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We establish conditions that guarantee Fredholm solvability in the Banach space Lp

of nonlocal boundary value problems for elliptic abstract differential equations of the
second order in an interval. Moreover, in the space L2 we prove in addition the coer-
cive solvability, and the completeness of root functions (eigenfunctions and associated
functions). The obtained results are then applied to the study of a nonlocal boundary
value problem for Laplace equations in a cylindrical domain.

1. Introduction

Fredholm property of boundary value problems is investigated in [1, 2, 3] for elliptic
partial differential equations, and in [4, 13, 14, 15] for abstract differential equations.

In this paper, we establish conditions guaranteeing that nonlocal boundary value
problems for elliptic partial differential equations of the second order in an interval are
Fredholm solvable in the Banach spaces Lp. For the solution of the considered problem
we prove the noncoercive estimates. But in the space L2 we prove the coercive estimate
for both the variable space and spectral parameter, in contrast to [15, 16] where we have
a defect coerciveness for the spectral parameter. A coercive estimate, in the case when
the problem is regular elliptic, was proved in [2, 3]. The considered problem is not
regular, since the boundary value conditions are nonlocal and they do not belong to the
same class of boundary value conditions treated in [15, 16]. Moreover, we prove the
completeness of root functions. The completeness of root functions of regular boundary
value problems was proved in [1, 5, 7, 10, 13]. The obtained results are then applied to
the study of a nonlocal boundary value problem for Laplace equation in a cylindrical
domain.

2. Necessary notations and definitions

Let H be a Hilbert space, A a linear closed operator in H and D(A) its domain. We
denote by B(H) the space of bounded operators acting in H , with the usual operator
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norm, and by Lp((0,1),H) the Banach space of strongly measurable functions x �→
u(x) : (0,1) → H, whose pth power is summable, with the norm

‖u‖p0,p = ‖u‖pLp((0,1),H) =
∫ 1

0
‖u(x)‖pH dx < ∞,p ∈ (1,∞). (2.1)

Now, introduce the Lp((0,1),H) vector-valued Sobolev spaces

W2
p

(
(0,1),H(A),H

)= {
u : u′′ ∈ Lp

(
(0,1),H

)
and Au ∈ Lp

(
(0,1),H

)}
,

‖u‖W 2
p((0,1),H(A),H) = ‖Au‖Lp((0,1),H)+‖u′′‖Lp((0,1),H) < ∞.

(2.2)

We also set

H(A) = {
u ∈ D(A);‖u‖2

H(A) = ‖u‖2
H +‖Au‖2

H < ∞}
, (2.3)

that is, H(A) is the domain of A with a Hilbert graph norm.
Let −A be the generator of the semigroup exp(−xA) analytic for x > 0, decreasing

at infinity, and strongly continuous for x ≥ 0. We define the interpolation space [12,
page 96](

H,H
(
An
))

θ,p

=
{
u : u∈H,‖u‖pθ,p =

∫ 1

0
t−n(1−θ)p−1‖An exp(−tA)u‖pdt +‖u‖p<∞

}
,

(2.4)

0 < θ < 1; n ∈ N, 1 ≤ p < ∞ and ‖·‖θ,p its norm.
Let H and H1 be Hilbert spaces such that the continuous embedding H1 ⊂ H is

fulfilled and H1 = H . Then, (H,H1)θ,2 is a Hilbert space [12, page 142]. Denote
(H,H1)θ = (H,H1)θ,2. It is known that (H,H1)θ = H(Sθ ), where S is a selfadjoint
positive-definite operator in H [11, Chapter 1, Section 2.1].

Let Ff = (2π)−1/2
∫ +∞
−∞ eiσxf (x)dx be the Fourier transform.

Definition 2.1. The mapping σ → T (σ) : R → B(H) is said to be a Fourier multiplier
of the type (p,q) if for all f ∈ Lp(R,H) we have

∥∥F−1T Ff
∥∥
Lq(R,H)

≤ c‖f ‖Lp(R,H) for f ∈ Lp(R,H). (2.5)

We get the following characterization for Fourier multipliers.

Theorem 2.2 (Mikhlin-Schwartz [6, page 1181]). If the mapping T : R → B(H) :
σ �→ T (σ) is continuously differentiable and the inequality

‖T (σ)‖ ≤ C,

∥∥∥∥∂T (σ )

∂σ

∥∥∥∥≤ C

|σ | , (2.6)

holds for all σ ∈ R, σ �= 0, then T (σ) is a Fourier multiplier of type (p,p).
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Lemma 2.3 (see [16, page 300]). Let A be a selfadjoint and positive-definite operator
in H . Then

(1) ∃ω > 0,‖Aα exp[−x(A+ λI)1/2]‖ ≤ C exp(−ωx|λ|1/2) for all α ∈ R, x ≥
x0 > 0, |argλ| ≤ ϕ < π , where C does not depend on x and λ;

(2)
∫ 1

0 ‖(A+λI)α exp[−x(A+λI)1/2]u‖2 dx ≤ C(‖Aα−1/4u‖2 +|λ|2α−1/2‖u‖2)

for all α ≥ 1/4, |argλ| ≤ ϕ < π , u ∈ D(Aα−1/4), where C does not depend on
u and λ;

(3) ‖Aα(A+λI)−β‖ ≤ C(1+|λ|)α−β for all 0 ≤ α ≤ β, |argλ| ≤ ϕ < π , where
C does not depend on λ.

3. Solvability of the principal problem

Consider in the Hilbert space H a boundary value problem in [0,1] for the second order
elliptic differential-operator equation

L(λ,D)u = −u′′(x)+Au(x)+B1(x)u
′(x)+B2(x)u(x)+λu(x) = f (x), (3.1)

Lku = αku
(mk)(0)+βku

(mk)(1)+
∑
j≤nk1

Tk1u
′(xk1j

)+ ∑
j≤nk0

Tk0u
(
xk0j

)= fk, (3.2)

k = 1,2, where x, xkij ∈ [0,1]; mk ∈ {0,1}; αk,βk are complex numbers; A, B1(x),
B2(x), Tki are, generally speaking, unbounded operators in H ; D = d/dx.

First, consider the principal part of problem (3.1), (3.2)

L0(λ,D)u = −u′′(x)+(A+λI)u(x) = 0, (3.3)

Lk0u = αku
(mk)(0)+βku

(mk)(1) = fk, k = 1,2. (3.4)

Theorem 3.1. Let the following conditions be satisfied:

(1) A is a selfadjoint and positive-definite operator in H ;
(2) θ = (−1)m1α1β2 −(−1)m2α2β1 �= 0.

Then, problem (3.3), (3.4) for fk ∈ (H(A),H)θk,p, where θk = mk/2 +1/2p, p ∈
(1,∞), and |λ| sufficiently large such that |argλ| ≤ ϕ < π has a unique solution that
belongs to the space W 2

p((0,1),H(A),H), in addition for this solution we have the
noncoercive estimate

∥∥u′′∥∥
Lp((0,1),H)

+‖Au‖Lp((0,1),H) ≤ C(λ)

2∑
k=1

∥∥fk∥∥(H(A),H)θk,p
, (3.5)

where C(λ) does not depend on u.

Proof. We prove that any solution to (3.3), belonging to W2
p((0,1),H(A),H), has the

form

u(x) = exp
[
−x(A+λI)1/2

]
g1 +exp

[
−(1−x)(A+λI)1/2

]
g2, (3.6)



156 Second order abstract elliptic differential equation

where gk ∈ (H(A),H)1/2p,p. To show this, let u ∈ W2
p((0,1),H(A),H) be a solution

to (3.3). Then, from (3.3) we have[
D−(A+λI)1/2

][
D+(A+λI)1/2

]
u(x) = 0. (3.7)

Denote
v(x) =

[
D+(A+λI)1/2

]
u(x). (3.8)

Then, by virtue of Theorem 1.7 [13, page 168], v ∈ W1
p((0,1),H(A1/2),H), and[

D−(A+λI)1/2
]
v(x) = 0. (3.9)

Hence,
v(x) = exp

[
−(1−x)(A+λI)1/2

]
v(1), (3.10)

where, in view of [12, page 44], v(1) ∈ (H(A1/2),H)1/p,p. From (3.8) and (3.10),
we have

u(x) = exp
[
−x(A+λI)1/2

]
u(0)

+
∫ x

0
exp

[
−(x−y)(A+λI)1/2

]
exp

[
−(1−y)(A+λI)1/2

]
v(1)dy

= exp
[
−x(A+λI)1/2

]
u(0)

+ 1

2
(A+λI)−1/2

{
exp

[
−(1−x)(A+λI)1/2

]
−exp

[
−x(A+λI)1/2

]
exp

[
−(A+λI)1/2

]
v(1)

}
,

(3.11)

where, by virtue of [12, page 44], u(0) ∈ (H(A),H)1/2p,p. In view of [12, page 101],
the operator A1/2 is an isomorphism from (H(A),H)1/2p,p = (H,H(A))1−1/2p,p onto
(H,H(A))(p−1)/2p,p = (H,H(A1/2))1−1/p,p = (H(A1/2),H)1/p,p . Thus, (3.11) has
the desired form (3.6).

Let us now prove the converse, that is, the function u(x) of the form (3.6), where
gk ∈ (H(A),H)1/2p,p, belongs to the space W2

p((0,1),H(A),H). Using the properties
of the interpolation spaces [12, page 96], and from (3.6) we have

‖u‖W 2
p((0,1),H(A),H)

≤ (∥∥A(A+λI)−1
∥∥+1

){(∫ 1

0

∥∥∥(A+λI)exp
[
−x(A+λI)1/2

]
g1

∥∥∥p dx)1/p

+
(∫ 1

0

∥∥∥(A+λI)exp
[
−(1−x)(A+λI)1/2

]
g2

∥∥∥p dx)1/p
}

≤ C
(
‖g1‖(H(A+λ),H)1/2p,p +‖g2‖(H(A+λI),H)1/2p,p

)
≤ C(λ)

(
‖g1‖(H(A),H)1/2p,p +‖g2‖(H(A),H)1/2p,p

)
.

(3.12)
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A function u(x) of the form (3.6) satisfies the boundary condition (3.4) if

(−1)mk

{
αk +βk exp

[
−(A+λI)1/2

]}
(A+λI)mk/2v1

+
{
αk exp

[
−(A+λI)1/2

]
+βk

}
(A+λI)mk/2v2 = fk, k = 1,2.

(3.13)

Denote
v1 = (A+λI)m/2g1, v2 = (A+λI)m/2g2, (3.14)

where m = max{m1,m2}. Then, (3.13) gives

(−1)mk

{
αk +βk exp

[
−(A+λI)1/2

]}
(A+λI)mk/2−m/2v1

+
{
αk exp

[
−(A+λI)1/2

]
+βk

}
(A+λI)mk/2−m/2v2 = fk, k = 1,2.

(3.15)

All coefficients in system (3.15) are linear combinations of the bounded operators I ,
(A+λI)−1, exp[−(A+λI)1/2], and (A+λI)−1 exp[−(A+λI)1/2] which commute
with one another. Therefore system (3.15) can be solved as in the scalar case. By virtue
of Lemma 2.3, the determinant of the system (3.15) has the form

D(λ) = θ(A+λI)m1/2+m2/2−m[I +R(λ)], (3.16)

where R(λ) = C1 exp[−(A + λI)1/2] + C2 exp[−2(A + λI)1/2], then by virtue of
Lemma 2.3 ‖R(λ)‖ → 0, for |argλ| ≤ ϕ < π and |λ| → ∞. Then the second condition
in our hypothesis implies that system (3.15) has a unique solution for |argλ| ≤ ϕ < π

and |λ| is sufficiently large, and the solution can be expressed in the form

vk =
[
C1k(A+λI)m/2−m1/2 +R1k(λ)

]
f1

+
[
C2k(A+λI)m/2−m2/2 +R2k(λ)

]
f2, k = 1,2,

(3.17)

where Cjk are complex numbers and ‖Rjk(λ)‖ → 0, |λ| → ∞. Consequently,

gk =
[
C1k(A+λI)−m1/2 +(A+λI)−m/2R1k(λ)

]
f1

+
[
C2k(A+λI)−m2/2 +(A+λI)−m/2R2k(λ)

]
f2, k = 1,2.

(3.18)

Since fk ∈ (H(A),H)mk/2+1/2p,p and the operator (A + λI)mk/2 is an isomor-
phism from the space (H(A),H)1/2p,p = (H,H(A))1−1/2p,p onto the space (H,

H(A))1−mk/2−1/2p,p = (H(A),H)mk/2+1/2p,p. We have gk ∈ (H(A),H)1/2p,p.
Hence from (3.18) we have the estimate

∥∥gk∥∥(H(A),H)1/2p,p
≤ C(λ)

n∑
k=1

∥∥fk∥∥(H(A),H)θk,p
. (3.19)

Substituting (3.19) in (3.12), we obtain the noncoercive estimate (3.5). �
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Consider now the principal part of problem (3.1), (3.2) for a nonhomogeneous equa-
tion and with a parameter

L0(λ,D)u = −u′′(x)+(A+λI)u(x) = f (x), (3.20)

Lk0u = αku
(mk)(0)+βku

(mk)(1) = fk, k = 1,2. (3.21)

Theorem 3.2. Let the conditions of Theorem 3.1 be satisfied. Then, the operator
u �→ (L0(λ,D)u,L10u,L20u) for |argλ| ≤ ϕ < π and |λ| sufficiently large is an
isomorphism from the space W2

p((0,1),H(A),H) onto the space Lp((0,1),H) ⊕
(H(A),H)θ1,p ⊕ (H(A),H)θ2,p, where θk = mk/2+1/2p, k = 1,2, p ∈ (1,∞), and
for this solution we have the noncoercive estimate

∥∥u′′∥∥
Lp((0,1),H)

+‖Au‖Lp((0,1),H) ≤ C(λ)

(
‖f ‖Lp((0,1),H)+

2∑
k=1

∥∥fk∥∥(H(A),H)θk,p

)
,

(3.22)
where C(λ) does not depend on u.

Proof. By Theorem 3.1, we get the unicity. Now, let us define f̃ (x) = f (x) if x ∈
[0,1] and f̃ (x) = 0 if x /∈ [0,1]. We now show that a solution to problem (3.20),
(3.21) belonging to W2

p((0,1),H(A),H) can be represented as a sum of the form
u(x) = u1(x)+u2(x), where u1(x) is the restriction on [0,1] of the solution ũ1(x) to
the equation

L0(λ,D)ũ1 = f̃ (x), x ∈ R, (3.23)

and u2(x) is a solution to the problem

L0(λ,D)u2 = 0, Lk0u2 = fk −Lk0u1, k = 1,2. (3.24)

The solution to (3.23) is given by the formula

ũ1(x) = 1√
2π

∫
R

eiµxL0(λ, iµ)
−1F f̃ (µ)dµ, (3.25)

where F f̃ is the Fourier transform of the function f̃ (x), L0(λ,S) is a characteristic
operator pencil of (3.23), that is,

L0(λ,S) = −S2I +A+λI. (3.26)

From (3.25), it follows that∥∥ũ1
∥∥

W2
p(R,H(A),H)

= ∥∥ũ1
∥∥
Lp(R,H(A))

+∥∥ũ′′
1

∥∥
Lp(R,H)

≤ ∥∥F−1L0(λ, iµ)
−1F f̃ (µ)

∥∥
Lp(R,H(A))

+∥∥F−1(iµ)2L0(λ, iµ)
−1F f̃ (µ)

∥∥
Lp(R,H)

≤ ∥∥F−1AL0(λ, iµ)
−1F f̃ (µ)

∥∥
Lp(R,H)

+∥∥F−1(iµ)2L0(λ, iµ)
−1F f̃ (µ)

∥∥
Lp(R,H)

.

(3.27)
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Let us show that the functions

Tk+1(λ,µ) = (iµ)2kA1−kL0(λ, iµ)
−1, k = 0,1, (3.28)

are Fourier multipliers in the space Lp(R,H). By virtue of Lemma 2.3, for |argλ| ≤
ϕ < π , |λ| sufficiently large and µ ∈ R we have

∥∥L0(λ, iµ)
−1
∥∥=

∥∥∥(A+λI +µ2I
)−1

∥∥∥≤ C
(
1+ ∣∣λ+µ2

∣∣)−1 ≤ C
∣∣µ∣∣−2

, (3.29)∥∥AL0(λ, iµ)
−1
∥∥=

∥∥∥A(A+λI +µ2I
)−1

∥∥∥≤ C. (3.30)

From (3.29) and (3.30), we get

∥∥T1(λ,µ)
∥∥
B(H)

≤ C
∥∥AL0(λ, iµ)

−1
∥∥
B(H)

≤ C, (3.31)∥∥T2(λ,µ)
∥∥
B(H)

≤ C|µ|2∥∥L0(λ, iµ)
−1
∥∥
B(H)

≤ C. (3.32)

Since

∂

∂µ
Tk+1(λ,µ) = 2ki2kµ2k−1A1−kL0(λ, iµ)

−1

− i2k+1µ2kA1−kL0(λ, iµ)
−1 ∂

∂µ
L0(λ, iµ)L0(λ, iµ)

−1,

(3.33)

then, ∥∥∥∥ ∂

∂µ
Tk+1(λ,µ)

∥∥∥∥≤ |µ|−1. (3.34)

Applying the Michlin-Schwartz Theorem 2.2, it follows from (3.31), (3.32), and (3.34)
that the functions µ → Tk+1(λ,µ) are Fourier multipliers in the space Lp(R,H). Then,
using (3.27), we obtain

∥∥ũ1
∥∥

W2
p(R,H(A),H)

≤ C
∥∥f̃1

∥∥
Lp(R,H)

. (3.35)

So, u1 ∈ W2
p((0,1),H(A),H). By virtue of [12, page 44] and inequality (3.35), we

have u
mk

1 (0) ∈ (H(A),H)mk/2+1/2p,p. Hence, Lk0u1 ∈ (H(A),H)θk,p. Then by virtue
of Theorem 3.1, problem (3.20), (3.21) has a unique solution u2(x) that belongs to
W2

p((0,1),H(A),H). And, again, by Theorem 3.1 and estimate (3.35), we obtain the
inequality (3.22). �

4. Fredholm solvability of general problem

Consider problem (3.1), (3.2). Now we can find conditions for the Fredholm solvabil-
ity of problem (3.1), (3.2). It is convenient to formulate the theorem in terms of the
Fredholmness of some unbounded operator which acts from one Banach space into
another.
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Let us set the operator L from W2
p((0,1),H(A),H) into Lp((0,1),H) ⊕

(H(A),H)θ1,p ⊕(H(A),H)θ2,p, by the equalities

D(L) = {
u/u ∈ W2

p

(
(0,1),H(A),H

)
,L(D)u ∈ Lp

(
(0,1),H

)
,

Lku ∈ (H(A),H
)
θ1,p

,k = 1,2
}
,

Lu = (
L(D)u,L1u,L2u

)
,

(4.1)

where

L(D)u = −u′′(x)+Au(x)+B1(x)u
′(x)+B2(x)u(x), (4.2)

L1 and L2 have been defined by equalities (3.2).

Theorem 4.1. Suppose that in addition to conditions (1), (2) stated in Theorem 3.1,
the following conditions are also satisfied:

(1) the embedding H(A) ⊂ H is compact;
(2) linear operators Bk(x) from H(Ak/2) into H act compactly for almost all

x ∈ [0,1]; for any ε > 0 and for almost all x ∈ [0,1],
∥∥Bk(x)u

∥∥≤ ε
∥∥Ak/2u

∥∥+c(ε)‖u‖, u ∈ D
(
Ak/2); (4.3)

for each u ∈ D(Ak/2), the function Bk(x)u is measurable on [0,1] in H ;
(3) the linear operators Tki from (H(A),H)(iP+1)/2p,p into (H(A),H)θk,p are

compact, where θk = mk/2+1/2p, p ∈ (1,∞).

Then,

(1) for any function u(x)∈W2
p((0,1),H(A),H), we have the noncoercive estimate

∥∥u′′∥∥
Lp((0,1),H)

+‖Au‖Lp((0,1),H)

≤ C(λ)

(
‖L(D)u‖Lp((0,1),H)+

2∑
k=1

∥∥Lku
∥∥
(H(A),H)θk,p

+‖u‖Lp((0,1),H)

)
,

(4.4)

where C(λ) does not depend on u;
(2) the operator L : u �→ (L(D)u,L1u,L2u), from W2

p((0,1),H(A),H) into
Lp((0,1),H)⊕(H(A),H)θ1,p ⊕(H(A),H)θ2,p, is Fredholm.

Proof. (1) Let u(x) be a solution to problem L(D)u = f , Lku = fk , k = 1,2, belonging
to W2

p((0,1),H(A),H). Then, u(x) is a solution to the problem

L0(λ,D)u = f (x)+λu(x)−B1(x)u
′(x)−B2(x)u(x),

Lk0u = fk −
∑
j≤nk1

Tk1u
′(xk1j

)− ∑
j≤nk0

Tk0u
(
xk0j

); k = 1,2, (4.5)
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where L0(λ,D) and Lk0 have been defined by (3.20) and (3.21). By virtue of Theorem
3.2, for some λ0, we have the estimate∥∥u′′∥∥

Lp((0,1),H)
+‖Au‖Lp((0,1),H)

≤ C
(
λ0
)

∥∥f (·)+λ0u(·)−B1(·)u′(·)−B2(·)u(·)

∥∥
Lp((0,1),H)

+
2∑

k=1

∥∥∥∥fk −
∑
j≤nk1

Tk1u
′(xk1j

)− ∑
j≤nk0

Tk0u
(
xk0j

)∥∥∥∥
(H(A),H)θk,p


 .

(4.6)

By virtue of Theorem 5.1.7 [13, page 168], the operator u �→ u(i)(x) from the space
W2

p((0,1),H(A),H) into the space Lp((0,1),H(A1−i/2)) is bounded. Then, by con-
dition (2) of Theorem 4.1 and Lemma 5.1.2 [13, page 162], the operator

u �−→ λ0u−B1(x)u
′(x)−B2(x)u2(x) (4.7)

from W2
p((0,1),H(A),H) into the space Lp((0,1),H) is compact. Consequently, by

Lemma 2.2.7 [13, page 53], for any ε > 0 we have∥∥f (·)+λ0u(·)−B1(·)u′(·)−B2(·)u(·)
∥∥
Lp((0,1),H)

≤ C
(
λ0
)[‖f ‖Lp((0,1),H)+ε

(∥∥u′′∥∥
Lp((0,1),H)

+‖Au‖Lp((0,1),H)

)
+C(ε)‖u‖Lp((0,1),H)

]
.

(4.8)

By virtue of [12, page 44], we have the operator u �→ u(i)(x0) from W2
p((0,1),

H(A),H) into (H(A),H)(iP+1)/2p,p is bounded. Then, by virtue of condition (3),
the operator u �→∑

j≤nk1
Tk1u

′(xk1j )+∑j≤nk0
Tk0u(xk0j ) from W2

p((0,1),H(A),H)

into (H(A),H)θk,p is compact. Consequently, by [13], for any ε > 0 we have

2∑
k=1

∥∥∥∥fk −
∑
j≤nk1

Tk1u
′(xk1j

)− ∑
j≤nk0

Tk0u
(
xk0j

)∥∥∥∥
(H(A),H)θk,p

≤ C(λ0)

[
2∑

k=1

∥∥fk∥∥(H(A),H)θk,p
+C(ε)‖u‖Lp((0,1),H)

+ε
(∥∥u′′∥∥

Lp((0,1),H)
+‖Au‖Lp((0,1),H)

)]
.

(4.9)

Substituting (4.8) and (4.9) into (4.6) we have (4.4).
(2) The operator L can be rewritten in the form L = L0λ+L1λ, where

L0λu = (
L0(λ,D)u,L10u,L20u

)
, (4.10)
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L0(λ,D)u,L10u,L20u have been defined by equalities (3.20) and (3.21) and

L1λ = (−λu(x)+B1(x)u
′(x)+B2(x)u(x),T1u,T2u

)
, (4.11)

where
Tku =

∑
j≤nk1

Tk1u
′(xk1j

)+ ∑
j≤nk0

Tk0u
(
xk0j

)
, k = 1,2. (4.12)

Conditions (2) and (3) imply that D(L) = D(L0λ). We can conclude, from Theorem 3.2,
that the operator L0λ from W2

p((0,1),H(A),H) into Lp((0,1),H)⊕(H(A),H)θ1,p⊕
(H(A),H)θ2,p has an inverse for λ is sufficiently large. It follows from the proof
of part (1) that the operator L1λ from W2

p((0,1),H(A),H) into Lp((0,1),H) ⊕
(H(A),H)θ1,p ⊕ (H(A),H)θ2,p is compact. By applying the perturbation theorem of
Fredholm operators [9, page 238] to the operator L, we end the proof. �

5. Coercive solvability in L2((0,1),H)

Consider a particular case of problem (3.20), (3.21) in L2((0,1),H)

L(λ,D)u = −u′′(x)+Au(x)+λu(x) = f (x), (5.1)

Lku = αku
(mk)(0)+βku

(mk)(1) = fk, k = 1,2. (5.2)

Theorem 5.1. Let the following conditions be satisfied:

(1) A is a selfadjoint and positive-definite operator in a Hilbert space H ;
(2) (−1)m1α1β2 −(−1)m2α2β1 �= 0.

Then, problem (5.1), (5.2) for f ∈ L2((0,1),H), fk ∈ D(A3/4+mk/2) for |argλ| ≤
ϕ < π and |λ| is sufficiently large has a unique solution that belongs to the space
W2

p((0,1),H(A),H) and for this solution we have the coercive estimate

|λ|‖u‖L2((0,1),H)+
∥∥u′′∥∥

L2((0,1),H)
+‖Au‖L2((0,1),H)

≤ C

(
‖f ‖L2((0,1),H)+

2∑
k=1

(∥∥∥A−mk/2+3/4fk

∥∥∥+|λ|−mk/2+3/4
∥∥fk∥∥)

)
,

(5.3)

where C does not depend on u, f , fk , and λ.

Proof. We seek a solution in the form u = u1+u2, where u1 is the restriction on [0,1] of
the solution û1(x) to (3.23) and u2 is a solution of problem (3.24). From Theorem 3.1,
we have

u2(x) =
{[

C11(A+λI)−m1/2 +(A+λI)−m/2R11(λ)
]

exp
[
−x(A+λI)1/2

]
+
[
C12(A+λI)−m1/2 +(A+λI)−m/2R12(λ)

]
exp

[
−(1−x)(A+λI)1/2

]}
f1

+
{[

C21(A+λI)−m2/2 +(A+λI)−m/2R21(λ)
]

exp
[
−x(A+λI)1/2

]
+
[
C22(A+λI)−m2/2+(A+λI)−m/2R22(λ)

]
exp

[
−(1−x)(A+λI)1/2

]}
f2.

(5.4)
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Then, for |argλ| ≤ ϕ < π and |λ| is sufficiently large, we have

|λ|∥∥u2
∥∥
L2((0,1),H)

+∥∥u′′
2

∥∥
L2((0,1),H)

+∥∥Au2
∥∥
L2((0,1),H)

≤ C

(
‖f ‖L2((0,1),H)+

2∑
k=1

∥∥∥A−mk/2+3/4fk

∥∥∥+|λ|−mk/2+3/4
∥∥fk∥∥

)
.

(5.5)

From (3.25) and the Plancherel equality, we have

|λ|∥∥u1
∥∥
L2((0,1),H)

+∥∥u′′
1

∥∥
L2((0,1),H)

+∥∥Au1
∥∥
L2((0,1),H)

≤ |λ|∥∥û1
∥∥
L2(R,H)

+∥∥û′′
1

∥∥
L2(R,H)

+∥∥Aû1
∥∥
L2(R,H)

= |λ|∥∥L0(λ, iµ)
−1(F f̃

)
(µ)

∥∥
L2(R,H)

+∥∥(iµ)2L0(λ, iµ)
−1(F f̃

)
(µ)

∥∥
L2(R,H)

+∥∥AL0(λ, iµ)
−1(F f̃

)
(µ)

∥∥
L2(R,H)

.

(5.6)

From condition (1) of Theorem 5.1, for |argλ| ≤ ϕ < π and |λ| is sufficiently large,
we have

|λ|∥∥L0(λ, iµ)
−1
∥∥= |λ|∥∥(A+λI +µ2I )−1

∥∥≤ c|λ|(1+ ∣∣λ+µ2
∣∣)−1 ≤ C,

|µ|2
∥∥∥L0(λ, iµ)

−1
∥∥∥= |µ|2

∥∥∥(A+λI +µ2I
)−1

∥∥∥≤ c|µ|2(1+ ∣∣λ+µ2
∣∣)−1 ≤ C,∥∥∥AL0(λ, iµ)

−1
∥∥∥=

∥∥∥A(A+λI +µ2I
)−1

∥∥∥≤ C.

(5.7)

Then, from (5.6), it follows that

|λ|∥∥u1
∥∥
L2((0,1),H)

+∥∥u′′
1

∥∥
L2((0,1),H)

+∥∥Au1
∥∥
L2((0,1),H)

≤ c‖f ‖L2((0,1),H). (5.8)

From [12, page 44], we have∥∥∥A−mk/2+3/4u
(mk)
1 (0)

∥∥∥≤ C
∥∥u1

∥∥
W2

p((0,1),H(A),H)
≤ C‖f ‖L2((0,1),H), (5.9)

we also use the inequality [11, Chapter 1, Section 3.2]∥∥u(j)(0)
∥∥
H

≤ C
(
h1−χ‖u‖W2

p((0,1),H(A),H)+h−χ‖u‖L2((0,1),H)

)
, (5.10)

where 0 ≤ j ≤ 1, 0 < h < h0,χ = j +(1/2)/2. Then

|λ|−mk/2+3/4
∥∥u(mk)(0)

∥∥≤ C|λ|−mk/2+3/4
(
h1−(mk/2+1/4)‖u‖W2

p((0,1),H(A),H)

+h−mk/2−1/4‖u‖L2((0,1),H)

)
,

(5.11)

by taking h = |λ|−1, and so from (5.8) and (5.9), we have

|λ|−mk/2+3/4
∥∥u(mk)(0)

∥∥≤ C
(
‖u‖W2

p((0,1),H(A),H)+|λ|‖u‖L2((0,1),H)

)
≤ ‖f ‖L2((0,1),H).

(5.12)
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From (5.6), (5.9), and (5.12) we get

|λ|∥∥u2
∥∥
L2((0,1),H)

+∥∥u′′
2

∥∥
L2((0,1),H)

+∥∥Au2
∥∥
L2((0,1),H)

≤ C

(
2∑

k=1

(∥∥∥A−mk/2+3/4fk

∥∥∥+|λ|−mk/2+3/4
∥∥fk∥∥)

)
.

(5.13)

Hence, (5.3) follows from (5.8) and (5.13). �

Consider in L2((0,1),H), the following problem:

L(λ,D)u = λu(x)−u′′(x)+Au(x)+B(x)u = f (x), (5.14)

Lku = αku
(mk)(0)+βku

(mk)(1) = fk, k = 1,2. (5.15)

Theorem 5.2. Let the following conditions be satisfied:

(1) A is a selfadjoint and positive-definite operator in a Hilbert space H ;
(2) the embedding H(A) ⊂ H is compact;
(3) (−1)m1α1β2 −(−1)m2α2β1 �= 0;
(4) ‖Bu‖L2((0,1),H) ≤ ε‖Au‖L2((0,1),H)+C(ε)‖u‖L2((0,1),H).

Then, problem (5.14), (5.15) for f ∈ L2((0,1),H), fk ∈ D(Amk/2+3/4) for |argλ| ≤
ϕ < π and |λ| is sufficiently large has a unique solution that belongs to the space
W2

p((0,1),H(A),H) and for this solution we have the coercive estimate

|λ|‖u‖L2((0,1),H)+
∥∥u′′∥∥

L2((0,1),H)
+‖Au‖L2((0,1),H)

≤ C

(
‖f ‖L2((0,1),H)+

2∑
k=1

(∥∥∥A−mk/2+3/4fk

∥∥∥+|λ|−mk/2+3/4
∥∥fk∥∥)

)
,

(5.16)

where C does not depend on u, f , fk , and λ.

Proof. Let u ∈ W2
p((0,1),H(A),H) be a solution to problem (5.14), (5.15). Then, by

virtue of Theorem 5.1, we have

|λ|‖u‖L2((0,1),H)+
∥∥u′′∥∥

L2((0,1),H)
+‖Au‖L2((0,1),H)

≤ C

(
‖f −Bu‖L2((0,1),H)+

2∑
k=1

(∥∥∥A−mk/2+3/4fk

∥∥∥+|λ|−mk/2+3/4
∥∥fk∥∥)

)
,

(5.17)

using condition (4) of Theorem 5.2, we have(|λ|−C ·C(ε)
)‖u‖L2((0,1),H)+

∥∥u′′∥∥
L2((0,1),H)

+(1−C ·ε)‖Au‖L2((0,1),H)

≤ C

(
‖f ‖L2((0,1),H)+

2∑
k=1

(∥∥∥A−mk/2+3/4fk

∥∥∥+|λ|−mk/2+3/4
∥∥fk∥∥)

)
,

(5.18)

by choosing ε such that C ·ε < 1, (5.16) is easily obtained from (5.18). �
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6. Completeness of root functions

We define the operator � by

�u = −u′′(x)+Au(x), �(�) = W2
p

(
(0,1);H(A),H,Lku = 0,k = 1,2

)
, (6.1)

Lemma 6.1. Suppose that Sj (I,H(A),H) ∼ Cj−q , then

Sj
(
I,W2

2

(
(0,1),H(A),H

)
,L2

(
(0,1),H

))∼ Cj−1/(1/2+1/q). (6.2)

Proof. Consider the operator S1 defined in L2(0,1) such that S1 = S∗
1 ≥ γ 2I , D(S1) =

H(S1) = W2
2(0,1). From [11, Chapter 1, Section 2.1], we know that if H1 ⊂ H,

H 1 = H , then there exists S = S∗ such that D(S1) = H1. And let the operator S2

in H be defined by S2 = S∗
2 ≥ γ 2I , D(S2) = H(A). If we define the operator S on

L2(0,1)⊗H = L2((0,1),H) by

S = S1 ⊗I2 +I1 ⊗S2, (6.3)

where I1 (respectively, I2) is the identity operator in L2(0,1) (respectively, in H ), we
have

Sj
(
S−1

1 ;L2(0,1),L2(0,1)
)∼ Sj

(
I ;H (S1

)
,L2(0,1)

)∼ Cj−2,

Sj
(
S−1

2 ;H,H
)∼ Sj

(
I ;H(A),H

)∼ Cj−q,
(6.4)

and so, from [8], we obtain

Sj
(
S−1)∼ Cn−1/(1/2+1/q). (6.5)

This ends the proof. �

Theorem 6.2. Let conditions (1) and (3) of Theorem 5.2 hold along with A−1 ∈
σq(H),q > 0. Then, the system of root functions of operator � is complete in
L2((0,1),H).

Proof. From Theorem 5.2, we have ‖R(λ,�)‖ ≤ C|λ|−1 for |argλ| ≤ ϕ < π and
|λ| is sufficiently large. Using Lemma 6.1, we have R(λ,�) ∈ σp(L2(0,1),H), for
p > 1/2+1/q, so, for the operator �, all conditions of Theorem 2.3 [13, page 50] have
been checked. This completes the proof of the theorem. �

Theorem 6.3. Suppose that the conditions of Theorem 6.2 are satisfied, as well as the
condition D(B(x)) ⊃ D(A), and for all ε > 0

‖B(x)u‖ ≤ ε‖Au‖+C(ε)‖u‖, u ∈ D(A), (6.6)

then the system of root functions of operator �+B is complete in L2((0,1),H).

Proof. We consider in the space L2((0,1),H) the operator B defined by

(Bu)(x) = B(x)u(x), D(B) = L2
(
(0,1),H(A)

)
. (6.7)
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It is clear that

‖Bu‖L2((0,1),H) ≤ ε‖Au‖L2((0,1),H)+C(ε)‖u‖L2((0,1),H), (6.8)

since by Theorem 5.2, we have

‖Au‖L2((0,1),H) ≤ C‖f ‖L2((0,1),H) = ‖(�−λI)u‖L2((0,1),H), (6.9)

hence,

‖Bu‖L2((0,1),H) ≤ ε‖(�−λI)u‖L2((0,1),H)+C(ε)‖u‖L2((0,1),H), (6.10)

and so, for |λ| sufficiently large, and |argλ|≤ϕ<π , thenR(λ,�+B)∈σp(L2(0,1),H),
and from Theorem 5.2, ‖R(λ,�+B2)‖ ≤ C|λ|−1 for |argλ| ≤ ϕ < π and |λ| is suffi-
ciently large. The system of root functions is complete in L2((0,1),H) . �

7. Application

We consider in the cylindrical domain 4 = [0,1] ×G, where G ⊂ R
r is a bounded

domain, nonlocal boundary value problems for the Laplace equation with a parameter

L(λ)u = λu(x,y)−7u(x,y)+b(x,y)u(x,y) = f (x,y), (x,y) ∈ 4, (7.1)

Lku = αku
(mk)(0,y)+βku

(mk)(1,y) = fk(y), y ∈ G, k = 1,2, (7.2)

Pu = u
(
x,y′)= 0,

(
x,y′) ∈ [0,1]×9, (7.3)

where αk,βk are complex numbers, y = (y1, . . . ,yr ), and 9 = ∂G is the boundary of G.
A number λ0 is called an eigenvalue of problem (7.1), (7.2), and (7.3) if the problem

L(λ0)u = 0, L1u = 0, L2u = 0, Pu = 0 (7.4)

has a nontrivial solution that belongs to W 2
2 (4). The nontrivial solution u0(x,y) of

problem (7.4) that belongs to W 2
2 (4) is called eigenfunction of problem (7.1), (7.2),

and (7.3) and corresponds to the eigenvalue λ0. A solution uk(x) to the problem

L
(
λ0
)
uk +uk−1 = 0, L1uk = 0, L2uk = 0, Puk = 0, (7.5)

belongs to W 2
2 (4), and is called an associated function of the kth rank to the eigen-

function u0(x) of problem (7.1), (7.2), and (7.3).
Eigenfunctions and associated functions of problem (7.1), (7.2), and (7.3) are gath-

ered under the general name, root functions of problem (7.1), (7.2), and (7.3).

Theorem 7.1. Let b(x,y) ∈ W
0,1∞ (4), (−1)m1α1β2 −(−1)m2α2β1 �= 0, 9 ∈ C2. Then,

(1) Problem (7.1), (7.2), and (7.3) for f ∈ W
0,1
2 (4;Pu = 0),fk ∈ W

−mk/2+3/4
2 (G;

Pu = 0) for |argλ| ≤ ϕ < π and |λ| is sufficiently large has a unique solution that
belongs to the space W 2

2 (4), and for this solution we have the coercive estimate

|λ|‖u‖L2(4)+‖u‖W 2
2 (4) ≤ C

(
‖f ‖L2(4)+

2∑
k=1

(∥∥fk∥∥
W

−mk/2+3/4
2

+|λ|−mk/2+3/4
∥∥fk∥∥)),

(7.6)
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where the constant C is independent of u and λ.
(2) Root functions of problem (7.1), (7.2), and (7.3) are complete in the space L2(4).

Proof. Consider in the space H = L2(G) operators A, B(x) defined by

Au = −7u(y)+λ0u(y), D(A) = W 2
2 (G;Pu = 0),

B(x)u = b(x,y)u(y)−λ0u(y), D
(
B(x)

)= W 1
2 (G;Pu = 0,m = 0).

(7.7)

Then, problem (7.1), (7.2), and (7.3) can be rewritten in the form

λu(x)−u′′(x)+Au(x)+B1(x)u
′(x)+B2(x)u = f (x), (7.8)

αku
(mk)(0)+βku

(mk)(1) = fk, k = 1,2. (7.9)

We have the compact embedding [12, page 258] W 2
2 (4) ⊂ L2(4). On the other hand,

(cf. [12, page 350])
Sj
(
I ;W 2

2 (4),L2(4)
)∼ j−2/(r+1). (7.10)

By virtue of Lemma 3.1 [13, page 60]

Sj
(
I ;H(A),L2(4)

)= Sj
(
A−1;L2(4),L2(4)

)
. (7.11)

Since H(A) ⊂ W 2
2 (4), then, from (7.10), (7.11), and Lemma 3.3 [13, page 61], it

follows that

A−1 ∈ σp
(
L2(4),L2(4)

)
, p >

r+1

2
. (7.12)

From (7.6) it follows that∥∥R(λ,A)
∥∥≤ C|λ|−1, |argλ| ≤ ϕ < π, |λ| is sufficiently large. (7.13)

So, all conditions of Theorem 6.3 have been checked. This ends the proof of the
theorem. �
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