

=

𝑎
𝑘,𝑗

𝛼
𝑘

. (50)

Thus,

𝑓
𝑘
(𝑡) = P (𝜏 > 𝑡) 𝑒

−𝑙
𝑘

𝑡

+ P (𝜏 ≤ 𝑡) 𝑒
−𝑙
𝑘

𝜏

× ∑

𝑗 ̸= 𝑘

P (𝑙
𝜏
= 𝑙

𝑗
)E [𝑒

−∫
𝑡

𝜏

𝑙
𝑢

𝑑𝑢
| 𝑋

𝜏
= ⟨X, 𝑒

𝑗
⟩]

= 𝑒
−(𝑙
𝑘

+𝛼
𝑘

)𝑡
+ 𝛼

𝑘
∫

𝑡

0

𝑒
−(𝑙
𝑘

+𝛼
𝑘

)𝜏
∑

𝑗 ̸= 𝑘

𝑝
𝑘,𝑗
𝑓
𝑗
(𝑡 − 𝜏) 𝑑𝜏.

(51)

Then,

𝑒
(𝑙
𝑘

+𝛼
𝑘

)𝑡
𝑓
𝑘
(𝑡) = 1 + 𝛼

𝑘
∫

𝑡

0

𝑒
(𝑙
𝑘

+𝛼
𝑘

)(𝑡−𝜏)
∑

𝑗 ̸= 𝑘

𝑝
𝑘,𝑗
𝑓
𝑗
(𝑡 − 𝜏) 𝑑𝜏

= 1 + 𝛼
𝑘
∫

𝑡

0

𝑒
(𝑙
𝑘

+𝛼
𝑘

)𝑠
∑

𝑗 ̸= 𝑘

𝑝
𝑘,𝑗
𝑓
𝑗
(𝑠) 𝑑𝑠.

(52)

By differentiation with respect to 𝑡,

𝑑

𝑑𝑡

[𝑒
(𝑙
𝑘

+𝛼
𝑘

)𝑡
𝑓
𝑘
(𝑡)] = 𝛼

𝑘
𝑒
(𝑙
𝑘

+𝛼
𝑘

)𝑡
∑

𝑗 ̸= 𝑘

𝑝
𝑘,𝑗
𝑓
𝑗
(𝑡) . (53)

Then
𝑑𝑓

𝑘 (
𝑡)

𝑑𝑡

+ (𝑙
𝑘
+ 𝛼

𝑘
) 𝑓

𝑘
(𝑡) = 𝛼

𝑘
∑

𝑗 ̸= 𝑘

𝑝
𝑘,𝑗
𝑓
𝑗
(𝑡) . (54)

Thus,

𝑑𝑓
𝑘
(𝑡)

𝑑𝑡

=
[

[

∑

𝑗 ̸= 𝑘

𝛼
𝑘
𝑝
𝑘,𝑗
𝑓
𝑗
(𝑡)

]

]

− (𝑙
𝑘
+ 𝛼

𝑘
) 𝑓

𝑘
(𝑡) . (55)

Denote by 𝐹(𝑡) the vector (𝑓
1
(𝑡), 𝑓

2
(𝑡), . . . , 𝑓

𝑁
(𝑡))

𝑇 and intro-
duce the𝑁 × 𝑁matrix 𝐵

𝐵
𝑖,𝑗

= {

𝛼
𝑖
𝑝
𝑖,𝑗

if 𝑖 ̸= 𝑗

− (𝛼
𝑖
+ 𝑙

𝑖
) if 𝑖 = 𝑗.

(56)
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From (55) we obtain

𝑑𝐹 (𝑡)

𝑑𝑡

= 𝐵𝐹 (𝑡) thus 𝐹 (𝑡) = 𝑒
𝐵𝑡
𝐹 (0) (57)

with the initial condition

𝐹 (0) = (𝑓
𝑘
(0))

𝑁

𝑘=1
= (1, 1, . . . , 1)

𝑇
∈ R

𝑁
. (58)

Wehave therefore analytic formulas for the PVRP 𝜉(𝜆,𝑋).
We refer the reader to [15] for similar considerations on
related CIR switched dynamics.

Remark 6. When all liquidity parameters 𝑙
𝑘
are equal (to

some quantity 𝑙), then 𝐵 = 𝐴 − 𝑙 ⋅ 𝐼𝑑, and then we obtain
(after some computations) that 𝑓

𝑘
(𝑡) = 𝑒

−𝑙𝑡; thus the payoff
is equal to that of one-regime dynamics with interest rate
𝑟 + 𝑙, which is consistent with intuitive image we may have.
Another limiting case is when the switching is very fast (see
also Remark 10 item 5 for further details).

The margin 𝜌
0
is set to satisfy the equilibrium equation:

𝜉 (𝜆
0
, 𝑋

0
) = 𝐾. (59)

Similar arguments to that in previous section show that 𝜌
0
>

min
𝑘
𝑙
𝑘
> 0. See Remark 1 for the situationwhen an additional

commercial margin is to be considered.
We will also need to introduce for any 𝑘 = 1, . . . , 𝑁 the

value Λ0

𝑘
such that

𝜉 (Λ

0

𝑘
, 𝑒

𝑘
) = 𝐾. (60)

Of course, Λ0

𝑋
0

= 𝜆
0
. Recall that 𝜉(𝜆, 𝑒

𝑘
) is decreasing with

respect to 𝜆; when 𝜉(0, 𝑒
𝑘
) < 𝐾, there is no solution to (59)

and we will choose by convention Λ

0

𝑘
= 0.

3.3. Further Properties of the PVRP 𝜉. It is useful for the
following to introduce a PDE formulation for 𝜉. To ease
the notations, we introduce the operator AR that acts on
functions V(𝜆, 𝑋) as follows:

(A
R
V) (𝜆, 𝑒

𝑘
) = (AV) (𝜆, 𝑒

𝑘
) − (𝑟 + 𝑙

𝑘
+ 𝜆) V (𝜆, 𝑒

𝑘
)

+

𝑁

∑

𝑗 = 1

𝑎
𝑘,𝑗

(V (𝜆, 𝑒
𝑗
) − V (𝜆, 𝑒

𝑘
)) .

(61)

Having defined the dynamics (39) and (41), one can use
an adapted version of the Feynman-Kac formula in order to
conclude that PVRP defined by (44) satisfies the equation

(A
R
𝜉) + (𝑟 + 𝜌

0
)𝐾 = 0. (62)

Remark 7. When the dynamics involve different coefficients
of the CIR process for different regimes (cf. also Remark 5),
(62) changes in that it will involve, for 𝜉(⋅, 𝑒

𝑘
), the operator

A
𝑘
(V) (𝜆) = 𝛾

𝑘
(𝜃

𝑘
− 𝜆) 𝜕

𝜆
V (𝜆) +

1

2

𝜎
2

𝑘
𝜆𝜕

𝜆𝜆
V (𝜆) (63)

instead ofA.

3.4. Valuation of the Prepayment Option. Thevaluation prob-
lemof the prepayment option can bemodeled as anAmerican
call option on a risky debt owned by the borrowerwith payoff:

𝜒 (𝜆,𝑋) = (𝜉 (𝜆,𝑋) − 𝐾)
+
. (64)

Here the prepayment option allows borrower to buy back and
refinance his/her debt according to the current contractual
margin at any time during the life of the option.

Theorem8. For any N-tupleΛ = (Λ
𝑘
)
𝑁

𝑘=1
∈ (R

+
)
𝑁 introduce

the function 𝑃
Λ
(𝜆, 𝑋) such that

𝑃
Λ
(𝜆, 𝑒

𝑘
) = 𝜒 (𝜆, 𝑒

𝑘
) ∀𝜆 ∈ [0, Λ

𝑘
] , (65)

(A
R
𝑃
Λ
) (𝜆, 𝑒

𝑘
) = 0, ∀𝜆 > Λ

𝑘
, 𝑘 = 1, . . . , 𝑁, (66)

lim
𝜆→Λ

𝑘

𝑃
Λ
(𝜆, 𝑒

𝑘
) = 𝜒 (Λ

𝑘
, 𝑒

𝑘
) , if Λ

𝑘
> 0, 𝑘 = 1, . . . , 𝑁,

(67)

lim
𝜆→∞

𝑃
Λ
(𝜆, 𝑒

𝑘
) = 0, 𝑘 = 1, . . . , 𝑁. (68)

Suppose a Λ
∗
∈ ∏

𝑁

𝑘=1
[0, (𝜌

0
− 𝑙

𝑘
)
+
∧ Λ

0

𝑘
] exists such that for

all 𝑘 = 1, . . . , 𝑁:

𝑃
Λ
∗ (𝜆, 𝑋) ≥ 𝜒 (𝜆,𝑋) ∀𝜆,𝑋, (69)

𝜕𝑃
Λ
∗ (𝜆, 𝑒

𝑘
)

𝜕𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜆= (Λ

∗

𝑘

)
+

=

𝜕𝜒 (𝜆, 𝑒
𝑘
)

𝜕𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜆= (Λ

∗

𝑘

)
−

if Λ∗

𝑘
> 0,

(70)

𝑁

∑

𝑗 = 1

𝑎
𝑘,𝑗

(𝑃
Λ
∗ (𝜆, 𝑒

𝑗
) − 𝜒 (𝜆, 𝑒

𝑗
)) + 𝐾 (𝜆 + 𝑙

𝑘
− 𝜌

0
) ≤ 0

∀𝜆 ∈ ]min
𝑗

Λ
∗

𝑗
, Λ

∗

𝑘
[ .

(71)

Then 𝑃 = 𝑃
Λ
∗ .

Proof. Similar arguments as in the proof ofTheorem 3 lead to
consider the American option price in the form

𝑃 (𝜆,𝑋) = sup
𝜏∈T

E[𝑒
−∫
𝜏

0

𝑟+𝑙
𝑢

+𝜆
𝑢

𝑑𝑢
𝜒 (𝜆

𝜏
, 𝑋

𝜏
) | 𝜆

0
= 𝜆, 𝑋

0
=𝑋] .

(72)

We note that for Λ ∈ (R∗

+
)
𝑁 if 𝜏

Λ
is the stopping time that

stops upon exiting the domain 𝜆 > Λ
𝑘
when𝑋 = 𝑒

𝑘
, then

𝑃
Λ (𝜆, 𝑋)

= E [𝑒
−∫
𝜏

Λ

0

𝑟+𝑙
𝑢

+𝜆
𝑢

𝑑𝑢
𝜒 (𝜆

𝜏
Λ

, 𝑋
𝜏
Λ

) | 𝜆
0
= 𝜆, 𝑋

0
= 𝑋] .

(73)

Remark that for Λ ∈ (R∗

+
)
𝑁 the stopping time 𝜏

Λ
is finite a.e.

Thus for any Λ ∈ (R∗

+
)
𝑁 we have 𝑃 ≥ 𝑃

Λ
; when Λ has some

null coordinates, the continuity (ensured among others by the
boundary condition (65)) shows that we still have 𝑃 ≥ 𝑃

Λ
. In
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particular for Λ∗ we obtain 𝑃 ≥ 𝑃
Λ
∗ ; all that remains to be

proved is the reverse inequality; that is, 𝑃 ≤ 𝑃
Λ
∗ .

To this end we use a similar technique as in Theorem
10.4.1 [23, Section 10.4, page 227] (see also [7] for similar
considerations). First one can invoke the same arguments as
in the cited reference (cf. Appendix D for technicalities) and
work as if 𝑃

Λ
∗ is 𝐶2 (not only 𝐶

1 as the hypothesis ensures).
Denote by 𝐷

Λ
∗ the set {(𝜆, 𝑒

𝑘
) | 𝜆 ∈ [0, Λ

∗

𝑘
], 𝑘 =

1, . . . , 𝑁} (which will be the exercise region), and denote by
𝐶
Λ
∗ its complementary with respect toR

+
×𝐸 (which will be

the continuation region).
Lemma 9 shows that AR

𝑃
Λ
∗ is nonpositive everywhere

(and is null on 𝐶
Λ
∗). The Itô formula shows that

𝑑(𝑒
−∫
𝑡

0

𝑟+𝑙
𝑠

+𝜆
𝑠

𝑑𝑠
𝑃
Λ
∗ (𝜆

𝑡
, 𝑋

𝑡
))

= 𝑒
−∫
𝑡

0

𝑟+𝑙
𝑠

+𝜆
𝑠

𝑑𝑠
(A

R
𝑃
Λ
∗) (𝜆

𝑡
, 𝑋

𝑡
) 𝑑𝑡 + 𝑑 (martingale) .

(74)

Taking averages and integrating from 0 to some stopping time
𝜏, it follows fromAR

𝑃
Λ
∗ ≤ 0 that

𝑃
Λ
∗ (𝜆, 𝑋) ≥ E [𝑒

−∫
𝜏

0

𝑟+𝑙
𝑢

+𝜆
𝑢

𝑑𝑢
𝑃
Λ
∗ (𝜆

𝜏
, 𝑋

𝜏
) | 𝜆

0
= 𝜆, 𝑋

0
= 𝑋]

≥ E [𝑒
−∫
𝜏

0

𝑟+𝑙
𝑢

+𝜆
𝑢

𝑑𝑢
𝜒 (𝜆

𝜏
, 𝑋

𝜏
) | 𝜆

0
= 𝜆, 𝑋

0
= 𝑋] .

(75)

Since this is true for any stopping time 𝜏, the conclusion
follows.

Lemma9. Under the hypothesis of theTheorem 8 the following
inequality holds (strongly except for the values (𝜆, 𝑋) =

(Λ
∗

𝑗
, 𝑒

𝑘
) and everywhere in a weak sense):

(A
R
𝑃
Λ
∗) (𝜆,𝑋) ≤ 0, ∀𝜆 > 0, ∀𝑋. (76)

Proof. The nontrivial part of this lemma comes from the fact
that if for fixed 𝑘 we have for 𝜆 in a neighborhood of some
𝜆
1
: 𝑃

Λ
∗(𝜆, 𝑒

𝑘
) = 𝜒(𝜆, 𝑒

𝑘
), this does not necessarily imply

(AR
𝑃
Λ
∗)(𝜆

1
, 𝑒

𝑘
) = (AR

𝜒)(𝜆
1
, 𝑒

𝑘
) because AR depends on

other values 𝑃
Λ
∗(𝜆, 𝑒

𝑗
) with 𝑗 ̸= 𝑘.

From (66) the conclusion is trivially verified for 𝑋 = 𝑒
𝑘

for any 𝜆 ∈ ]Λ
∗

𝑘
,∞[.

We now analyse the situation when 𝜆 < min
𝑗
Λ
∗

𝑗
; this

means in particular that 0 ≤ 𝜆 < min
𝑗
Λ
∗

𝑗
≤ Λ

0

ℓ
for any ℓ; thus

Λ

0

ℓ
> 0. Note that Λ∗

𝑘
< Λ

0

𝑘
implies 𝜉(Λ∗

𝑘
, 𝑒

𝑘
) ≥ 𝜉(Λ

0

𝑘
, 𝑒

𝑘
) = 𝐾

for any 𝑘 = 1, . . . , 𝑁; thus 𝜒(𝜆, 𝑒
𝑘
) = 𝜉(𝜆, 𝑒

𝑘
) − 𝐾 for any

𝜆 ∈ [0, Λ
∗

𝑘
] and any 𝑘. Furthermore since 𝜆 < min

𝑗
Λ
∗

𝑗
, we

have𝑃
Λ
∗(𝜆, 𝑒

𝑘
) = 𝜒(𝜆, 𝑒

𝑘
) = 𝜉(𝜆, 𝑒

𝑘
)−𝐾 for any 𝑘. Fix𝑋 = 𝑒

𝑘
;

then

(A
R
𝑃
Λ
∗) (𝜆, 𝑒

𝑘
) = (A

R
𝜒) (𝜆, 𝑒

𝑘
) = (A

R
(𝜉 − 𝐾)) (𝜆, 𝑒

𝑘
)

= (A
R
𝜉) (𝜆, 𝑒

𝑘
) −A

R
(𝐾)

= − (𝑟 + 𝜌
0
)𝐾 − (𝑟 + 𝑙

𝑘
+ 𝜆)𝐾

= 𝐾 (𝑙
𝑘
+ 𝜆 − 𝜌

0
)

≤ 𝐾 (𝑙
𝑘
+ Λ

∗

𝑘
− 𝜌

0
) ≤ 0,

(77)

the last inequality being true by hypothesis.
A last situation is when 𝜆 ∈ ]min

𝑗
Λ
∗

𝑗
, Λ

∗

𝑘
[; then

𝑃
Λ
∗(𝜆, 𝑒

𝑘
) = 𝜒(𝜆, 𝑒

𝑘
) but some terms 𝑃

Λ
∗(𝜆, 𝑒

𝑗
) for 𝑗 ̸= 𝑘

may differ from 𝜒(𝜆, 𝑒
𝑗
). More involved arguments are

invoked in this case. This point is specific to the fact that the
payoff 𝜒 itself has a complex structure and as such was not
emphasized in previous works (e.g., [7], etc.).

Recalling the properties of 𝜉, one obtains (and since
𝑃
Λ
∗(𝜆, 𝑒

𝑘
) = 𝜒(𝜆, 𝑒

𝑘
)) the following:

(A
R
𝑃
Λ
∗) (𝜆, 𝑒

𝑘
) = (A𝜒) (𝜆, 𝑒

𝑘
) − (𝑟 + 𝑙

𝑘
+ 𝜆) 𝜒 (𝜆, 𝑒

𝑘
)

+

𝑁

∑

𝑗 = 1

𝑎
𝑘,𝑗

(𝑃
Λ
∗ (𝜆, 𝑒

𝑗
) − 𝜒 (𝜆, 𝑒

𝑘
))

= (A
R
𝜒) (𝜆, 𝑒

𝑘
)

+

𝑁

∑

𝑗 = 1

𝑎
𝑘,𝑗

(𝑃
Λ
∗ (𝜆, 𝑒

𝑗
) − 𝜒 (𝜆, 𝑒

𝑗
))

= (A
R
𝜉) (𝜆, 𝑒

𝑘
) −A

R
(𝐾)

+

𝑁

∑

𝑗 = 1

𝑎
𝑘,𝑗

(𝑃
Λ
∗ (𝜆, 𝑒

𝑗
) − 𝜒 (𝜆, 𝑒

𝑗
))

= − 𝐾 (𝑟 + 𝜌
0
) + (𝑟 + 𝑙

𝑘
+ 𝜆)𝐾

+

𝑁

∑

𝑗 = 1

𝑎
𝑘,𝑗

(𝑃
Λ
∗ (𝜆, 𝑒

𝑗
) − 𝜒 (𝜆, 𝑒

𝑗
)) ≤ 0,

(78)

where for the last inequality we use hypothesis (71). Finally,
since we proved that (AR

𝑃
Λ
∗)(𝜆, 𝑋) ≤ 0 strongly except for

the values (𝜆, 𝑋) = (Λ
∗

𝑗
, 𝑒

𝑘
) and since 𝑃

Λ
∗ is of 𝐶1 class, we

obtain the conclusion (the weak formulation only uses the
first derivative of 𝑃

Λ
∗).

Remark 10. Several remarks are in order at this point.

(1) When only one regime is present; that is, 𝑁 = 1,
the hypothesis of the theorem is identical to that of
Theorem 3 since (71) is automatically satisfied.

(2) When 𝑁 > 1 checking (71) does not involve any
computation of derivatives and is straightforward.
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(3) As mentioned in the previous section, the theorem
is a verification result, that is, it only gives sufficient
conditions for a candidate to be the option price.
Two possible partial converse results are possible: the
first one to prove that the optimal price is indeed an
element of the family 𝑃

Λ
. The second converse result

is to prove that supposing 𝑃 = 𝑃
Λ
∗ , then Λ

∗
∈

∏
𝑁

𝑘=1
[0, (𝜌

0
− 𝑙

𝑘
)
+
∧ Λ

0

𝑘
], and (69)–(71) are satisfied.

(4) The search for the candidate Λ
∗ can be done either

by looking for a zero of the function Λ 󳨃→ Υ(Λ) :=

((𝜕𝑃
Λ
∗(𝜆, 𝑒

𝑘
)/𝜕𝜆)|

𝜆= (Λ
∗

𝑘

)
+−(𝜕𝜒(𝜆, 𝑒

𝑘
)/𝜕𝜆)|

𝜆= (Λ
∗

𝑘

)
−)

𝑁

𝑘=1

or by maximizing on ∏
𝑁

𝑘=1
]0, (𝜌

0
− 𝑙

𝑘
) ∧ Λ

0

𝑘
[ the

function Λ 󳨃→ 𝑃
Λ
(𝜆

0
, 𝑋

0
).

(5) If the optimization of 𝑃
Λ
(𝜆

0
, 𝑋

0
) is difficult to per-

form, one can use a continuation argument with
respect to the coupling matrix 𝐴. Denote by Λ

∗
(𝐴)

the optimal value of Λ∗ as function of 𝐴. When 𝐴 =

0, each Λ
∗

𝑘
is found as in Section 2 (the problem

separates into 𝑁 independent, that is, no coupled,
valuation problems, each of which requiring to solve
a one-dimensional optimization) and we construct
thus Λ∗

(0). When considering 𝜇𝐴 with 𝜇 → ∞ at
the limit, the optimal Λ

∗
(∞𝐴) has all entries equal

to Λ
∗

mean, where Λ
∗

mean is the optimal value for one-
regime (𝑁 = 1) dynamics with riskless interest rate 𝑟
being replaced by 𝑟+(∑

𝑁

𝑘=1
𝑙
𝑘
/𝛼

𝑘
)/(∑

𝑁

𝑘=1
1/𝛼

𝑘
). Hav-

ing established the two extremal points, the candidate
Λ
∗
(𝐴) is searchedwithin the𝑁-dimensional segment

[Λ
∗
(0), Λ

∗
(∞𝐴)].

3.5. Numerical Application. The numerical solution of the
partial differential equation (66) is required. We use a finite
differencemethod.The first derivative is approximated by the
finite difference formula

𝜕

𝜕𝜆

𝑃
Λ
(𝜆, 𝑋) =

𝑃
Λ
(𝜆 + 𝛿𝜆,𝑋) − 𝑃

Λ
(𝜆 − 𝛿𝜆,𝑋)

2𝛿𝜆

+ 𝑂 (𝛿𝜆
2
) ,

(79)

while the second derivative is approximated by

𝜕
2

𝜕𝜆
2
𝑃
Λ (𝜆, 𝑋)

=

𝑃
Λ (𝜆 + 𝛿𝜆,𝑋) − 2𝑃

Λ (𝜆 + 𝛿𝜆,𝑋) + 𝑃
Λ (𝜆 − 𝛿𝜆,𝑋)

𝛿𝜆
2

+ 𝑂 (𝛿𝜆
2
) .

(80)

To avoid working with an infinite domain, a well-known
approach is to define an artificial boundary 𝜆max. Then a
boundary condition is imposed on 𝜆max which leads to a
numerical problem in the finite domain ∪

𝑁

𝑘=1
[Λ

∗

𝑘
, 𝜆max].

In this numerical application, 𝜆max = 400 bps. We dis-
cretize [Λ

∗
, 𝜆max] with a grid such that 𝛿𝜆 = 1 bps. Two

approaches have been considered for imposing a boundary
value at 𝜆max: either consider that 𝑃Λ(𝜆max, 𝑒𝑘) = 0, ∀𝑘 =

0.03 0.030.02 0.020.01 0.010

0.025

0.02

0.015

0.01

0.005

0

Λ 1Λ 2

Figure 4: We illustrate here the dependence of 𝑃
Λ
(𝜆

0
, 𝑋

0
) as a

function of Λ; this allows for finding the optimal (Λ∗

1
= 122 bps,

Λ
∗

2
= 64 bps) that maximizes the option price.

1, . . . , 𝑁 (homogeneous Dirichlet boundary condition) or
that (𝜕/𝜕𝜆)𝑃

Λ
(𝜆max, 𝑒𝑘) = 0, ∀𝑘 = 1, . . . , 𝑁 (homogeneous

Neumann boundary condition). Both are correct in the
limit 𝜆max → ∞. We tested the precision of the results
by comparing with numerical results obtained on a much
larger grid (10 times larger) while using the same 𝛿𝜆. The
Neumann boundary condition gives much better results for
the situations we considered and as such was always chosen
(see also Figure 6).

We consider a perpetual loanwith a nominal amount𝐾 =

1 and the borrower default intensity 𝜆
𝑡
follows CIR dynamics

with parameters: initial intensity 𝜆
0
= 300 bps, volatility 𝜎 =

0.05, average intensity 𝜃 = 200 bps, and reversion coefficient
𝛾 = 0.5. We assume a constant interest rate 𝑟 = 1% and a
liquidity cost defined by a Markov chain of two states 𝑙

1
=

150 bps and 𝑙
2

= 200 bps. For 𝑁 = 2 the rate 𝐴 matrix is
completely defined by 𝛼

1
= 1/3, 𝛼

2
= 1.

In order to find the initial contractual margin, we use (11)
and find 𝜌

0
= 331 bps in the state 1. The contractual margin

takes into account the credit risk (default intensity) and the
liquidity cost. We have thus Λ0

1
= 𝜆

0
; we obtain then Λ

0

2
=

260 bps.
The optimal value Λ

∗ is obtained by maximizing
𝑃
Λ
(𝜆

0
, 𝑋

0
) and turns out to be (Λ

∗

1
, Λ

∗

2
) = (122 bps, 64 bps)

(see Figure 4). To be accepted, this numerical solution has
to verify all conditions of Theorem 8. Hypotheses (69) and
(71) are satisfied (see Figure 6) and hypothesis (71) is accepted
after calculation. Moreover Λ

∗

1
≤ (𝜌

0
− 𝑙

1
) ∧ Λ

0

1
and the

analogous holds for Λ∗

2
.

In the state 𝑋
0

= 1, the present value of cash flows
is at par, so 𝜉(𝜆

0
, 𝑋

0
) = 1. The prepayment option price

is 𝑃(𝜆
0
, 𝑋

0
) = 0.0240. Therefore the loan value equals

𝜉(𝜆
0
, 𝑋

0
) − 𝑃(𝜆

0
, 𝑋

0
) = 0.9760.

The loan value will be equal to the nominal if the intensity
decreases until the exercise region 𝜆 ≤ Λ

∗ (see Figure 5). The
continuation and exercise regions are depicted in Figure 6.
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Figure 5: Loan value as a function of the intensity. (a) Regime
𝑋 = 𝑒

1
; (b) regime 𝑋 = 𝑒

2
. The loan value is decreasing when

there is a degradation of the credit quality (i.e., when 𝜆 increases)
and converges to 0.

3.6. Regimes inWhich Is Never Optimal to Exercise. When the
liquidity parameters corresponding to given regimes are very
different, it may happen that the optimization of 𝑃

Λ
(𝜆

0
, 𝑋

0
)

overΛ gives an optimumvalueΛ∗with somenull coordinates
Λ

𝑘
𝑖

, 𝑖 = 1, . . . .Thismay hint to the fact that in this situation it
is never optimal to exercise during the regimes 𝑒

𝑘
𝑖

, 𝑖 = 1, . . . .

This is not surprising in itself (remember that this is the
case of an American call option) but needs more care when
being dealt with. Of course when in addition Λ

0

𝑘
𝑖

= 0, the
payoff being null, it is intuitive that the option should not be
exercised.

Remark 11. Further examination of Theorem 3 calls for the
following remarks.

(1) The boundary value set in (65) for some regime
𝑒
𝑘
with Λ

∗

𝑘
= 0 deserves an interpretation. The

boundary value does not serve to enforce continuity
of 𝜆 󳨃→ 𝑃

Λ
(𝜆) because there is no exercise region in

this regime. Moreover when 2𝛾𝜃 ≥ 𝜎
2, the intensity

𝜆
𝑢
does not touch 0; thus the stopping time 𝜏

Λ
∗ is

infinite in the regime 𝑒
𝑘
(thus the boundary value

in 0 is never used and thus need not be enforced);
from a mathematical point of view it is known that
no boundary conditions are required at points where
the leading order differential operator is degenerate.

(2) It is interesting to know when such a situation can
occur and how can one interpret it. Let us take a two-
regime case (𝑁 = 2): 𝑙

1
a “normal” regime and 𝑙

2
the

“crisis” regime (𝑙
2
≥ 𝑙

1
); when the agent contemplates

prepayment, the more severe the crisis (i.e., larger
𝑙
2
− 𝑙

1
), the less he/she is likely to prepay during

the crisis when the cash is expensive (high liquidity
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𝜆
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Figure 6: The price of the prepayment option 𝑃
Λ
∗ (𝜆) (solid line)

and the payoff 𝜒(𝜆) (dashed line) as a function of the intensity 𝜆. (a)
Regime 𝑋 = 𝑒

1
; (b) regime 𝑋 = 𝑒

2
. For each regime two regions

appear: the continuation region 𝜆 > Λ
∗

𝑖
and the exercise region 𝜆 ≤

Λ
∗

𝑖
.

cost). We will most likely see that for 𝑙
1

= 𝑙
2
some

exercise regions exist while starting from some large
𝑙
2
the exercise region will disappear in regime 𝑒

2
. This

is completely consistent with the numerical results
reported in this paper.

3.7. Numerical Application. We consider the same situation
as in Section 3.7 except that 𝑙

1
= 50 bps and 𝑙

2
= 250 bps.

In order to find the initial contractual margin, we use (11)
and find 𝜌

0
= 305 bps in the state 1. The contractual margin

takes into account the credit risk (default intensity) and the
liquidity cost. As before Λ

0

1
= 𝜆

0
but here we obtain Λ

0

2
=

221 bps.
The couple (Λ∗

1
= 121 bps, Λ∗

2
= 0) (see Figure 7)

maximizes 𝑃
Λ
(𝜆

0
, 𝑋

0
). There does not exist an exercise

boundary in the state 2. The loan value will equal the par if
the intensity decreases until the exercise region 𝜆 ≤ Λ

∗ (see
Figure 8).The continuation and exercise regions are depicted
in Figure 9.

To be accepted as true price, the numerical solution 𝑃
Λ
∗

has to verify all hypotheses and conditions of Theorem 8.
In the regime 𝑋 = 𝑒

1
, hypotheses (69) and (70) are

verified numerically (see also Figure 9) and hypothesis (71)
is accepted after calculation. MoreoverΛ∗

𝑘
≤ (𝜌

0
−𝑙

𝑘
)∧Λ

0

𝑘
for

𝑘 = 1, 2.
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Figure 7: We illustrate here the dependence of 𝑃
Λ
(𝜆

0
, 𝑋

0
) as a

function of the exercise boundary Λ; this allows to find the optimal
(Λ∗

1
= 121 bps, Λ∗

2
= 0) that maximizes the option price.
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Figure 8: Loan value as a function of the intensity. (a) Regime
𝑋 = 𝑒

1
; (b) regime 𝑋 = 𝑒

2
. The loan value is decreasing when

there is a degradation of the credit quality (i.e., when 𝜆 increases)
and converges to 0.

In the state 𝑋 = 𝑒
1
, the present value of cash flows is at

par, so 𝜉(𝜆
0
, 𝑋

0
) = 𝐾 = 1. The prepayment option price is

𝑃(𝜆
0
) = 0.0245. Therefore the loan value LV equals 𝜉(𝜆

0
) −

𝑃(𝜆
0
) = 0.9755.

4. Concluding Remarks

We proved in this paper two sufficient theoretical results
concerning the prepayment option of corporate loans. In
our model the interest rate is constant, the default intensity
follows a CIR process, and the liquidity cost follows a discrete
space Markov jump process. The theoretical results were
implemented numerically and show that the prepayment
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0
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Payoff
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Payoff

𝑋: 0.0221
𝑌: 6.039𝑒 − 05

(b)

Figure 9: The price of the prepayment option 𝑃
Λ
∗ (𝜆) (solid line)

and the payoff 𝜒(𝜆) (dashed line) as function of the intensity 𝜆.
(a) regime 𝑋 = 𝑒

1
; (b) regime 𝑋 = 𝑒

2
. Two regions appear: the

continuation region 𝜆 > Λ
∗

1
and the exercise region 𝜆 ≤ Λ

∗

1
. For

the second regime there is no exercise region.

option cost is not negligible and should be taken into account
in the asset liability management of the bank. Moreover it is
seen that when liquidity parameters are very different (i.e.,
when a liquidity crisis occur) in the high liquidity cost regime,
the exercise domainmay entirely disappear, meaning that it is
not optimal for the borrower to prepay during such a liquidity
crisis.
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