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1. Introduction

In this paper, we consider the following problem:

−�u= f (u) in �, u= 0 on ∂�, (1.1)

where � is the ball BR = {x ∈ R
N ; |x| < R}, | · | is the Euclidean norm in R

N, and
f : R

+ → R is a locally Lipschitzian continuous function. We are concerned with two
classes of problems, namely,

(i) the positone problem: f (0)≥ 0;
(ii) the non-positone problem: f (0) < 0.

The study of positone problems was initiated by Keller and Cohen [14], see also
[15], motivated by problems arose from the theory of nonlinear heat generation. In the
past twenty five years there has been considerable interest in this class of semilinear
elliptic boundary value problems and there is a wide literature on this subject. The
reader may consult the survey by Lions [17], and the references therein, where many
interesting questions are studied under a different point of view.

In the positone case we consider the following assumptions:

(f1) there exist 0 < a1 < a2 < a3 so that f (a1) = f (a2) = 0 and F(a3) > F(a1),
where F(t)= ∫ t

0 f ;
(f2) |f (t)| ≤ α, for all t ∈ R

+, for some constant α > 0;
(P) f (0) > 0 or, if f (0) = 0, then f ′+(0) > 0, where f ′+(0) = limt→0+(f (t)/t)

and prove the result below.

Theorem 1.1. Suppose that f : R
+ → R satisfies (f1), (f2), and (P). If R is sufficiently

large, problem (1.1) possesses at least three radial positive solutions u1, u2, and u3

such that ∂ui/∂r < 0 , for i = 1,2,3 and 0 < r < R. In particular

0 <
∣∣u1

∣∣∞ < a1 < a2 <
∣∣u2

∣∣∞, (1.2)

where | · |∞ is the sup norm.

Copyright © 1999 Hindawi Publishing Corporation
Abstract and Applied Analysis 4:2 (1999) 101–108
1991 Mathematics Subject Classification: 35J65, 34B15
URL: http://aaa.hindawi.com/volume-4/S1085337599000044.html

http://aaa.hindawi.com/volume-4/S1085337599000044.html


102 On multiple positive solutions of positone and non-positone problems

Remark 1.2. Some results like the one above have been obtained by several authors
when the area condition F(a3) > F(a1) has been considered. This condition was first
used by Brown and Budin [3] who proved a result similar to Theorem 1.1 by using a
combination of variational and monotone iteration methods. Later Hess [13] studied
this problem by using variational methods and degree theory. In [9], the above condition
is also used and, by using solely variational methods, the existence of three ordered
positive solutions is shown. These authors studied the case in which f has a third
root, that is, f (a3) = 0. In Theorem 1.1 this assumption is not made and we use only
variational methods. Also, Theorem 1.1 is used as an essential tool in the study of
non-positone case.

The non-positone case has been studied in recent years mainly by Brown, Castro,
Shivaji, Arcoya, and Calahorrano, among others. See, for example, [2, 4, 5]. In this
case the following assumption is posed:

f (0) < 0. (1.3)

Motivated by the study of discontinuous nonlinear problems we consider, as in [2],
the following multivalued problem:

−�u(x) ∈ f̂
(
u(x)

)
a.e in �, u= 0 on ∂�, (1.4)

where f̂ is the multivalued function defined by

f̂ (t)=




0, if t < 0

[f (0),0], if t = 0

f (t), if t > 0.

(1.5)

By a solution of (1.4), we mean a function u ∈ C1(�)∩C2(�∗(u)) with �∗(u) =
{x ∈�;u(x) �= 0} and verifying (1.4).

Remark 1.3. Some authors (cf. Chang [6]) have treated discontinuous problems by using
a direct variational approach. In the present case, we consider the multivalued problem
(1.4) as the limit of smooth approximating problems in order to use Theorem 1.1. Thus
two nonnegative solutions u0 and v0, in the sense of (1.4), are obtained as limits of
smooth approximating solutions. Then we use the symmetry results in [11] and the
maximum principle to show that u0 and v0 are positive classical solutions of (1.1). For
this a crucial step is to show that the set �0(u)=�/�∗(u) has null Lebesgue measure
for u= u0,v0.

The following assumptions on f are considered:

(f3) there exists θ > 0 such that f (t) < 0 if 0 ≤ t < θ and f (θ)= 0,
(f4) there is a > θ satisfying F(a) > 0.

We are now ready to state the following theorem.

Theorem 1.4. Suppose that f : R
+ → R is a bounded C1-function satisfying (f3), (f4),

and (1.3). Then problem (1.4) has at least two radial positive solutions u0 and v0 if R
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is sufficiently large. In fact �0(u0) = �0(v0) = φ, which implies u0 and v0 are radial
classical positive solutions of (1.1) such that ∂u/∂r < 0, for 0 < r < R and u= v0,u0.

Remark 1.5. It is well known in the positone case, see, for example, Cohen and Laetsch
[7], that if f is concave, problem (1.1) has at most one positive solution, but may have
multiple solutions when f is convex. In contrast with this case Theorem 1.4 shows that
in the non-positone problem we may obtain multiplicity of positive solutions with f

concave. The function f (t) = α−e−t , 0 < α < 1 and t ≥ 0, is a simple example of a
bounded concave function satisfying (f3), (f4), and (1.3).

2. Proof of Theorem 1.1

First solution. Let us consider the following function:

f1(t)=



f (0), if t ≤ 0;

f (t), if 0 ≤ t ≤ a1;

0, if a1 ≤ t ;

(2.1)

and the functional I1 : E → R,E := H 1
0 (�) with the usual norm ‖u‖2 = ∫ |∇u|2,

where the integrals are taken over all �, unless we state the contrary, defined by

I1(u)= 1

2

∫
|∇u|2 −

∫
F1(u), F1(u)=

∫ u

0
f1. (2.2)

Note that I1 is the Euler-Lagrange functional associated to the problem

−�u= f1(u) in �, u= 0 on ∂�. (2.3)

Since I1 is coercive and weakly lower semi-continuous (w.l.s.c.), see [10], it achieves
its minimum at some point u1 ∈ E, which is a weak solution of (2.3) and a bootstrap
argument shows that u1 is a classical solution of (2.3). Assumption (P) implies that
lim inf t→0+(f (t)/t) > λ1 := λ1(R), if R is sufficiently large, where λ1 is the first
eigenvalue of (−�,H 1

0 (�)). In particular, this yields I1(u1) < 0, that is, u1 �≡ 0 in �.
So the maximum principle provides 0 < u1(x) < a1 in � and then u1 satisfies (1.1).
Moreover, it is easy to show that

I1
(
u1

)
>−KNF

(
a1

)
RN, (2.4)

where KN is a positive constant depending only on N. Actually (2.4) is valid for all
u ∈ E satisfying 0 < u(x) < a1 a.e. in �.

Second solution. We now consider the function I : E → R given by

I (u)= 1

2

∫
|∇u|2 −

∫
F(u), F (u)=

∫ u

0
f, (2.5)

where we still denote by f the extension of the former function f and defined by

f (t)=
{
f (0), if t ≤ 0;
f (t), if 0 < t.

(2.6)
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A standard calculation shows that I is coercive and w.l.s.c. Hence I attains its
minimum at u2 ∈ E. We may not guarantee, up to now, that u1 �= u2. For this we
consider the following function used by Klaasen and Mitidieri [16]:

uR(x)=
{
a3, if |x| ≤ R−1;
(R−|x|)a3, if R−1 < |x|< R.

(2.7)

Setting CR = {x ∈ R
N ;R−1 < |x|< R} we obtain

I
(
uR

) ≤ 1

2

∫
CR

∣∣∇uR∣∣2 −
∫
BR−1

F
(
a3

)−
∫
CR

F
(
uR

)

≤ a2
3

2

∣∣CR

∣∣−F
(
a3

)∣∣BR−1
∣∣+C1

∣∣CR

∣∣
≤ a2

3

2
hNR

N−1 −F
(
a3

)
KN(R−1)N +C1hNR

N−1.

(2.8)

Thus

I
(
uR

) ≤ CNR
N−1 −KNF

(
a3

)
RN, (2.9)

where the constants C1,KN,hN , and CN do not depend on R. Since F(a3)−F(a1) > 0
one has, for R sufficiently large,

KN

(
F

(
a3

)−F
(
a1

))
RN > CNR

N−1 (2.10)

which implies

I
(
uR

)
<−KNF

(
a1

)
RN < I1

(
u1

) = I
(
u1

)
. (2.11)

Then the minimum u2 of I satisfies

I
(
u2

) ≤ I
(
uR

)
< I

(
u1

)
. (2.12)

This shows that u1 �= u2. A bootstrap argument guarantees that u2 ∈ C2,α(�) and the
maximum principle implies that 0 < u2(x), for all x ∈ �, and a2 < |u2|∞, because
I (u2) <−KNF(a1)R

N < I (u), for all u so that 0 < u(x) < a1 in �.

Third solution. Using an argument as in de Figueiredo [10] we may prove that u1

is a local minimum of I . A straightforward computation shows that I satisfies the
Palais-Smale condition, see [1]. So by the Ambrosetti and Rabinowitz’s Mountain Pass
Theorem, see [1], we find a third solution (positive) u3 of (1.1) satisfying

I
(
u3

) ≥ −KNF
(
a1

)
RN. (2.13)
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Finally we observe, in view of symmetry results in Gidas, Ni, and Nirenberg [11], that
ui, i = 1,2,3, are radial and ∂u1/∂r < 0, i = 1,2,3, for all 0 < r < R. This proves
Theorem 1.1. �

Remark 2.1. If f is decreasing on [0,a1], there exists only the solution u1 such that
0 < u1(x) < a1. Hence, in this case, u3 also satisfies a2 < |u3|∞. In fact the Cosner
and Schmitt’s result, see [8], implies that |u2|∞, |u3|∞ > a3.

3. Proof of Theorem 1.4

To prove Theorem 1.4 we use mainly Theorem 1.1.
For this, we first consider smooth approximations of f̂ given by

fn(t)=




f (t), if
1

n
≤ t;

fn(t)≥ f (t), if 0 ≤ t ≤ 1

n
;

fn(t)= 1

n
, if t ≤ 0;

(3.1)

fn is C1, there is a1n ∈ (0,1/n) such that Fn(a) > Fn(a1n) and fn(t) → f (t), for all
t > 0. As usual Fn(t)= ∫ t

0 fn. Let us now consider the problem

−�u= fn(u) in �, u= 0 on ∂�. (3.2)

In order to apply Theorem 1.1 to problem (3.2) we consider the functional In on E

defined by

In(u)= 1

2

∫
|∇u|2 −

∫
Fn(u). (3.3)

Since fn : R → R satisfies the assumptions of Theorem 1.1, problem (3.2) possesses at
least three positive solutions u1n,u2n, and u3n. In particular

In
(
u2n

) ≤ CNR
N−1 −KNFn(a)R

N <−KNFn
(
a1n

)
RN ≤ In

(
u3n

)
. (3.4)

Elliptic regularity yields |u2n|w2,p , |u3n|w2,p ≤ Cp, for all p ≥ 1. For p > N one has
u2n → u0 and u3n → v0 in C1,α(�) for some 0 < α < 1, eventually for subsequences.
Since Fn(a)→ F(a) and Fn(a1n)→ 0 as n→ ∞, one has∫ ∣∣∇u2n

∣∣2 −→
∫ ∣∣∇u0

∣∣2
,

∫ ∣∣∇u3n
∣∣2 −→

∫ ∣∣∇v0
∣∣2
,∫

F
(
u2n

) −→
∫
F

(
u0

)
,

∫
F

(
u3n

) −→
∫
F

(
v0

)
.

(3.5)

Taking limits in the inequalities in (3.4) we obtain

I
(
u0

) ≤ CNR
N−1 −KNF(a)R

N ≤ I
(
v0

)
. (3.6)
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Noticing that −KNFn(a1n)R
N ≤ In(u3n) and Fn(a1n) → 0 one has 0 ≤ I (v0).

Because F(a) > 0 we obtain CNR
N−1 −KNF(a)R

N < 0 if R is sufficiently large.
Thus

I
(
u0

) ≤ CNR
N−1 −KNF(a)R

N < 0 ≤ I
(
v0

)
(3.7)

and so u0 �= v0.
We show that u0 and v0 are nontrivial nonnegative solutions of (1.4). First we observe

that fn may be chosen decreasing in (0,1/n), for each n = 1,2, . . . . Thus problem
(3.2) possesses a unique positive solution u1n satisfying 0 < u1n(x) < 1/n, for each
n = 1,2, . . . . Hence |u2n|∞, |u3n|∞ > θ , for all n = 1,2, . . . . In fact, the result in
Cosner-Schmitt [8] implies that |u2n|∞, |u3n|∞ ≥ a for all n= 1,2, . . . . Consequently,
|u0|∞, |v0|∞ ≥ a and u0 and v0 are not identically zero.

If tn > 0 and tn → t > 0, then fn(tn) → f (t). From now on, we set u = u0 or
u = v0. Thus if x ∈ �∗(u) one has limn→∞fn(un(x)) = f (u(x)), where un = u2n or
un = u3n. Taking ϕ ∈ C∞

0 (�∗(u)) and using the fact that

−�un(x)= fn
(
un(x)

)
in �, un = 0 on ∂�, (3.8)

we obtain∫
�∗

∇un ·∇ϕ =
∫
�∗(u)

fn
(
un

)
ϕ �⇒

∫
�∗(u)

∇u ·∇ϕ =
∫
�∗(u)

f (u)ϕ. (3.9)

Consequently, u ∈ C2(�∗(u)) and −�u = f (u) in �∗(u). In �0(u) we have, as a
consequence of a well-known result by Stampacchia (cf. [15, Lemma A.4]), −�u(x)=
0 ∈ [f (0),0] a.e., and so u0 and v0 are both nontrivial nonnegative solutions of (1.4).
Let us now prove that if u(x0) = 0 for some |x0| = r < R, it follows that u(x) = 0 for
all r < |x| < R. Actually, if u(x) > 0 for some r < |x| < R, then (∂u/∂r)(y) > 0, for
some r < |y| < R, which is a contradiction in view of (∂u/∂r)(x) ≤ 0 if 0 < |x| < R.
Remember that ∂un/∂r < 0 for 0 < r < R which implies that ∂u/∂r ≤ 0 because
un → u in C1,α(�). So �0(u) is a set like Aρ = BR−BR−ρ , for some ρ ≥ 0. Suppose
that ρ > 0. In view of f (u) ∈ C1(B̄R−ρ) one has

−�
(
∂u

∂r

)
= f ′(u)∂u

∂r
in BR−ρ. (3.10)

Since f is C1 there is µ > 0 satisfying f ′(t)+µ ≥ 0, for all t ∈ [0,M], with M =
max{|u0|∞, |v0|∞}. Consequently,

−�
(

− ∂u

∂r

)
+µ

(
− ∂u

∂r

)
= (

f ′(u)+µ
)(− ∂u

∂r

)
in BR−ρ. (3.11)

Therefore, in view of ∂u/∂r = 0 in Aρ we have by applying the generalized Green’s
formula on BR−ρ that

−�
(

− ∂u

∂r

)
+µ

(
− ∂u

∂r

)
≥ 0 in � (3.12)

in the weak sense and as u > 0 in BR−ρ we have ∂u/∂r �≡ 0 and so, by using the
generalized maximum principle, (cf. [12, Theorem 8.19]), ∂u/∂r < 0 in �, which is a
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contradiction with assumption ρ > 0. Hence, ρ = 0. This implies that �0(u)= φ, then
u > 0 in � and ∂u/∂r < 0 if 0 < r < R. It follows that u0 and v0 are classical solutions
of (1.1). This concludes the proof of Theorem 1.4. �
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