
ON THE DEGREE THEORY FOR DENSELY DEFINED
MAPPINGS OF CLASS (S+)L
JUHA BERKOVITS

Received 15 May 1999

We introduce a new construction of topological degree for densely defined mappings of
monotone type. We also study the structure of the classes of mappings involved. Using
the basic properties of the degree, we prove some abstract existence results that can be
applied to elliptic problems.

1. Introduction

Topological degree theory is one of the main tools in the study of nonlinear problems.
Since the pioneering works of Brouwer in 1912 [6] and Leray and Schauder in 1934
[11], numerous extensions have been published (cf. [2, 3, 4, 8, 13, 14, 15]).

In a recent paper [10], Kartsatos and Skrypnik introduced a topological degree for
densely defined operators in reflexive Banach spaces. In the first part of [10] they
considered densely defined mappings satisfying a generalized condition (S+). This
new condition, called (S+)0,L, is a natural extension of the standard (S+)-property.

In [10] a construction of a new degree function is given. The authors start with
a definition of condition (S+)0,L for densely defined mappings. For this class, with
a finite dimensional continuity condition, they define a Galerkin type approximation
scheme. Using a limit process and the finite dimensional Brouwer degree, a new single
valued degree is achieved. Only the basic properties of the new degree were proved.
Most important is the homotopy invariance property. As an application, Kartsatos and
Skrypnik consider Dirichlet problem for the elliptic operator

A(u)=
n∑
i=1

∂

∂xi

{
e2u ∂u

∂xi
+ai

(
x,u,

∂u

∂xi

)}
, (1.1)

where the coefficients ai satisfy the standard growth and ellipticity conditions. More
generally, the term eu can be replaced by a function ρ(u) satisfying a very mild growth
condition.
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Our paper is organized as follows. In Section 2, we recall the classical definitions of
the different classes of everywhere defined mappings of monotone type. The structure
and mutual relations of these classes are well known. For the readers’ convenience we
recall briefly the basic facts without proofs.

In Section 3, we define the class (S+)0,L introduced by Kartsatos and Skrypnik in
[10]. We also define new classes (S+)L,(S+)0,D(A), and (S+)D(A), which seem to be
useful in the structural study of classes of operators. In Theorem 3.3 we show how
these new classes are related to standard class (S+). The invariance under perturbations
is considered in Theorems 3.4 and 3.5.

Section 4 is devoted to the construction and properties of degree. We will first recall
the construction given in [10]. Then we introduce an alternative construction. Indeed,
instead of finite dimensional approximants, it is possible to use a Leray-Schauder type
approximation scheme. This provides some advantage making the reasoning more trans-
parent due to the fact that we are working in the same space at each stage of the process.
We will close this section by a discussion about the basic properties of the degree.

In Section 5, we will consider bounded and locally bounded operators. It turns out
that essentially no new results can be obtained in this case. Hence, any boundedness
condition should be avoided.

Section 6 contains some abstract applications. We generalize the Borsuk’s theorem
and give sufficient conditions which make it possible to calculate the value of degree
for an isolated zero, that is, the “index.” We also give some abstract existence results.

2. Everywhere defined mappings of monotone type

Let X be a real separable reflexive Banach space, and let X∗ be its dual space X∗
with continuous pairing 〈·, ·〉. By the results due to Trojanski [16] every reflexive Ba-
nach space has an equivalent norm such that X and X∗ are both locally uniformly
convex. Thus, we assume from now on that X and X∗ are locally uniformly convex.
This renorming is needed for the definition of the duality mapping J : X �� X∗. In-
deed, it follows from the Hahn-Banach theorem and the convexity of the norm that the
conditions

‖J (u)‖ = ‖u‖, 〈J (u),u〉 = ‖u‖2 ∀u ∈X (2.1)

determine a unique map J : X �� X∗. We consider mappings acting from X into X∗.
For simplicity we assume that all mappings are defined on the whole of X. The norm
convergence is denoted by �� , the weak convergence by � , and the continuous
pairing between X and X∗ by 〈·, ·〉. We recall that a mapping F :X �� X∗ is

(1) bounded if it takes any bounded set into a bounded set,
(2) locally bounded if each point u ∈ X has a neighborhood U such that F(U)

remains bounded,
(3) demicontinuous if uk �� u implies F(uk) � F(u),
(4) monotone if 〈F(u)−F(v),u−v〉 ≥ 0 for all u,v ∈X,
(5) strongly monotone if there exists a constant µ > 0 such that for all u,v ∈X

〈N(u)−N(v),u−v〉 ≥ µ‖u−v‖2, (2.2)
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(6) of class (S+) if for any sequence such that uk �u in X∗ and lim sup〈F(uk),
uk−u〉 ≤ 0, it follows that uk �� u,

(7) pseudomonotone if for any sequence such that uk � u and lim sup〈F(uk),
uk−u〉 ≤ 0, it follows that F(uk) � F(u) and 〈F(uk),uk−u〉 �� 0,

(8) quasimonotone if uk � u implies lim sup〈F(uk),uk−u〉 ≥ 0.

The definitions and notations given above are quite standard and frequently used in the
literature. Different notations are used in [14], see also [9]. The following remarks and
results are mostly well known.

(a) In applications, when a Galerkin method is used, even the demicontinuity is too
strong requirement. It is sufficient that F is hemicontinuous, that is, F(u+tkv) �� F(u)
as tk �� 0+, or continuous on finite dimensional subspaces of X.

(b) The concept of pseudomonotonicity was originally introduced by Brezis [5]. It
is not hard to see that the original definition coincides with the one given here.

(c) Any locally bounded pseudomonotone mapping is demicontinuous.
(d) Any demicontinuous map is locally bounded.
(e) Any monotone map is locally bounded.
(f) Any monotone hemicontinuous map is demicontinuous and pseudomonotone.
(g) The duality map J :X �� X∗ is continuous, bounded, and of class (S+). More-

over, J is strictly monotone but generally not strongly monotone.
(h) Any strongly monotone map is of class (S+).
(i) Any map of the form I −C : X �� X, where C is compact, is said to be Leray-

Schauder type (denote I −C ∈ (LS)). Note that in Hilbert space setting any Leray-
Schauder type map belongs to the class (S+).

We assume that all mappings appearing in this section from now on are demicontin-
uous. If F :X �� X∗ and T :X �� X∗ are strongly monotone, then F +T and αF are
strongly monotone for all α > 0. In this sense, the class of strongly monotone maps is
said to have a conical structure. Similarly, the class (S+), the class of pseudomonotone
maps (denote (PM)), the class of monotone maps (denote (MON)), and the class of
quasimonotone maps (denote (QM)) have a conical structure. Note that the zero map
is (PM) and in (QM) but not in (S+) if the space is infinite dimensional. Denoting the
class of compact maps by (COMP), we have the following inclusions:

(j) (COMP)⊂ (QM) and (S+)⊂ (PM)⊂ (QM).
For demicontinuous mappings of class (S+) there exists a classical topological degree

theory. Its practical value depends on the number of admissible homotopies available.
For instance, any affine homotopy (1 − t)F0 + tF1, 0 ≤ t ≤ 1 between (S+)-maps is
admissible. This fact is closely related to the conical structure of class (S+). Another
important property of the class (S+) is that it is very stable under perturbations. Indeed,
we have

(k) If F ∈ (S+) and T ∈ (QM), then F +T ∈ (S+).
(l) If F +T ∈ (S+) for any F ∈ (S+), then T ∈ (QM).
A standard application of the above concepts is a partial differential operator of the

generalized divergence form

A(u)(x)=
∑

|α|≤m
(−1)αDαAα

(
x,u(x), . . . ,Dmu(x)

)
, x ∈ , (2.3)
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where  is an open subset of R
N. Assume that the Caratheodory functions Aα satisfy

polynomial growth condition. Then there are natural conditions such that the divergence
form (with some boundary conditions) generates a mapping of monotone type from a
Sobolev-space into its dual space (see [7, 14]).

3. Densely defined mappings of monotone type

Let X be a real separable reflexive Banach space with dual space X∗ and continuous
pairing 〈·, ·〉. We assume that X and X∗ are locally uniformly convex. Let A :D(A)⊂
X �� X∗ be a possibly nonlinear map. Following the notations of [10], we assume that
there exists a subspace L of X such that

L⊂D(A), L=X. (3.1)

Denote by �(L) the set of all finite dimensional subspaces of L. Let (Fj )∞j=1 be a
sequence of subspaces such that for all j ∈ Z+

Fj ∈ �(L), Fj ⊂ Fj+1, dimFj = j, ∪jFj =X. (3.2)

For each sequence satisfying (3.2) we denote

L
(
Fj

) = ∪∞
j=1Fj . (3.3)

Definition 3.1. A mapping A : D(A) ⊂ X �� X∗ satisfies condition (S+)0,L if (3.1)
holds and for any sequence (Fj ) of subspaces satisfying (3.2), the conditions

(uk)⊂ L, uk � u0, lim sup
k ��∞

〈
A

(
uk

)
,uk

〉 ≤ 0,

lim
k ��∞

〈
A

(
uk

)
,v

〉 = 0 ∀v ∈ L(
Fj

) (3.4)

imply that uk �� u0,u0 ∈ D(A), and A(u0) = 0. In case A− h satisfies condition
(S+)0,L for all h ∈X∗, we say that A satisfies condition (S+)L.

If the condition “(uk) ⊂ L” in Definition 3.1 is replaced by “(uk) ⊂ D(A),” we
say that the mapping satisfies condition (S+)0,D(A). In case A−h satisfies condition
(S+)0,D(A) for all h ∈X∗, we say that A satisfies condition (S+)D(A).

The condition (S+)0,L is introduced in [10]. The subclass (S+)D(A) of (S+)L defined
by us is a natural extension of the classical definition of class (S+), (see Theorem 3.1).
However, in relevant applications, it is easier to verify condition (S+)0,L (cf. [10,
Section 5]) than (S+)0,D(A).

Example 3.2. We show that (S+)D(A) is a proper subset of (S+)L. Indeed, assume that
X =H , a real separable Hilbert space with orthonormal basis {e1,e2, . . .}. NowX∗ =H
and take L= span{e1,e2, . . .}. We consider the mapping A= I +C : X �� X∗, where
I is the identity mapping and C is defined by setting

C(u)=
{

0 if u ∈ L,
−u if u /∈ L. (3.5)

Now D(A)=X and it is easy to see that A /∈ (S+)0,D(A) but A ∈ (S+)L.
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The connection between classes (S+), (S+)D(A), and (S+)L is the following.

Theorem 3.3. Let A :D(A)⊂X �� X∗ be a bounded operator such that (3.1) holds.
Then

(A) (i) A ∈ (S+)D(A) if and only if
(ii) D(A)=X and A :X �� X∗ is demicontinuous and of class (S+).

(B) (i)′ A ∈ (S+)L if and only if
(ii)′ D(A) = X and A : X �� X∗ is demicontinuous and satisfies condition

(S+) for any sequence (uk) on L, that is,(
uk

) ⊂ L, uk � u0, lim sup
〈
A

(
uk

)
,uk−u0

〉 ≤ 0 (3.6)

imply uk �� u0.

Proof. Assume (i) and let u0 ∈X be given. There exists a sequence (uk)⊂D(A) such
that uk �� u0 and since A is bounded, the sequence (A(uk)) is bounded in X∗. We can
write at least for a subsequence A(uk) � w ∈ X∗. Thus, lim sup〈A(uk)−w,uk〉 = 0
and lim〈A(uk)−w,v〉 = 0 for all v ∈ L(Fj ) imply that u0 ∈ D(A) and A(u0) = w.
Hence, D(A)=X and A is demicontinuous. Assume now that(

uk
) ⊂X, uk � u0, lim sup

〈
A

(
uk

)
,uk−u0

〉 ≤ 0. (3.7)

For a subsequence A(uk) � y ∈X∗ and hence

lim sup
〈
A

(
uk

)−y,uk
〉 ≤ 0, lim

〈
A

(
uk

)−y,v〉 = 0 (3.8)

for all v ∈ L(Fj ). Consequently, uk �� u0 and (ii) is proved.
Assume now that (ii) is valid and (uk)⊂X such that

uk � u0, lim sup
〈
A

(
uk

)−h,uk
〉 ≤ 0, lim

〈
A

(
uk

)−h,v〉 = 0 (3.9)

for all v ∈ L(Fj ). Since L(Fj ) is dense in X and A is bounded, we conclude that
A(uk) � h. Consequently, lim sup〈A(uk),uk−u0〉≤0 implying uk �� u0 andA(u0)=
h, which completes the proof.

The equivalence of (i)′ and (ii)′ can be proved analogously. �

Theorem 3.3 shows that in order to obtain new results, it is essential that A is
not bounded. The case A is locally bounded on D(A), that is, each u ∈ D(A) has a
neighborhood Bε(u) such that A(Bε(u)∩D(A)) is bounded, is treated separately in
Section 5. We impose no boundedness assumption on A in the general case.

The structure of the usual class (S+) is well known. Unfortunately, similar complete
description for class (S+)L seems impossible. However, some results into this direction
can be achieved. In our next theorem we consider bounded perturbations.

Theorem 3.4. Let N :X �� X∗ be a bounded mapping. Then

(i) N is demicontinuous and quasimonotone if and only if
(ii) A+N ∈ (S+)D(A) for all A ∈ (S+)D(A).
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Proof. Let N : X �� X∗ be a demicontinuous quasimonotone map and A satisfies
condition (S+)D(A). Assume that(

uk
) ⊂D(A), uk � u0, lim sup

〈
A

(
uk

)+N(
uk

)−h,uk
〉 ≤ 0,

lim
〈
A

(
uk

)+N(
uk

)−h,v〉 = 0 ∀v ∈ L(
Fj

)
.

(3.10)

At least for a subsequence we can assume that N(uk) � w. Then, due to the quasi-
monotonicity of N , we easily obtain

lim sup
〈
A

(
uk

)+w−h,uk
〉 ≤ 0, lim

〈
A

(
uk

)+w−h,v〉 = 0 (3.11)

for all v ∈ L(Fj ). Hence uk �� u0 ∈ D(A) and A(u0)+w− h = 0. Consequently,
A(u0)+N(u0)= h completes the first part of the proof.

On the other hand, if we assume (ii), then by Theorem 3.3 we also have A+N is
demicontinuous and of class (S+) for any bounded demicontinuous A ∈ (S+). But this
implies (cf. [1]) that N is demicontinuous and quasimonotone. �

From the first part of the above proof of Theorem 3.4, we immediately see that the
following theorem holds.

Theorem 3.5. Let N : X �� X∗ be a bounded demicontinuous quasimonotone map
and A ∈ (S+)L. Then A+N ∈ (S+)L.

As a direct implication of the previous theorem, we notice that the following special
cases are usually met in applications. If A ∈ (S+)L and N : X �� X∗ is demicontin-
uous and bounded, then A+N ∈ (S+)L in case N is strongly monotone, monotone,
or compact.

4. On the construction of the degree

We say that A is an admissible map of class (S+)L whenever the following conditions
(A1) and (A2) hold. Recall that by (3.1) there exists a subspace L of X such that
L ⊂ D(A) and L = X. We assume that A : D(A) ⊂ X �� X∗ satisfies the following
conditions:

(A1) there exists a subspace L such that (3.1) holds and A ∈ (S+)L;
(A2) for every F ∈ �(L),v ∈ L the mapping a(·,v) : F �� R defined by a(u,v)=

〈A(u),v〉 is continuous.

Conditions (A1) and (A2) are adopted from [10]. Let (Fj ) be a fixed sequence of
subspaces of L satisfying (3.2) and let (vj ) ⊂ L be a fixed sequence such that Fj =
span(v1,v2, . . . ,vj ) for all j ∈ Z+. For every j ∈ Z+ a finite dimensional approximation
Aj of the operator A is defined by

Aj(u)=
j∑
i=1

〈
A(u),vi

〉
vi. (4.1)

Let G be an open bounded subset of X such that A(u) �= 0 for all u ∈ ∂G∩D(A).
It is proved in [10] that there exists j0 ∈ Z+ such that the finite dimensional Brouwer
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degree dB(Aj ,G∩Fj ,0) is well defined and independent of j for all j ≥ j0. Thus, it
is relevant to define a new degree function by setting

deg(A,G,0)= lim
j ��∞

dB
(
Aj ,G∩Fj ,0

)
. (4.2)

If h ∈X∗ and A(u) �= h for all u ∈ ∂G∩D(A), then we naturally define

deg(A,G,h)= deg(A−h,G,0). (4.3)

Kartsatos and Skrypnik [10] also showed that the definition does not depend on the
choice of the sequence (Fj ).

It is interesting to notice that the degree defined above can be constructed in a
different way via classical Leray-Schauder degree. Indeed, denoting Wj = span(vj+1,

vj+2, . . .) we have X = Fj ⊕Wj for all j ∈ Z+. Corresponding to this splitting, we
define Pj (f +w) = f for all f +w ∈ Fj ⊕Wj . The projection Pj : X �� Fj is
compact for each j ∈ Z+ due to the fact that dimFj = j <∞. We define a family {Tj }
of mappings by setting

Tj = I−Pj +Aj ◦Pj :X �� X, j ∈ Z+, (4.4)

where Aj is given by (4.1). If A is an admissible map of class (S+)L, then clearly
Pj −Aj ◦Pj is compact and consequently each Tj is a mapping of Leray-Schauder
type. In fact Pj−Aj ◦Pj is completely continuous and hence Tj is weakly continuous.
Assume that A(u) �= 0 for all u ∈ ∂G∩D(A), whereG⊂X is some open bounded set.
Then there exists j0 ∈ Z+ such that dLS(Tj ,G,0) is well defined and constant in j for
all j ≥ j0. Hence we can define

deg(A,G,0)= lim
j ��∞

dLS
(
Tj ,G,0

)
. (4.5)

It is tedious but not difficult to prove that the degree defined by (4.5) and the degree
constructed by Kartsatos and Skrypnik in [10] coincide. This fact follows from the
uniqueness of the Brouwer degree. In view of Theorem 3.3, any bounded demicontin-
uous map N :X �� X∗ of class (S+) is also admissible and hence the restriction of the
degree function (deg) to bounded demicontinuous maps of class (S+) coincides with
the classical topological degree introduced in [7, 15], which is unique [1].

The degree function defined above has the properties of a classical topological degree
(see [7, 12]). In [10], only homotopy invariance property is considered. In what follows,
A is an admissible map of class (S+)L, G is an open bounded subset of X and h ∈X∗
such that A(u) �= h for all u ∈ ∂G∩D(A). The first of the basic properties (a)–(d) is

(a) If deg(A,G,h) �= 0, then the equation A(u) = h admits at least one solution
on G.

Clearly (a) follows from the definition of “deg.” In fact, (a) follows also from the
additivity property:

(b) (Additivity) Let G1 and G2 be open disjoint subsets of G. If h /∈ A((G\ (G1 ∪
G2))∩D(A)), then

deg(A,G,h)= deg
(
A,G1,h

)+deg
(
A,G2,h

)
. (4.6)
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The additivity property is a consequence of the corresponding property of the Brouwer
degree and the definition (4.2).

(c) (Invariance under homotopies) We first recall the definition of admissible homo-
topies given in [10]. Let At , 0 ≤ t ≤ 1, be a family of operators fromD(At)⊂X toX∗.
We assume that there exist a subspace L of X and a sequence (Fj ) satisfying condition
(3.2) such that

L⊂D(
At

) ⊂X, L=X. (4.7)

The family At , 0 ≤ t ≤ 1 satisfies condition (S+)(t)0,L if the conditions(
uk

) ⊂ L(
Fj

)
, uk � u0, tk �� t0, lim sup

〈
Atk

(
uk

)
,uk

〉 ≤ 0,

lim
〈
Atk

(
uk

)
,v

〉 = 0 ∀v ∈ L(
Fj

) (4.8)

imply that uk �� u0 ∈ D(At0) and At0(u0) = 0. In case At − ht , 0 ≤ t ≤ 1 satis-
fies condition (S+)0,L for any continuous curve ht ,0 ≤ t ≤ 1 in X∗, we say that At ,
0 ≤ t ≤ 1 is a homotopy of class (S+)(t)L . Moreover, we say that a homotopy is admis-
sible if

(H) for every F ⊂ L(Fj ), v ∈ L(Fj ) the mapping a(·, ·,v) : F×[0,1] �� R defined
by a(u, t,v)= 〈At(u),v〉 is continuous.

Note that for fixed t ∈ [0,1], At is not necessarily an admissible map of class (S+)L
whenever At , 0 ≤ t ≤ 1, is an admissible homotopy of class (S+)L. This is due to the
fact that in the definition of condition (S+)(t)0,L, the sequence (Fj ) of subspaces of L
is fixed. In case At , 0 ≤ t ≤ 1, is an admissible homotopy and A0,A1 ∈ (S+)L, the
mappings A0 and A1 are called “homotopic” [10]. Essentially the following result is
proved in [10].

Theorem 4.1. Let At , 0 ≤ t ≤ 1, be an admissible homotopy of class (S+)(t)L and
G⊂X an open bounded set such that At(u) �= 0 for all u ∈ ∂G∩D(At), 0 ≤ t ≤ 1. If
A0 and A1 are admissible maps of class (S+)L, then

deg
(
A0,G,0

) = deg
(
A1,G,0

)
. (4.9)

(d) (Normalizing) For the duality mapping J :X �� X∗ we have

deg(J,G,h)=
{

+1 if h ∈ J (G),
0 if h /∈ J (G), (4.10)

where G⊂X is any open bounded set.
The proof of (d) is based on the use of affine homotopy between the approximant

Jj and the identity map in the finite dimensional space Fj .

5. On locally bounded operators

As we pointed out in Section 3, in order to obtain new results, it is not relevant to con-
sider bounded mappings of class (S+)D(A). However, assume that A is locally bounded
onD(A), that is, each u ∈D(A) has a neighborhood Bε(u) such that A(Bε(u)∩D(A))
is bounded. The following observation is not hard to see.
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Lemma 5.1. Let A :D(A)⊂X �� X∗ be a mapping of class (S+)D(A) which is locally
bounded on D(A). Then A satisfies condition (A2), thus being admissible.

Hence, the degree theory for locally bounded maps of class (S+)D(A) is a special
case of the degree theory given in Section 4. However, it is interesting to notice that
in this case there is another more simple way to construct the degree. Moreover, the
degree also turns out to be unique. Indeed, assume that A : D(A) ⊂ X �� X∗ is a
locally bounded map of class (S+)D(A). Let G ⊂ X be a bounded open set such that
A(u) �= 0 for all u ∈ ∂G∩D(A). It is easy to prove the following lemma.

Lemma 5.2. The set K := A−1(0)∩G is compact and there exists an open set G0 ⊂G
such that

(a) K ⊂G0 ⊂D(A),
(b) the restriction of A to G0 is a bounded demicontinuous map of class (S+).

Hence the (S+)-degree dS+(A,G0,0) is well defined and by the additivity its value is
independent of the choice of the setG0 satisfying conditions (a) and (b) of Lemma 5.2.
Thus, it is relevant to define a degree function by setting

deg(A,G,0)= dS+
(
A,G0,0

)
. (5.1)

This new degree function has the properties of a classical topological degree and is
unique by the uniqueness of dS+ . Especially, it coincides with the degree function
constructed in Section 4 whenever both are defined.

6. Applications

Let A : D(A) ⊂ X �� X∗ be an admissible map of class (S+)L. There exists a rich
variety of existence results for mappings of class (S+) (cf. [7, 14]). However, the
situation here is more difficult due to the lack of admissible homotopies. For instance,
affine homotopies of the form (1− t)A0 + tA1 between mappings A0 and A1 of class
(S+)L cannot be used in general. We start with a result which provides a sufficient
condition for the degree of an isolated zero, that is, the index, to be nonzero.

Theorem 6.1. Let A : D(A) ⊂ X �� X∗ be an admissible mapping of class (S+)0,L
such thatA(0)= 0. Assume that there exists r > 0 such thatA(u) �= 0 for all u ∈D(A),
‖u‖ = r , and

〈A(u),u〉 ≥ 0 ∀u ∈D(A). (6.1)

Then deg(A,Br(0),0)= +1.

Proof. Let us consider homotopy

At = (1− t)A+ tJ, 0 ≤ t ≤ 1. (6.2)

Since 〈At(u),u〉 ≥ t‖u‖2 for all u ∈ D(A), the condition At(u) �= 0 holds for all u ∈
D(A), ‖u‖ = r , 0 ≤ t ≤ 1. Hence, it is sufficient to show that At = (1− t)A+ tJ , 0 ≤
t ≤ 1, defines an admissible homotopy in the sense of Section 4. Indeed, the continuity
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condition (H) clearly holds and assume that for some sequence (Fj ) satisfying (3.2)(
uk

) ⊂ L(
Fj

)
, uk � u0, tk �� t0, lim sup

〈
Atk

(
uk

)
,uk

〉 ≤ 0,

lim
〈
Atk

(
uk

)
,v

〉 = 0 ∀v ∈ L(
Fj

)
.

(6.3)

Now 〈Atk (uk),uk〉 ≥ tk‖uk‖2 and if t0 > 0, we have uk �� 0 completing the proof. If
t0 = 0, then lim sup〈A(uk),uk〉 ≤ 0 and lim〈A(uk),v〉 = 0 for all v ∈ L(Fj ). Hence,
uk �� u0 ∈D(A) and A(u0)= A0(u0)= 0. �

As an application of the previous result we have the following three theorems.

Theorem 6.2. LetA :D(A)⊂X �� X∗ be an admissible mapping of class (S+)L such
that A(0) = 0. Assume that there exists r > 0 such that A(u) �= 0 for all u ∈ D(A),
‖u‖ = r , and

〈A(u),u〉 ≥ 0 ∀u ∈D(A). (6.4)

Let N :X �� X∗ be a bounded demicontinuous quasimonotone map such that

‖A(u)‖
‖N(u)‖ ≥ 1 ∀u ∈D(A),‖u‖ = r. (6.5)

Then the equation A(u)+N(u)= 0 admits at least one solution u ∈D(A)∩Br(0).

Proof. If A(u)+ tN(u)= 0 for some u ∈D(A),‖u‖ = r , and t ∈]0,1[, then ‖A(u)‖<
‖N(u)‖, which is a contradiction. Hence, the proof is complete as soon as we have
proved that At(u) = A(u)+ tN(u), 0 ≤ t ≤ 1, defines an admissible homotopy. As-
sume that(

uk
) ⊂ L(

Fj
)
, uk � u0, tk �� t0, lim sup

〈
Atk

(
uk

)
,uk

〉 ≤ 0,

lim
〈
Atk

(
uk

)
,v

〉 = 0 ∀v ∈ L(
Fj

)
.

(6.6)

Taking a subsequence, if necessary, we can assume that N(uk) � w ∈ X∗. Thus
lim sup〈A(uk)+t0w,uk〉 ≤ −t0 lim inf〈N(uk),uk−u0〉 ≤ 0 and lim〈A(uk)+t0w,v〉 =
0 for all v ∈ L(Fj ) implying that uk �� u0 ∈ D(A) and A(u0)+ t0w = 0. Conse-
quently, w =N(u0) and thus At0(u0)= 0. By Theorem 6.1 we obtain

deg
(
A+N,Br(0),0

) = deg
(
A,Br(0),0

) = +1, (6.7)

which proves the assertion. �

Theorem 6.3. Let A : D(A) ⊂ X �� X∗ be an admissible mapping of class (S+)L
such that A(0) = 0. Assume that there exists r > 0 such that A(u) �= 0 for all u ∈
D(A),‖u‖ ≥ r , and

〈A(u),u〉 ≥ 0 ∀u ∈D(A). (6.8)

Let N :X �� X∗ be a bounded demicontinuous quasimonotone map such that

〈N(u),u〉> 0 ∀u ∈D(A),‖u‖ ≥ r. (6.9)
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Then the equation A(u)+N(u)= 0 admits at least one solution u ∈D(A)∩Br(0).

Proof. By Theorem 6.2, we can use the admissible homotopy A+ tN , 0 ≤ t ≤ 1. It
is clear that A(u)+ tN(u) �= 0 for all u ∈ D(A), ‖u‖ ≥ r , and 0 ≤ t ≤ 1. Hence, the
assertion follows from Theorem 6.1. �

Theorem 6.4. LetA :D(A)⊂X �� X∗ be an admissible mapping of class (S+)L such
that A(0) = 0. Assume that there exists r > 0 such that A(u) �= 0 for all u ∈ D(A),
‖u‖ ≥ r , and

〈A(u),u〉 ≥ 0 ∀u ∈D(A). (6.10)

Let N :X �� X∗ be a bounded demicontinuous quasimonotone map such that

〈N(u),u〉
‖u‖

�� ∞ as u ∈D(A),‖u‖ �� ∞. (6.11)

Then the equation A(u)+N(u) = h admits at least one solution u ∈ D(A) for each
h ∈X∗.

Proof. It is not hard to see that considering N−h instead of N , there exists r ′ ≥ r such
that the conditions of Theorem 6.3 hold. �

We close this section by giving a generalization of the Borsuk’s theorem.

Theorem 6.5. Assume thatA :D(A)⊂X �� X∗ is an admissible map of class (S+)0,L
such that D(A) is symmetric with respect to the origin and there exists R > 0 such
that A(−u) = −A(u) for all u ∈ D(A),‖u‖ = R. Then there exists a solution for the
equation A(u)= 0 on BR(0). Moreover, deg(A,BR(0),0) is an odd number whenever
defined.

Proof. Since the approximant Aj is odd on ∂BR(0)∩Fj for all j ∈ Z+, the asser-
tion follows from the Borsuk’s theorem in finite dimensional space (see [12]) and the
definition of deg(A,BR(0),0). �
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