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By using the spectral Galerkin method, we prove a result on global existence in time
of strong solutions for the motion of magneto-micropolar fluid without assuming that
the external forces decay with time. We also derive uniform in time estimates of the
solution that are useful for obtaining error bounds for the approximate solutions.

1. Introduction

In this work, we will be concerned with global existence in time of strong solutions
to the three dimensional magneto-micropolar fluid equations. Being � ⊂ R

3 a C1,1-
regular bounded open set, T > 0 these equations are (see [1]):

∂u

∂t
+u ·∇u−(µ+χ)
u+∇

(
p+ 1

2
rb ·b

)
= χ rotw+rb ·∇b+f, (1.1a)

j
∂w

∂t
+ju ·∇w−γ
w+2χw−(α+β)∇ divw = χ rotu+g, (1.1b)

∂b

∂t
−ν
b+u ·∇b−b ·∇u = 0, (1.1c)

divu = divb = 0 in (0,T )×�. (1.1d)

Here, u(t,x) ∈ R
3 denotes the velocity of the fluid at a point x ∈ � and time

t ∈ [0,T ]; w(t,x) ∈ R
3, b(t,x) ∈ R

3 and p(t,x) ∈ R denote, respectively, the
micro-rotational velocity, the magnetic field and the hydrostatic pressure; the constants
µ,χ,α,β,γ,j , and ν are positive numbers associated to properties of the material;
f (t,x), g(t,x) ∈ R

3 are given external fields.
We assume that on the boundary ∂� of � the following conditions hold

u(t,x) = w(t,x) = b(t,x) = 0, (t,x) ∈ [0,T ]×∂�, (1.2)
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we have assumed homogeneous boundary conditions just for simplicity. In standard
ways the nonhomogeneous case could be treated. The initial conditions are

u(0,x) = u0(x), w(0,x) = w0(x), b(0,x) = b0(x), x ∈ �. (1.3)

Equations (1.1a) has the familiar form of the Navier-Stokes equations but it is coupled
with (1.1b), which essentially describes the motion inside the macrovolume as they
undergo micro-rotational effects represented by the micro-rotational velocity vector
w. For fluids with no micro-structure this parameter vanishes. For Newtonian fluids,
equation (1.1a) and (1.1b) decouple since χ = 0.

When the magnetic field is absent (b ≡ 0), problem (1.1), (1.2), and (1.3) was studied
by Lukaszewicz [6, 7], Galdi and Rionero [4], and Padula and Russo [8]. Lukaszewicz
[6] established the global existence of weak solutions for (1.1), (1.2), and (1.3) under
certain assumptions by using linearization and an almost fixed point theorem. By using
the same technique, Lukaszewicz [7] proved the local and global existence, and also
the uniqueness of strong solution. Galdi and Rionero [4] established results similar to
the Lukaszewicz [7]. Padula and Russo [8] studied the uniqueness of the solutions for
problem (1.1), (1.2), and (1.3) in unbounded domains.

The full system (1.1), (1.2), and (1.3) was studied by Galdi and Rionero [4], and they
stated, without proof, results of existence and uniqueness of strong solutions. Ahmadi
and Shaninpoor [1] studied the stability of solutions for the system (1.1), (1.2), and
(1.3). The more constructive spectral Galerkin method was used by Rojas-Medar [9] to
obtain local in time strong solutions.

In this paper, we will consider the global existence of strong solutions of (1.1),
(1.2), and (1.3), with homogeneous boundary condition for u,w, and b for simplicity of
exposition. Thus, the results in this paper form the theoretical basis for future numerical
analysis of the problem: here we will obtain estimates for the approximate solutions
that will be fundamental in a forthcoming paper in which we will obtain uniform error
estimates for such Galerkin approximations.

We observe that all known results on global existence of strong solutions for the
system (1.1), (1.2), and (1.3) require some short of decay in time of the associated
external forces.

However, in the case of the classical Navier-Stokes equations (w ≡ 0, b ≡ 0), this
kind of decay requirement is not necessary (see, for instance, Heywood and Rannacher,
[5]). Therefore, one should be able to prove the global existence without this decay
condition in the case of equations (1.1), (1.2), and (1.3).

This is indeed true, and we shall prove it under certain regularity assumptions on the
initial data and external forces. This proof will be the main result of the present article.
In particular, we will require smallness of the H 1-norm of the initial data, as well as,
of the L∞([0,∞);L2(�))-norm of the forces.

Thus, we research basically the same level of knowledge as the one in the case of
the classical Navier-Stokes equations.

Finally, the paper is organized as follows: in Section 2, we state the basic assumptions
and results that will be used later in the paper; we also rewrite (1.1), (1.2), and (1.3) in
a more suitable weak form; we describe the approximation method and state the results
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of local existence (Theorems 2.3, 2.4, and 2.5). In Section 3, we give and prove the
global existence theorem analogous to Theorem 2.3 (Theorem 3.1). In Section 4, we
give and prove the regularity result (Theorem 4.1). In Section 5, we give the results
on pressure, and finally in Section 6, we give results of global existence and regularity
when assuming exponential decay in time of the associated external forces.

2. Statements and notations

Let � ⊂ R
3, be a bounded domain with boundary ∂� of class C1,1. Let Hs(�) be

the usual Sobolev spaces on � with norm ‖·‖Hs (s real); (·, ·) denotes the usual inner
product in L2(�) and ‖·‖ the L2-norm on �. By H 1

0 (�) we denote the completion of
C∞

0 (�) under the norm ‖ ·‖H 1 ; the Lp-norm on � is denoted by ‖ ·‖Lp,1 ≤ p ≤ ∞.
If B is a Banach space, we denote by Lq(0,T ;B) the Banach space of the B-valued
functions defined in the interval (0,T ) that are Lq -integrable in the sense of Bochner.

The functions, in this paper, are either R or R
n-valued and we will not distinguish

them in our notations; the situation will be clear from the context.
We shall consider the following spaces of divergence-free functions (see Temam [10])

C∞
0,σ (�) = {

v ∈ C∞
0 (�); divv = 0 in �

}
,

H = closure of C∞
0,σ (�) in L2(�), (2.1)

V = closure of C∞
0,σ (�) in H 1(�).

We observe the space V is characterized by

V = {
u ∈ H 1

0 (�);divu = 0 in �
}
. (2.2)

The space L2(�) has the decomposition L2(�) = H ⊕H⊥, where H⊥ = {φ ∈
L2(�);∃p ∈ H 1(�) with φ = ∇p} (Helmholtz decomposition).

Throughout the paper, P will denote the orthogonal projection from L2(�) onto H .
Then the operator A : D(A) ↪→ H → H given by A = −P
 with domain D(A) =
H 2(�)∩V is called the Stokes operator. It is well known that the operator A is positive
definite, self-adjoint operator and is characterized by the relation

(Aw,v) = (∇w,∇v) ∀w ∈ D(A), v ∈ V. (2.3)

The operator A−1 is linear continuous from H into D(A), and since the injection of
D(A) in H is compact, A−1 is a compact operator in H . As an operator in H , A−1 is
also self-adjoint. By a well-known theorem of Hilbert spaces, there exists a sequence
of positive numbers µj > 0, µj+1 ≤ µj and an orthonormal basis of H, {ϕj (x)}∞j=1

such that A−1ϕj = µjϕ
j . We denote by λj = µ−1

j . Since A−1 has range in D(A) we
obtain that

Aϕj = λjϕ
j , ϕj ∈ D(A), (2.4)
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0 < λ1 < · · · ≤ λj ≤ λj+1 ≤ ·· · , limj→∞λj = +∞ and {ϕj (x)}∞j=1 are orthogonal

basis of H . Therefore, {ϕj (x)/√λj }∞j=1 and {ϕj (x)/λj }∞j=1 form an orthogonal basis

in V (with the inner product (∇u,∇v), u,v ∈ V ) and H 2(�)∩V (with inner product
(Au,Av), u,v ∈ D(A)), respectively. We denote by Vk = span{ϕ1(x), . . . ,ϕk(x)}.

We observe that for the regularity of the Stokes operator, it is usually assumed that
� is of class C3, this being in order to use Cattabriga’s results [3]. We use, instead, the
stronger results of Amrouche and Girault [2] which implies, in particular, that when
Au ∈ L2(�) then u ∈ H 2(�) and ‖u‖H 2 and ‖Au‖ are equivalent norms when � is of
class C1,1.

Similar considerations are true for the Laplacian operatorB ≡ −
 : D(B) → L2(�)

with the Dirichlet boundary conditions with domain D(B) ≡ H 2(�) ∩H 1
0 (�) and

we will denote φi(x), γi the eigenfunctions and eigenvalues of B. We denote by
Hk = span{φ1(x), . . . ,φk(x)}.

By using the properties of P , we can reformulate the problem (1.1), (1.2), and (1.3)
as follows: find u,w,b, in suitable spaces, to be exactly defined later on, satisfying

(
ut ,ϕ

)+(u ·∇u,ϕ)+(µ+χ)(Au,ϕ) = χ(rotw,ϕ)+r(b ·∇b,ϕ)+(f,ϕ), (2.5a)

j (wt ,φ)+j (u ·∇w,φ)+γ (Bw,φ)+2χ(w,φ)+(α+β)(divw,divφ)

= χ(rotu,φ)+(g,φ),

(2.5b)(
bt ,ψ

)+ν(Ab,ψ)+(u ·∇b,ψ)−(b ·∇u,ψ) = 0,

for 0 < t < T, ∀ϕ,ψ ∈ V, φ ∈ H 1
0 (�),

(2.5c)

u(0) = u0, w(0) = w0, b(0) = b0. (2.5d)

Now, we define strong solutions of the problem (2.5).

Definition 2.1. Let u0,b0 ∈ V, w0 ∈ H 1
0 (�), and f,g ∈ L∞([0,∞);L2(�)). By a

strong solution of the problem (2.5), we mean a triple of vector-valued functions
(u,w,b) such that u,b ∈ L∞([0,∞);V ) ∩ L2

Loc([0,∞);D(A)), w ∈ L∞([0,∞);
H 1

0 (�))∩L2
Loc([0,∞);D(B)) and that satisfies (2.5).

Remark 2.2. In what follows, we will prove that if (u,w,b) is a strong solution of (2.5),
then ut ,bt ∈ L2

Loc([0,∞);H) and wt ∈ L2
Loc([0,∞);L2(�)). This condition, together

with u,b ∈ L2
Loc([0,∞);D(A)) and w ∈ L2

Loc([0,∞);D(B)), implies by interpolation
(see Temam [10, page 260]), that u,b are almost everywhere equal to continuous func-
tions from [0,T ] into V (0 < T < ∞); analogously w is almost everywhere equal to
a continuous function from [0,T ] into H 1

0 (�) (0 < T < ∞). Consequently, the initial
conditions u(0) = u0, b(0) = b0, w(0) = w0 are meaningful.

To prove existence of strong solutions we will apply the spectral Galerkin method
to (2.5). That is, we consider the finite dimensional subspaces Vk = span[ϕ1, . . . ,ϕk],
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Hk = span[φ1, . . . ,φk], k ∈ N, the corresponding orthogonal projections Pk : L2 → Vk
and Rk : L2 → Hk and the approximate solutions

uk(t,x) =
k∑

i=1

cik(t)ϕ
i(x),

wk(t,x) =
k∑

i=1

dik(t)φ
i(x),

bk(t,x) =
k∑

i=1

eik(t)ϕ
i(x),

(2.6)

developed in terms of eigenfunctions of the Stokes and Laplace operators. Then, the
coefficients cik(t),dik(t), and eik(t) are found by requiring that uk,wk , and bk satisfy
the following equations:

ukt +(µ+χ)Auk +Pk
(
uk ·∇uk

) = χPk rotwk +rPk
(
bk ·∇bk

)+Pkf, (2.7a)

jwk
t +jRk

(
uk ·∇wk

)+γBwk +2χwk−(α+β)Rk∇ divwk

= χRk rotuk +Rkg,
(2.7b)

bkt +νAbk +Pk
(
uk ·∇bk

)−Pk
(
bk ·∇uk

) = 0, (2.7c)

uk(0) = Pku0, wk(0) = Rkw0, bk(0) = Pkb0. (2.7d)

This is equivalent to the weak form

(
ukt ,ϕ

)+(µ+χ)
(∇uk,∇ϕ

)+(
uk ·∇uk,ϕ

) = χ
(

rotwk,ϕ
)+r

(
bk ·∇bk,ϕ

)+(f,ϕ),

(2.8a)

j
(
wk
t ,φ

)+j
(
uk ·∇wk,φ

)+γ
(∇wk,∇φ

)+2χ(wk,φ)+(α+β)
(

divwk,divφ
)

= χ
(

rotuk,φ
)+(g,φ),

(2.8b)

(
bkt ,ψ

)+ν
(∇bk,∇ψ

)+(
uk ·∇bk,ψ

)−(
bk ·∇uk,ψ

) = 0, (2.8c)

uk(0) = Pku0, wk(0) = Rkw0, bk(0) = Pkb0, ∀ϕ,ψ ∈ Vk, φ ∈ Hk. (2.8d)

By using these approximations, Rojas-Medar [9] proved a local in time existence the-
orem for (2.5). Their results are the following.

Theorem 2.3. Let the initial values u0,b0 ∈ V, w0 ∈ H 1
0 (�) and the external forces

f,g ∈ L2(0,T ;L2(�)). Then, on a (possibly small) time interval [0,T1], 0 < T1 ≤ T ,
problem (2.5) has a unique strong solution (u,w,b). This solution belongs to
C([0,T1];V )×C([0,T1];H 1

0 (�))×C([0,T1];V ).
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Moreover, there exists C1-functions F(t),F1(t), and G(t) such that for any t ∈
[0,T1], there hold

‖u(t)‖2 +j‖w(t)‖2 +r‖b(t)‖2

+
∫ t

0

(
(µ+χ)‖∇u(s)‖2 +γ ‖∇w(s)‖2 +2rν‖∇b(s)‖2)ds

+
∫ t

0

(
4χ‖w(s)‖2 +2(α+β)‖divw(s)‖2)ds ≤ F(t),

‖∇u(t)‖2 +‖∇b(t)‖2 +j‖∇w(t)‖2

+c

∫ t

0

(‖Au(s)‖2 +‖Ab(s)‖2 +‖Bw(s)‖2)ds ≤ F1(t),

∫ t

0

(‖ut (s)‖2 +‖bt (s)‖2 +j‖wt(s)‖2)ds ≤ G(t).

(2.9)

Also, the same kind of estimates hold uniformly in k ∈ N for the Galerkin approxima-
tions (uk,wk,bk).

With stronger assumptions on the initial values and external fields, we are able to
prove the following.

Theorem 2.4. In addition to the assumptions of Theorem 2.3, assume that u0,b0 ∈
V ∩H 2(�), w0 ∈ H 1

0 (�)∩H 2(�), and ft ,gt ∈ L2(0,T ;L2(�)). Then, the solution
(u,w,b) satisfies

‖ut (t)‖2 +j‖wt(t)‖2 +r‖bt (t)‖2

+c

∫ t

0

(‖∇ut (s)‖2 +‖∇wt(s)‖2 +‖∇bt (s)‖2)ds ≤ H0(t),

‖Au(t)‖2 +‖Bw(t)‖2 +‖Ab(t)‖2 ≤ H1(t),

∫ t

0

(‖utt (s)‖2
V ∗ +‖wtt (s)‖2

H−1 +‖btt (s)‖2
V ∗

)
ds ≤ H2(t),

(2.10)

for every t ∈ [0,T1], where Hi(t), i = 0,1,2 are continuous functions in t ∈ [0,T1].
Also

u,b ∈ C1([0,T1];H)∩C
([0,T1];D(A)

)
,

w ∈ C1([0,T1];L2(�)
)∩C

([0,T1];D(B)
)
.

(2.11)

Moreover, the same kind of estimates hold uniformly in k for the Galerkin approxima-
tions (uk,wk,bk).

As a consequence of Theorems 2.3 and 2.4, by using the results of Amrouche and
Girault [2], we conclude the following theorem.
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Theorem 2.5. Under the hypotheses of Theorem 2.3, there exist unique function p ∈
L2(0,T1;H 1(�)/R) such that (u,w,b,p) is solution of (1.1), (1.2), and (1.3). Under
the hypothesis of Theorem 2.4, p ∈ L∞(0,T1;H 1(�)/R)∩C([0,T1];L2(�)/R).

Finally, we would like to say that as it is usual in this context, we will denote
by c, C generic constants depending at most on � and the fixed parameters in the
problem (µ,χ,r,j,ν,α,β,γ ) and the initial conditions. When for any reason we want
to emphasize the dependence of a certain constant on a given parameter we will denote
this constant with a subscript.

3. Global existence

The analogue to Theorem 2.3 is the following result.

Theorem 3.1. Let the initial values u0,b0 ∈ V, w0 ∈ H 1
0 (�) and the external

forces f,g ∈ L∞([0,∞);L2(�)). If ‖u0‖V ,‖w0‖H 1
0
,‖b0‖V ,‖f ‖L∞([0,∞);L2(�)), and

‖g‖L∞([0,∞);L2(�)) are sufficiently small, then the solution (u,w,b) of problem (2.5)
exists globally in time and satisfies u,b ∈ C([0,∞);V ) and w ∈ C([0,∞);H 1

0 (�)).
Moreover, for any θ > 0 there exists some finite positive constants M and C such that

sup
t≥0

{‖∇u(t)‖,‖∇w(t)‖,‖∇b(t)‖} = M, (3.1)

sup
t≥0

e−θt

∫ t

0
eθs

{‖ut (s)‖2 +j‖wt(s)‖2 +‖bt (s)‖2}ds ≤ C, (3.2)

sup
t≥0

e−θt

∫ t

0
eθs

{‖Au(s)‖2 +‖Bw(s)‖2 +‖Ab(s)‖2}ds ≤ C. (3.3)

Also, the same kind of estimates hold uniformly in k for the Galerkin approximations.

Proof. We will combine arguments used by Rojas-Medar [9] and Heywood and
Rannacher [5]. We start by proving the boundness in time of ‖∇u(t)‖2 +j‖∇w(t)‖2 +
‖∇b(t)‖2.

From Rojas-Medar [9, page 11], we have the following differential equality:

d

dt
ξ(t)+τ(t) ≤ c ξ3(t)+c ξ(t)+c‖f ‖2 +c‖g‖2, (3.4)

where ξ(t) = ‖∇u(t)‖2 + j‖∇w(t)‖2 +‖∇b(t)‖2, τ (t) = c(‖Au(t)‖2 +‖Ab(t)‖2 +
‖Bw(t)‖2).

Now, using the same arguments used by Heywood and Rannacher [5, page 283], for
the Navier-Stokes equations, we can conclude that

sup
t≥0

ξ(t) ≡ sup
t≥0

(‖∇u(t)‖2 +j‖∇w(t)‖2 +‖∇b(t)‖2) ≡ C2. (3.5)

Multiplying the inequality (3.4) by eθt ,θ > 0, and integrating in time from 0 to t ,
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we have

eθt
(‖∇u(t)‖2 +j‖∇w(t)‖2 +‖∇b(t)‖2)

+c

∫ t

0
eθs

(‖Au(s)‖2 +‖Ab(s)‖2 +‖Bw(s)‖2)ds
≤ ‖∇u(0)‖2 +j‖∇w(0)‖2 +‖∇b(0)‖2

+c

∫ t

0
eθs

[‖∇u(s)‖2 +j‖∇w(s)‖2 +‖∇b(s)‖2]3
ds

+(c+θ)

∫ t

0
eθs

(‖∇u(s)‖2 +j‖∇w(s)‖2 +‖∇b(s)‖2)ds
+c

(
sup
t≥0

‖f (t)‖2 +sup
t≥0

‖g(t)‖2
)∫ t

0
eθs ds.

(3.6)

Multiplying by e−θt and recalling that ‖∇u(t)‖,‖∇w(t)‖, and ‖∇b(t)‖ are uniformly
bounded, we get that

e−θt

∫ t

0
eθs‖Au(s)‖2 ds, e−θt

∫ t

0
eθs‖Bw(s)‖2 ds, e−θt

∫ t

0
eθs‖Ab(s)‖2 ds

(3.7)
are also uniformly bounded.

Now, we proceed to prove the other stated estimates. They should be proved first for
the approximations (uk,wk,bk) and then carried to (u,w,b) in the limit. Since that is
a standard procedure and the computations are exactly the same, to ease the notation,
we will work directly with (u,w,b) in the rest of the paper.

Also, we would like to mention that the technique of using exponentials as weight
functions in time was inspired by Heywood and Rannacher [5]. Now, by taking ϕ = ut
in (2.5a), φ = wt in (2.5b), and ψ = bt in (2.5c), we obtain

‖ut‖2 = χ
(

rotw,ut
)+r

(
b ·∇b,ut

)−(
u ·∇u,ut

)−(µ+χ)
(
Au,ut

)+(
f,ut

)
,

α+β

2

d

dt
‖divw‖2 +j‖wt‖2

= χ
(

rotu,wt

)−2χ
(
w,wt

)−j
(
u ·∇w,wt

)−γ
(
Bw,wt

)+(
g,wt

)
,

‖bt‖2 = (
b ·∇u,bt

)−(
u ·∇b,bt

)−ν
(
Ab,bt

)
.

(3.8)

From this, we have

e−θt

∫ t

0
eθs‖ut (s)‖2 ds ≤ ce−θt

∫ t

0
eθs

(‖∇w(s)‖2 +‖Au(s)‖2)ds+ce−θt

∫ t

0
eθs ds

+ce−θt

∫ t

0
eθs

(‖u(s) ·∇u(s)‖2 +‖b(s) ·∇b(s)‖2)ds,
(3.9)
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(α+β)‖divw(t)‖2 +je−θt

∫ t

0
eθs‖wt(s)‖2 ds

≤ (α+β)e−θt‖divw0‖2 +(α+β)θe−θt

∫ t

0
eθs‖divw(s)‖2 ds

+ce−θt

∫ t

0
eθs

(‖∇u(s)‖2 +‖∇w(s)‖2 +‖Bw(s)‖2)ds
+ce−θt

∫ t

0
eθs‖u(s) ·∇w(s)‖2 ds+ce−θt

∫ t

0
eθs ds,

(3.10)

e−θt

∫ t

0
eθs‖bt (s)‖2 ds ≤ ce−θt

∫ t

0
eθs‖Ab(s)‖2 ds

+ce−θt

∫ t

0
eθs

(‖u(s) ·∇b(s)‖2 +‖b(s) ·∇u(s)‖2)ds.
(3.11)

Now, bearing in mind (3.1) and the Sobolev embedding H 2(�) ↪→ L∞(�), we obtain
the following estimate

‖u ·∇u‖2 ≤ ‖u‖2
L∞ ‖∇u‖2 ≤ cM2‖Au‖2. (3.12)

Consequently,

e−θt

∫ t

0
eθs‖u(s) ·∇u(s)‖2 ds ≤ cM2e−θt

∫ t

0
eθs‖Au(s)‖2 ds ≤ CM2, (3.13)

thanks to the estimate (3.3). The other terms in (3.9), (3.10), and (3.11) are also esti-
mates, moreover using the estimate (3.1) and (3.3), we obtain the desired result. Now,
we observe that the previous estimates hold true for θ ≥ 0 if we are considering finite
time intervals [0,T ], 0 < T < +∞ (with the suprema obviously depending on T ).
This comes from the way that the proofs were done. �

Thus, in a finite interval [0,T ], we can take the last estimates with θ = 0.

Remark 3.2. As in the end of the previous proof, we observe that all these estimates
hold true for θ = 0 on the time interval [0,∞) if we also include in the hypothesis
f,g ∈ L2([0,∞);L2(�)).

4. More regular solution

The following result is the analogue of Theorem 2.4.

Theorem 4.1. In addition to the assumptions of Theorem 3.1, assume that u0,b0 ∈ V ∩
H 2(�), w0 ∈ H 1

0 (�)∩H 2(�), and ft ,gt ∈ L∞([0,∞);L2(�)). Then, the solution
obtained in Theorem 3.1 satisfies

u,b ∈ C
([0,∞);V ∩H 2(�)

)∩C1([0,∞);H )
,

w ∈ C
([0,∞);H 1

0 (�)∩H 2(�)
)∩C1([0,∞);L2(�)

)
.

(4.1)
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Moreover, for any θ > 0 there exists one positive constant C such that

sup
t≥0

{‖ut (t)‖,‖bt (t)‖,‖wt(t)‖
} ≤ C, (4.2)

sup
t≥0

{‖Au(t)‖,‖Ab(t)‖,‖Bw(t)‖} ≤ C, (4.3)

sup
t≥0

e−θt

∫ t

0
eθs

(‖∇ut (s)‖2 +‖∇wt(s)‖2 +‖∇bt (s)‖2)ds ≤ C, (4.4)

sup
t≥0

e−θt

∫ t

0
eθs

(‖utt (s)‖2
V ∗ +‖wtt (s)‖2

H−1 +‖btt (s)‖2
V ∗

)
ds ≤ C. (4.5)

Also, the same kind of estimates hold uniformly in k for the Galerkin approximations.

Proof. We will need further estimates for u,w,b (actually uk,wk , and bk). To this end,
we differentiate (2.5a), (2.5b), and (2.5c) with respect to t and set ϕ = ut , φ = wt , and
ψ = rbt (actually ϕ = ukt , φ = wk

t , and ψ = rbkt ). We are left with

1

2

d

dt
‖ut‖2 +(µ+χ)‖∇ut‖2 = χ

(
rotwt,ut

)+r
(
bt ·∇b,ut

)+r
(
b ·∇bt ,ut

)
−(

ut ·∇u,ut
)+(

ft ,ut
)
,

(4.6)

j

2

d

dt
‖wt‖2 +γ ‖∇wt‖2 +(α+β)‖divwt‖2 +2χ‖wt‖2

= χ
(

rotut ,wt

)−j
(
ut ·∇w,wt

)+(
gt ,wt

)
,

(4.7)

r

2

d

dt
‖bt‖2 +rν‖∇bt‖2 = r

(
bt ·∇u,bt

)+r
(
b ·∇ut ,bt

)−r
(
ut ·∇b,bt

)
, (4.8)

since (u ·∇ut ,ut ) = (u ·∇wt,wt ) = (u ·∇bt ,bt ) = 0.
We observe that

∣∣χ(
rotwt,ut

)∣∣ ≤ c‖ut‖2 + γ

6
‖∇wt‖2,

∣∣χ(
rotut ,wt

)∣∣ ≤ c‖wt‖2 + (µ+χ)

12
‖∇ut‖2,

∣∣(ft ,ut)∣∣ ≤ c‖ft‖2 + (u+χ)

12
‖∇ut‖2,

∣∣(gt ,wt

)∣∣ ≤ c‖gt‖2 + γ

6
‖∇wt‖2.

(4.9)

Now, by using the following Sobolev type inequality ‖ϕ‖L4 ≤ c‖ϕ‖1/4‖∇ϕ‖3/4,
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we have ∣∣(ut ·∇u,ut
)∣∣ ≤ ‖∇u‖‖ut‖2

L4 ≤ c‖∇u‖‖ut‖1/2‖∇ut‖3/2

≤ c‖∇u‖4‖ut‖2 + (µ+χ)

12
‖∇ut‖2,

∣∣r(bt ·∇b,ut
)∣∣ ≤ r‖bt‖L4‖∇b‖‖ut‖L4 ≤ c‖bt‖L4‖∇b‖‖∇ut‖

≤ c‖∇b‖2‖bt‖1/2‖∇bt‖3/2 + (µ+χ)

12
‖∇ut‖2

≤ c‖∇b‖8‖bt‖2 + rν

6
‖∇bt‖2 + (µ+χ)

12
‖∇ut‖2.

(4.10)

Analogously, we can prove

∣∣r(ut ·∇b,bt
)∣∣ ≤ c‖∇b‖8‖bt‖2 + rν

6
‖∇bt‖2 + (µ+χ)

12
‖∇ut‖2,

∣∣r(bt ·∇u,bt
)∣∣ ≤ c‖∇u‖4‖bt‖2 + rν

6
‖∇bt‖2,

∣∣j(ut ·∇w,wt

)∣∣ ≤ c‖∇w‖8‖wt‖2 + γ

6
‖∇wt‖2 + (µ+χ)

12
‖∇ut‖2.

(4.11)

Adding the inequalities (4.6), (4.7), and (4.8), observing that r(b · ∇bt ,ut ) + r(b ·
∇ut ,bt ) = 0 and using the above estimates, we are left with the following differential
inequality,

d

dt

(‖ut‖2 +j‖wt‖2 +r‖bt‖2)+c1
(‖∇ut‖2 +‖∇wt‖2 +‖∇bt‖2)

≤ c(M)
(‖ut‖2 +j‖wt‖2 +r‖bt‖2)+C

(‖ft‖2 +‖gt‖2),
(4.12)

where c1 = min{(µ+χ),γ,rν} > 0.
By multiplying the above inequality for eθt and integrating in time the resulting

inequality from 0 to t , we obtain

eθt
(‖ut (t)‖2 +j‖wt(t)‖2 +r‖bt (t)‖2)

+c1

∫ t

0
eθs

(‖∇ut (s)‖2 +‖∇wt(s)‖2 +‖∇bt (s)‖2)ds

≤ c(M)

∫ t

0
eθs

(‖ut (s)‖2 +j‖wt(s)‖2 +r‖bt (s)‖2)ds

+c

∫ t

0
eθs

(‖ft (s)‖2 +‖gt (s)‖2)ds+‖ut (0)‖2 +j‖wt(0)‖2

+r‖bt (0)‖2 +θ

∫ t

0
eθs

(‖ut (s)‖2 +j‖wt(s)‖2 +r‖bt (s)‖2)ds.

(4.13)
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By multiplying the above inequality by e−θt , we get

‖ut (t)‖2 +j‖wt(t)‖2 +r‖bt (t)‖2

+c1e
−θt

∫ t

0
eθs

(‖∇ut (s)‖2 +‖∇wt(s)‖2 +‖∇bt (s)‖2)ds
≤ (

θ+c(M)
)
e−θt

∫ t

0
eθs

(‖ut (s)‖2 +j‖wt(s)‖2 +r‖bt (s)‖2)ds
+ce−θt

∫ t

0
eθs

(‖ft (s)‖2 +‖gt (s)‖2)ds
+e−θt

(‖ut (0)‖2 +j‖wt(0)‖2 +r‖bt (0)‖2)
≤ C+e−θt

(‖ut (0)‖2 +j‖wt(0)‖2 +r‖bt (0)‖2),

(4.14)

thanks to the previous estimates and our hypotheses on ft and gt . So, it is enough to
find estimates for ‖ut (0)‖2,‖wt(0)‖2, and ‖bt (0)‖2 (actually, ‖ukt (0)‖2,‖wk

t (0)‖2, and
‖bkt (0)‖2).

For this, recall that u0,b0(u
k
0,b

k
0) ∈ V ∩H 2(�), and w0(w

k
0) ∈ H 1

0 (�)∩H 2(�).
Consequently, by setting ϕ = ut , φ = wt , and ψ = bt in (2.5a), (2.5b), (2.5c), respec-
tively, (actually ϕ = ukt , φ = wk

t , and ψ = bkt in (2.8a), (2.8b), (2.8c), respectively),
we have

‖ut‖2 = (
f,ut

)+χ
(

rotw,ut
)+r

(
b ·∇b,ut

)−(µ+χ)
(
Au,ut

)−(
u ·∇u,ut

)
,

j‖wt‖2 = (
g,wt

)+χ
(

rotu,wt

)−γ
(
Bw,wt

)−2χ
(
w,wt

)
+(α+β)

(∇ divw,wt

)−j
(
u ·∇w,wt

)
,

‖bt‖2 = (
b ·∇u,bt

)−(
u ·∇b,bt

)−ν
(
Ab,bt

)
(4.15)

the above inequalities imply,

‖ut (0)‖ ≤ ‖f (0)‖+cχ‖∇w0‖+cr‖Ab0‖‖∇b0‖
+c(µ+χ)‖Au0‖+c‖Au0‖‖∇u0‖ ≤ C,

j‖wt(0)‖ ≤ ‖g(0)‖+cχ‖∇u0‖+γ ‖Bw0‖+2χ‖w0‖
+(α+β)‖∇ divw0‖+cj‖Au0‖‖∇w0‖ ≤ C,

‖bt (0)‖ ≤ c‖Ab0‖‖∇u0‖+c‖Au0‖‖∇b0‖+ν‖Ab0‖ ≤ C.

(4.16)

Now, by taking ϕ = Au and ψ = Ab in (2.5a), (2.5c), respectively (actually ϕ = Auk

and ψ = Abk in (2.8a), (2.8c), respectively), we get

(µ+χ)‖Au‖2 ≤ C
(‖f ‖2 +‖ut‖2 +‖∇w‖2 +‖u ·∇u‖2 +‖b ·∇b‖2), (4.17)

ν‖Ab‖2 ≤ C
(‖bt‖2 +‖u ·∇b‖2 +‖b ·∇u‖2). (4.18)
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We observe that

‖u ·∇u‖2 ≤ ‖u‖2
L4‖∇u‖2

L4 ≤ c‖∇u‖2(‖∇u‖1/2‖Au‖3/2)

≤ c‖∇u‖5/2‖Au‖3/2 ≤ c‖∇u‖10 + 1

4
(µ+χ)‖Au‖2.

(4.19)

Analogously as above, we obtain

‖b ·∇b‖2 ≤ C‖∇b‖10 + 1

4
ν‖Ab‖2, (4.20)

‖u ·∇b‖2 ≤ C‖∇u‖8‖∇b‖2 + 1

4
ν‖Ab‖2, (4.21)

‖b ·∇u‖2 ≤ C‖∇b‖8‖∇u‖2 + 1

4
(µ+χ)‖Au‖2. (4.22)

Now, by adding the inequalities (4.17) and (4.18) and by using the estimates (4.19),
(4.20), (4.21), and (4.22) together with the estimates (3.1) and (4.2), we obtain

sup
t≥0

‖Au(t)‖2 ≤ C, sup
t≥0

‖Ab(t)‖2 ≤ C. (4.23)

Taking φ = Bw in (2.5b) and using the fact that the operator

Lw = γ
w+(α+β)∇ divw (4.24)

is a strongly elliptic operator, this implies that

(Lw,
w) ≥ γ ‖
w‖2 −C0‖∇w‖2, (4.25)

where C0 > 0 depend on γ, α+β and ∂�, we have for any σ > 0

γ ‖Bw‖2 ≤ cσ
(
C0‖∇w‖2 +j‖wt‖2 +cj‖Au‖2‖∇w‖2 +2χ‖w‖2 +χ‖∇u‖2)

+cσ‖g‖2 +5σ‖Bw‖2.

(4.26)

By taking σ = (1/10)γ , we obtain

γ ‖Bw‖2 ≤ cM+cM‖Au‖2 +c‖wt‖2 +c‖g‖2. (4.27)

Consequently, using the estimates (4.2) and (4.23), we obtain

sup
t≥0

‖Bw‖2 ≤ C. (4.28)

We differentiate (2.5a) (actually (2.7a)) with respect to t , and we obtain

utt = χP
(

rotwt

)+rP
(
bt ·∇b

)+rP
(
b ·∇bt

)−(µ+χ)Aut

−P
(
ut ·∇u

)−P
(
u ·∇ut

)+Pft ≡ h.
(4.29)



122 Magneto-micropolar fluid motion: global existence of strong solutions

Consequently

e−θt

∫ t

0
eθs‖utt (s)‖2

V ∗ ds ≤ e−θt

∫ t

0
eθs‖h(s)‖2

V ∗ ds, (4.30)

this is sufficient to estimate the right-hand side. To do this, we observe that

‖Aut‖V ∗ = sup
‖v‖V ≤1

∣∣(Aut ,v)∣∣ = sup
‖v‖V ≤1

∣∣(∇ut ,∇v
)∣∣ ≤ ‖∇ut‖ (4.31)

then, for all t ≥ 0

e−θt

∫ t

0
eθs‖Aut(s)‖2

V ∗ ds ≤ e−θt

∫ t

0
eθs‖∇ut (s)‖2 ds ≤ C (4.32)

thanks to the estimate (4.4). Also, we have
∥∥P (

rotwt

)∥∥
V ∗ = sup

‖v‖V ≤1

∣∣( rotwt,v
)∣∣ ≤ c‖∇wt‖. (4.33)

Consequently, for all t ≥ 0,

e−θt

∫ t

0
eθs

∥∥P (
rotwt(s)

)∥∥2
V ∗ ds ≤ ce−θt

∫ t

0
eθs‖∇wt(s)‖2 ds ≤ C (4.34)

thanks to the estimate (4.4). Finally, we have
∥∥P (

ut ·∇u
)∥∥

V ∗ = sup
‖v‖V ≤1

∣∣(ut ·∇u,v
)∣∣ ≤ c sup

‖v‖V ≤1
‖∇ut‖‖∇u‖‖∇v‖ ≤ cM‖∇ut‖,

(4.35)
this implies that, for all t ≥ 0,

e−θt

∫ t

0
eθs

∥∥P (
ut (s) ·∇u(s)

)∥∥2
V ∗ ds ≤ cM2e−θt

∫ t

0
eθs‖∇ut (s)‖2 ds ≤ C. (4.36)

The other terms in (4.29) are analogously estimated. So, we obtain

sup
t≥0

e−θt

∫ t

0
eθs‖utt (s)‖2

V ∗ ds ≤ sup
t≥0

e−θt

∫ t

0
eθs‖h(s)‖2

V ∗ ds ≤ C. (4.37)

The results for btt and wtt are quite similar. To finish the proof we have to show the
continuity of u(t),w(t), and b(t) in the H 2-norm. We observe that

(µ+χ)Au(t) = χP
(

rotw(t)
)+Pf (t)+rP

(
b(t) ·∇b(t)

)−P
(
u(t) ·∇u(t)

)−ut (t)

≡ L(t).

(4.38)

Recalling thatw ∈ C([0,∞);H 1
0 (�)) then rotw ∈ C([0,∞);L2(�)) and consequently,

P(rotw) ∈ C([0,∞);H). Since f,ft ∈ L∞([0,∞);L2(�)), by interpolation we have
that f ∈ C([0,∞);L2(�)) and consequently,Pf ∈ C([0,∞);H). Also, u ∈ C([0,∞);
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V ) and the estimate ‖Au‖ ≤ C implies that u·∇u ∈ C([0,∞);L2(�)). In fact, we have

∥∥u(t) ·∇u(t)−u
(
t0

) ·∇u
(
t0

)∥∥
≤ ∥∥(

u(t)−u
(
t0

)) ·∇u(t)
∥∥+∥∥u(

t0
) ·∇(

u(t)−u
(
t0

))∥∥
≤ C‖Au(t)‖∥∥∇u(t)−∇u

(
t0

)∥∥+C
∥∥Au(

t0
)∥∥‖∇(

u(t)−u
(
t0

))∥∥
≤ C

∥∥∇(
u(t)−u

(
t0

))∥∥ −→ 0,

(4.39)

as t → t0. Finally, we conclude P(u · ∇u) ∈ C([0,∞);H). Analogously, we ob-
tain P(b · ∇b) ∈ C([0,∞);H), and since ut ∈ C([0,∞);H), we conclude that L ∈
C([0,∞);H). Consequently, Au ∈ C([0,∞);H), and this implies that u ∈ C([0,∞);
D(A)). Analogously, we prove the continuity of w and b. �

5. Results on the pressure

In a standard way we can obtain information on the pressure. In fact, we have the
following proposition.

Proposition 5.1. Under the hypotheses of Theorem 3.1, there exists a unique function
p∗ ∈ L2

Loc([0,∞);H 1(�)/R) such that by taking p = p∗ − (1/2)rb ·b,(u,w,b,p) is
the solution of (1.1), (1.2), and (1.3) and satisfies for any θ > 0

sup
t≥0

e−θt

∫ t

0
eθs‖p(s)‖2

H 1(�)/R
ds ≤ C, (5.1)

under the hypotheses of Theorem 4.1,

p∗ ∈ L∞([0,∞);H 1(�)/R
)∩C

([0,∞);L2(�)/R
)
, (5.2)

and p = p∗ −(1/2)rb ·b, satisfies

sup
t≥0

‖p(t)‖H 1(�)/R ≤ C. (5.3)

Proof. We observe that (1.1) is equivalent to

(µ+χ)Au = P(F), (5.4)

where F = f +χ rotw+rb ·∇b−u ·∇u−ut .
Now, we observe that under the hypotheses of Theorem 3.1 (respectively, of Theorem

4.1), we have F ∈ L2
Loc([0,∞);L2(�)) (respectively, F ∈ L∞([0,∞);L2(�))).

Therefore, Amrouche and Girault’s results [2] imply that there exists a unique
p∗ ∈ L2

Loc([0,∞);H 1(�)/R) (respectively, p∗ ∈ L∞([0,∞);H 1(�)/R)∩C([0,∞);
L2(�)/R)) such that

−(µ+χ)
u+∇p∗ = F, divu = 0, u|∂� = 0. (5.5)

Now, it is enough to take p = p∗ − (r/2)b ·b and the proposition is proved. Estimates
(5.1) (respectively (5.3)) follows easily from the previous estimates and the estimates
given in the above section. This completes the proof of the proposition. �
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6. Global existence with exponential decay in time of the external forces

The analogue to Theorem 3.1 is the following theorem.

Theorem 6.1. Under the hypotheses of Theorem 3.1, we assume that for some γ > 0,
eγ tf,eγ tg∈L∞([0,∞);L2(�))with ‖eγ tf ‖L∞([0,∞);L2(�)) and ‖eγ tg‖L∞([0,∞);L2(�))

sufficiently small. Then, the unique global strong solution (u,w,b) of the problem (2.5)
given by Theorem 3.1, satisfies

u,b ∈ L2([0,∞);D(A)
)

and w ∈ L2([0,∞);D(B)
)
. (6.1)

Moreover, there exists a positive constant γ ∗ ≤ γ such that 0 ≤ θ < γ ∗, are true

sup
t≥0

eγ
∗t(‖∇u(t)‖2 +‖∇w(t)‖2 +‖∇b(t)‖2) ≤ C,

sup
t≥0

∫ t

0
eθτ

(‖∇u(τ)‖2 +‖∇w(τ)‖2 +‖∇b(τ)‖2)dτ ≤ C,

sup
t≥0

∫ t

0
eθτ

(‖Au(τ)‖2 +‖Bw(τ)‖2 +‖Ab(τ)‖2)dτ ≤ C,

sup
t≥0

∫ t

0
eθτ

(‖ut (τ )‖2 +‖wt(τ)‖2 +‖bt (τ )‖2)dτ ≤ C,

(6.2)

where C is a generic constant independent of t . Also, the same kind of estimates hold
uniformly in k for the Galerkin approximations.

The following result is the analogue of Theorem 4.1.

Theorem 6.2. In addition to the assumptions of Theorems 4.1 and 6.1, assume that
eγ tft ,e

γ tgt ∈ L∞([0,∞);L2(�)). Then, the unique global strong solution (u,w,b)

given by Theorem 4.1, for the same γ ∗ and θ of Theorem 6.1, satisfies the following
estimates:

sup
t≥0

eθt
(‖ut (t)‖2 +‖wt(t)‖2 +‖bt (t)‖2) ≤ C,

sup
t≥0

∫ t

0
eθs

(‖∇ut (s)‖2 +‖∇wt(s)‖2 +‖∇bt (s)‖2)ds ≤ C,

sup
t≥0

eθt
(‖Au(t)‖2 +‖Bw(t)‖2 +‖Ab(t)‖2) ≤ C,

sup
t≥0

∫ t

0
eθs

(‖utt (s)‖2
V ∗ +‖wtt (s)‖2

H−1 +‖btt (s)‖2
V ∗

)
ds ≤ C,

sup
t≥0

σ(t)
(‖∇ut (t)‖2 +‖∇wt(t)‖2 +‖∇bt (t)‖2) ≤ C,

sup
t≥0

∫ t

0
σ(s)

(‖utt (s)‖2 +‖wtt (s)‖2 +‖btt (s)‖2)ds ≤ C,

(6.3)

where σ(t) = min{1, t}eθt and C is a generic constant independent of t . Also, the same
kind of estimates hold uniformly in k for the Galerkin approximations.
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