A BOUNDARY VALUE PROBLEM IN THE HYPERBOLIC SPACE

P. AMSTER, G. KEILHAUER, AND M. C. MARIANI

Received 16 December 1999

We consider a nonlinear problem for the mean curvature equation in the hyperbolic space with a Dirichlet boundary data g. We find solutions in a Sobolev space under appropriate conditions on g.

1. Introduction

Let M be the open unit ball in \mathbb{R}^3 of center 0 and let

$$g_{ij}(x) = \frac{4\delta_{ij}}{\left(1 - |x|^2\right)^2} \tag{1.1}$$

be the hyperbolic metric on M. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with smooth boundary $\partial \Omega \in C^{1,1}$, and let (u,v) be the variables in \mathbb{R}^2 . We consider in this paper the Dirichlet problem for a function $X: \overline{\Omega} \to M$ which satisfies the equation of prescribed mean curvature

$$\nabla_{X_u} X_u + \nabla_{X_v} X_v = -2H(X) X_u \wedge X_v \quad \text{in } \Omega,$$

$$X = g \quad \text{on } \partial\Omega.$$
(1.2)

where $H: M \to \mathbb{R}$ is a given continuous function, and $g \in W^{2,p}(\Omega, \mathbb{R}^3)$ for $1 , with <math>\|g\|_{\infty} < 1$.

In the above equation X_u, X_v , and $X_u \wedge X_v : \Omega \to TM$ are the vector fields given by

$$X_{u}(u,v) = \sum_{k=1}^{3} \frac{\partial X_{k}}{\partial u} \Big|_{(u,v)} \frac{\partial}{\partial x_{k}} \Big|_{X(u,v)}, \qquad X_{v}(u,v) = \sum_{k=1}^{3} \frac{\partial X_{k}}{\partial v} \Big|_{(u,v)} \frac{\partial}{\partial x_{k}} \Big|_{X(u,v)},$$

$$X_{u} \wedge X_{v}(u,v) = \sum_{k=1}^{3} \left(X_{u} \wedge X_{v} \right)^{k} (u,v) \frac{\partial}{\partial x_{k}} \Big|_{X(u,v)},$$

$$(1.3)$$

Copyright © 1999 Hindawi Publishing Corporation Abstract and Applied Analysis 4:4 (1999) 249–253 1991 Mathematics Subject Classification: 35J65, 53A10

URL: http://aaa.hindawi.com/volume-4/S1085337599000251.html

where

$$(X_{u} \wedge X_{v})^{1}(u, v) = \varphi^{1/2} (X(u, v)) \left(\frac{\partial X_{2}}{\partial u} \Big|_{(u, v)} \frac{\partial X_{3}}{\partial v} \Big|_{(u, v)} - \frac{\partial X_{3}}{\partial u} \Big|_{(u, v)} \frac{\partial X_{2}}{\partial v} \Big|_{(u, v)} \right),$$

$$(X_{u} \wedge X_{v})^{2}(u, v) = \varphi^{1/2} (X(u, v)) \left(\frac{\partial X_{3}}{\partial u} \Big|_{(u, v)} \frac{\partial X_{1}}{\partial v} \Big|_{(u, v)} - \frac{\partial X_{1}}{\partial u} \Big|_{(u, v)} \frac{\partial X_{3}}{\partial v} \Big|_{(u, v)} \right),$$

$$(X_{u} \wedge X_{v})^{3}(u, v) = \varphi^{1/2} (X(u, v)) \left(\frac{\partial X_{1}}{\partial u} \Big|_{(u, v)} \frac{\partial X_{2}}{\partial v} \Big|_{(u, v)} - \frac{\partial X_{2}}{\partial u} \Big|_{(u, v)} \frac{\partial X_{1}}{\partial v} \Big|_{(u, v)} \right),$$

$$(1.4)$$

for $\varphi(x) = 4/(1-|x|^2)^2$.

We remark that if X_u and X_v are linearly independent, then $X(\Omega) \subset M$ is an imbedded submanifold and $X_u \wedge X_v(u,v)$ is the only vector orthogonal to $X(\Omega)$ at X(u,v) that satisfies, for any $z = \sum_{k=1}^3 z^k (\partial/\partial x_k)|_{X(u,v)}$

$$\langle z, X_u \wedge X_v(u, v) \rangle = \omega(X(u, v)) (z, X_u(u, v), X_v(u, v)), \tag{1.5}$$

where ω is the volume element of (M, \langle , \rangle) , namely

$$\omega = \sqrt{\det(g_{ij})} dx_1 \wedge dx_2 \wedge dx_3 = \varphi^{3/2} dx_1 \wedge dx_2 \wedge dx_3. \tag{1.6}$$

If ∇ is the Levi-Civita connection associated to \langle , \rangle and $\Gamma^k_{ij}: M \to \mathbb{R}$ are the Christoffel symbols

$$\Gamma_{ij}^{k} = \sum_{r=1}^{3} \frac{g^{rk}}{2} \left(\frac{\partial g_{rj}}{\partial x_i} + \frac{\partial g_{ri}}{\partial x_j} - \frac{\partial g_{ij}}{\partial x_r} \right)$$
(1.7)

with $(g^{ij}) = (g_{ij})^{-1}$, then a simple computation shows that

$$\Gamma_{ij}^{i}(x) = \Gamma_{ji}^{i}(x) = \frac{2x_{j}}{1 - |x|^{2}}, \qquad \Gamma_{ii}^{k}(x) = \begin{cases} -\frac{2x_{k}}{1 - |x|^{2}} & \text{if } k \neq i, \\ 0 & \text{otherwise.} \end{cases}$$
(1.8)

Let $E, F, G: \Omega \to \mathbb{R}$ be the coefficients of the first fundamental form, and the unit normal $N: \Omega \to TM$ be given by

$$N = \frac{1}{\sqrt{EG - F^2}} X_u \wedge X_v \tag{1.9}$$

which is orthogonal to the tangent space $\{X(\Omega)\}_x$ for any x = X(u, v). Then, if $H : \Omega \to \mathbb{R}$ is the mean curvature of $X(\Omega)$ we obtain

$$\left\langle N, \frac{G}{EG - F^2} \nabla_{X_u} X_u + \frac{E}{EG - F^2} \nabla_{X_v} X_v - 2 \frac{F}{EG - F^2} \nabla_{X_u} X_v \right\rangle = -2H.$$
 (1.10)

In particular, if X is isothermal, that is, E = G, F = 0, then $\langle \nabla_{X_u} X_u + \nabla_{X_v} X_v, X_u \rangle = 0 = \langle \nabla_{X_u} X_u + \nabla_{X_v} X_v, X_v \rangle$ and consequently

$$\nabla_{X_u} X_u + \nabla_{X_v} X_v = -2HX_u \wedge X_v. \tag{1.11}$$

Thus, (1.11) is the equation of prescribed mean curvature for an imbedded submanifold of M.

2. A Dirichlet problem for (1.11)

With the notations of the previous section, we consider the Dirichlet problem (1.2). The equation of prescribed mean curvature for a surface in \mathbb{R}^3 has been studied for constant H in [3, 5], and for H nonconstant in [1, 2].

Without loss of generality, we may assume that g is harmonic in Ω . Our existence result reads as follows.

THEOREM 2.1. Let c_0 and c_1 be some positive constants to be specified. Then (1.2) is solvable for any $g \in W^{2,p}(\Omega, \mathbb{R}^3)$ harmonic such that

$$||g||_{\infty} + 2\left(c_1 + \sqrt{c_1(c_1 + c_0)}\right) ||\operatorname{grad}(g)||_{2p} \le 1.$$
 (2.1)

In the proof of Theorem 2.1, we ignore the canonical isomorphism $\partial/\partial x_k|_{X(u,v)} \to e_k$ (with $\{e_k\}$ the usual basis of \mathbb{R}^3), and considering $X_u, X_v \in \mathbb{R}^3$ we may write (1.2) as a system

$$-\Delta X_k = \psi_k(X, X_u, X_v) \quad \text{in } \Omega,$$

$$X_k = g_k \quad \text{on } \partial \Omega$$
(2.2)

with $\psi_k(X, X_u, X_v) = 2H(X)(X_u \wedge X_v)^k + \sum_{i,j} \Gamma_{ij}^k(X) \operatorname{grad}(X_i) \operatorname{grad}(X_j), 1 \le k \le 3$. For fixed $\overline{X} \in W_0^{1,2p}(\Omega, \mathbb{R}^3)$ such that $\|g + \overline{X}\|_{\infty} < 1$, we define $X = T\overline{X}$ as the unique solution in $W^{2,p}(\Omega, \mathbb{R}^3) \hookrightarrow W^{1,2p}(\Omega, \mathbb{R}^3)$ of the linear problem

$$-\Delta X_k = \psi_k \left(\overline{X} + g, (\overline{X} + g)_u, (\overline{X} + g)_v \right) \quad \text{in } \Omega,$$

$$X_k = 0 \quad \text{on } \partial \Omega.$$
(2.3)

Then, for $B = \{X \in W_0^{1,2p}(\Omega,\mathbb{R}^3) \mid \|g + X\|_{\infty} < 1\}$ the operator $T: B \to W_0^{1,2p}(\Omega,\mathbb{R}^3)$ is well defined and a strong solution of (1.2) in $W^{2,p}$ can be regarded as Y = g + X, where X is a fixed point of T. By the usual a priori bounds for the Laplacian and the compactness of the imbedding $W^{2,p}(\Omega,\mathbb{R}^3) \hookrightarrow W_0^{1,2p}(\Omega,\mathbb{R}^3)$ we get the following lemma.

LEMMA 2.2. $T: B \to W_0^{1,2p}(\Omega, \mathbb{R}^3)$ is continuous. Furthermore, if

$$C_{R_1,R_2} = \left\{ X \in W_0^{1,2p} \left(\Omega, \mathbb{R}^3 \right) \mid \|g + X\|_{\infty} \le R_1, \|\operatorname{grad}(X)\|_{2p} \le R_2 \right\}$$
 (2.4)

with $R_1 < 1$, then $T(C_{R_1,R_2})$ is precompact.

Proof. For $X = T(\overline{X})$, $Y = T(\overline{Y})$, as X = Y on $\partial \Omega$ we obtain that

$$\|\operatorname{grad}(X_{k} - Y_{k})\|_{2p} \leq c \|\Delta(X_{k} - Y_{k})\|_{p}$$

$$= c \|\psi_{k}(\overline{X} + g, (\overline{X} + g)_{u}, (\overline{X} + g)_{v}) - \psi_{k}(\overline{Y} + g, (\overline{Y} + g)_{u}, (\overline{Y} + g)_{v})\|_{p}$$
(2.5)

and the continuity of T follows. On the other hand, if $\overline{X} \in C_{R_1,R_2}$, then

$$\|\operatorname{grad}(X_{k})\|_{2p} \leq c \|\Delta X_{k}\|_{p} = c \|\psi_{k}(\overline{X}+g,(\overline{X}+g)_{u},(\overline{X}+g)_{v})\|_{p}$$

$$\leq \overline{c}(R_{2}+\|\operatorname{grad}(g)\|_{2p})^{2}$$
(2.6)

for some constant \overline{c} and the result follows.

Remark 2.3. By definition of ψ_k , it is clear that $\overline{c} \le c_1/(1-R_1)$ for some constant c_1 .

Proof of Theorem 2.1. With the notation of the previous lemma, by Schauder fixed point theorem, it suffices to see that C_{R_1,R_2} is T-invariant for some R_1 , R_2 . From the previous computations, we have

$$\|\operatorname{grad}(X)\|_{2p} \le \frac{c_1}{1 - R_1} (R_2 + \|\operatorname{grad}(g)\|_{2p})^2.$$
 (2.7)

Moreover, by Poincaré's inequality

$$||g + X||_{\infty} \le ||g||_{\infty} + c_0 ||\operatorname{grad}(X)||_{2p}.$$
 (2.8)

Thus, a sufficient condition for obtaining $T(C_{R_1,R_2}) \subset C_{R_1,R_2}$ is that

$$\frac{c_1}{1 - R_1} \left(R_2 + \|\operatorname{grad}(g)\|_{2p} \right)^2 \le R_2, \qquad \|g\|_{\infty} + c_0 R_2 \le R_1. \tag{2.9}$$

For R small enough we may fix $R_1 = ||g||_{\infty} + c_0 R < 1$, and then the theorem is proved

$$c_1(R + \|\operatorname{grad}(g)\|_{2p})^2 \le R(1 - \|g\|_{\infty} - c_0 R)$$
 (2.10)

for some R > 0. As last condition is equivalent to our hypothesis, the result holds. \Box

3. Regularity of the solutions of problem (1.2)

In this section, we state the following regularity result.

THEOREM 3.1. Let $X \in W^{1,2p}(\Omega, \mathbb{R}^3)$ be a solution of (1.2). Then

- (a) if $g \in W^{2,q}(\Omega, \mathbb{R}^3)$ for some q > 1, then $X \in W^{2,q}(\Omega, \mathbb{R}^3)$, (b) if $\partial \Omega \in C^{k+2,\alpha}$, $H \in C^{k,\alpha}(\mathbb{R}^3, \mathbb{R})$, $g \in C^{k+2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ for some $0 < \alpha < 1$, k > 0, then $X \in C^{k+2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$.

Proof. (a) Let $\Delta X = f \in L^p$. If $p \ge q$, let Z be the unique solution in $W^{2,q}$ of the problem $\Delta Z = f$, $Z|_{\partial\Omega} = g$. As $\Delta(X - Z) = 0$ and X = Z on $\partial\Omega$ the result follows. On the other hand, if p < q, we obtain in the same way that $X \in W^{2,p}$. For 2this implies that $X \in W^{1,2\hat{q}}$ and the result follows.

Now we consider the case p < 2, q. Let $p_0 = p$ and define

$$p_{n+1} = \begin{cases} \frac{p_n^*}{2} & \text{if } p_n < 2, q, \\ q & \text{otherwise,} \end{cases}$$
 (3.1)

where p_n^* is the critical Sobolev exponent $2p_n/(2-p_n)$. Then $\{p_n\}$ is bounded, and $X \in W^{1,2p_n}$ for every n. If $p_n < 2, q$ for every n, then p_n is increasing and taking $r = \lim_{n \to \infty} p_n$, we obtain that r/(2-r) = r, a contradiction. Hence, $p_n \ge q$ or $q > p_n \ge 2$ for some n, and the proof is complete.

(b) Case k = 0: by part (a), choosing $q > 2/(1-\alpha)$ we obtain that $X \in W^{2,q} \hookrightarrow$ $C^{1,\alpha}(\overline{\Omega},\mathbb{R}^3)$. Then $\Delta X = f \in C^{\alpha}(\overline{\Omega},\mathbb{R}^3)$. By [4, Theorem 6.14] the equation $\Delta Z = f$ in Ω , Z = g in $\partial \Omega$ is uniquely solvable in $C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$, and the result follows from the uniqueness in [4, Theorem 9.15].

The general case is now immediate, from [4, Theorem 6.19].

Acknowledgement

The authors thank Professor Jean-Pierre Gossez and the referee for their fruitful remarks.

References

- [1] P. Amster and M. C. Mariani, The prescribed mean curvature equation with Dirichlet conditions, to appear in Nonlinear Anal.
- [2] P. Amster, M. C. Mariani, and D. F. Rial, Existence and uniqueness of H-system's solutions with Dirichlet conditions, Nonlinear Anal. 42 (2000), no. 4, Ser. A: Theory Methods, 673-677. CMP 1 776 298. Zbl 991.65482.
- H. Brézis and J.-M. Coron, Multiple solutions of H-systems and Rellich's conjecture, Comm. Pure Appl. Math. 37 (1984), no. 2, 149–187. MR 85i:53010. Zbl 537.49022.
- [4] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Fundamental Principles of Mathematical Sciences, vol. 224, Springer-Verlag, Berlin, 1983. MR 86c:35035. Zbl 562.35001.
- [5] S. Hildebrandt, On the Plateau problem for surfaces of constant mean curvature, Comm. Pure Appl. Math. 23 (1970), 97–114. MR 41#932. Zbl 181.38703.
- P. AMSTER: DEPARTAMENTO DE MATEMÁTICA, FACULTAD DE CIENCIAS EXACTAS Y NATURALES, Universidad de Buenos Aires Pabellón I, Ciudad Universitaria, 1428, Buenos Aires, ARGENTINA

E-mail address: pamster@dm.uba.ar

G. KEILHAUER: DEPARTAMENTO DE MATEMÁTICA, FACULTAD DE CIENCIAS EXACTAS Y NATU-RALES, UNIVERSIDAD DE BUENOS AIRES PABELLÓN I, CIUDAD UNIVERSITARIA, 1428, BUENOS AIRES, ARGENTINA

E-mail address: wkeilh@dm.uba.ar

M. C. Mariani: Departamento de Matemática, Facultad de Ciencias Exactas y Natu-RALES, UNIVERSIDAD DE BUENOS AIRES PABELLÓN I, CIUDAD UNIVERSITARIA, 1428, BUENOS AIRES, ARGENTINA

E-mail address: mcmarian@dm.uba.ar