ON MODULI OF k-CONVEXITY
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We establish the continuity of some moduli of k-convexity. Let X be a Banach space.
We denote by X* the dual space of X and by By the unit ball of X. Several moduli of
convexity for the norm of X have been defined; the last two definitions in the following
are valid for spaces having dimension > k:
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Evidently, by subtracting the first column from the other columns, the determinant can
be replaced by
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Also A(xy,...,xx+1) can be thought of as the “volume” of the convex hull of xi, ..
Xi+1 since that is the case in Euclidean spaces.
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X is called uniformly convex if §x(e) > O for € > 0 and k-uniformly convex if
8§f) (¢) > O for e > 0. Note that §x (¢) = (Sg(l)(e); so 1-uniform convexity coincides with
uniform convexity. Lin [8] proved that Agl(() (¢) > 0 for € > 0 is equivalent to k-uniform
convexity. Guraril [5] proved that §x (€) is continuous on [0, 2) and there exist spaces
of which 6x(€) =0 for 0 < e <2 and §x(2) = 1. The continuity problem of Sg‘) was

mentioned in Kirk [6]. Let ugﬁ) =sup{A(x1,...,Xk+1) : X1, ..., Xk+1 € Bx}. Note that

u,g(l) = 2. In this paper, we prove that Sg() (e) is continuous on [O, ,uglg)). It is quite

evident that A()?) (e) satisty the Lipschitz condition with constant 1.

Definition 1. Let k > 1 and 0 < a < b < oo. A function f(€) on (a,b) is called
k-convex if

k
f((,\eg/"+(1—x)e}/") )gxf(ez)+(1—x)f(a) )
for every €1, €2 € (a,b),0 <A < 1.
Obviously 1-convexity is simply the ordinary convexity.

LEMMA 2. Let 0 < a < b < oo and let f be a nondecreasing k-convex function on
(a,b) with M = supa<x<y<b(f(y) — f(x)) <oo. Let €1 < €3, €1, €3 € (a,b). Then

- M
fle)— f(er) P E— 5)
€€ k(e " —€,")e
for every €1 < ¢ < €.
Proof. Let z(x), €1 < x < €3 be the function whose graph is defined by
k
X = (Ae;/k-l—(l—)n)e]l/k)
0<ic<l. (6)
y=xrf(e2)+(1—1) f(er)
By direct computations, we have
Jn = fla)- 7] < - ™
- 1/k  1/k 1/k 1kyk—1 = 1k _1/ky 1-1/k"
k(ey =" ) (rey + (1= 20¢) ) k(e =€/ )e;
If €1 < ¢ < e, then by the k-convexity of f and the mean-value theorem,
fO-fle) _z@—zle) _, M o
_ = _ =) = ek (®)
c—€l c—€l k(e  —€,"")e O

The inequality in the following lemma is a consequence of a more general result
proved in Bernal-Sullivan [1].
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LEmMA 3. Let X be a Banach space and x1, ..., xx4+1 € X. Then
1
A(xl, ...,xk+1) < Ekkﬂ”xz—xl H ||xk+1 — X1 H )
Proof. Hadamard inequality says that if ry, 72, ..., r¢ are the rows (or columns) of a

k x k matrix, then

det (1, r2, o mi) < iy 2y - (10)
Here || - ||» denotes the Euclidean norm in R¥. Since the Euclidean norm of the jth
column of the determinant in (3) is < k!/2||x j—1—x1ll, the inequality follows. O

The inequality in the next theorem for the case k = 1 improves the one obtained
in [5]. The general idea is similar to that in Goebel [3]. However, the reader should be
aware that the assertion of Lemma 1 in that paper (that §(¢) is convex) is incorrect;
a counterexample can be found in [7] or [4].

THEOREM 4. Let X be a Banach space. Then

5% (0 =3y (e1) _ 1

o KA

Y

forevery) <€) <c<e€y < ;Lgf).

Proof. For simplicity, in the following we will consider kX = 2 and will indicate how
to generalize to general k. Note that if A(xy,x2,x3) > 0, then x, —x; and x3 —x; are
linearly independent.

For unit vectors u, usy, u3y, and usp in X, with {us1,u31} linearly independent,
consider the set

N(u,uz1,u3i, uz;€) = {(X1,X2,x3) € X7 i xy+x2+x3 = Au, xp — x| = Aoz,
X3 —X] = A31U31, X3 — X2 = A32U32

for some A, A1, A31, 432 > 0 and A(x1,x2,x3) > e},

(12)
and define
S(u,uzl,u31,u32;e) =inf{1—”xl+);—2+x3” : (xl,xz,x3) € N(u,u21,u31,u32;e) .
(13)

Obviously, 6(u, ua1, u31,u32; €) is nondecreasing and has values in [0, 1].
If (x1,2x2,x3) € N(u,uz1,u31,u3;€1), (y1,¥2,¥3) € N(u,uz1,u31,u32; €2), and
Xi+xo+x3=2Au, Xp—X|=~A1U2l, X3—X|=DA31U3], X3—X2=A3U3),

Yi+y»+y3=ou, y2—y1=021421, Y3—Y1 =0Q31U3], Y3— Y2 =Q32U32
(14)
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for some A, A, &, a;; > 0, then by linear independence of {u>1, u31}, there exists ¢ > 0
such that
a1 =CcAal, @31 =CA3l, @32 =CA3. (15)
Indeed, Azzu3z = x3 —x2 = (x3 —x1) — (x2 — X1) = Az1u31 — A21u21 and azuzy =
o31u31 — g2 imply
(a32h31 — A3p031 )uz1 — (@32r21 — A32021 Juz =0 (16)

from which it follows that a31 /A31 = a32/A30 = 021 /A2
Let

fi(uar)  fi(uzi)

fa(uat)  fa(uzi)

Then A(x1, x2,x3) = A21A31C (u21, u31) = €1 and A(y1, y2,¥3) = 221431 C (21, u31)
> €.
ForO<¢ <l,letz;=¢xi+(1—2¢)yi, i =1,2,3. Then
2—z21 = (Cha1+ (1 =8)char)uar = (£ + (1 —¢)e)Aatuzi,
z3—2z1 = (£ +(1=¢)c)Aziusi,
3—02= (C+(1_{)C))¥32M32, (18)
zZi+z+z3= A+ 10— a)u,

C(uzl,u31)=sup{ lfl,fzeBx*}- a7

2
Az1,22,23) = (¢ +( —4“)0)2)»21)»31(3(1421,”31) > <§€11/2+(1 —§)621/2) ,

i |21+ 22+ 23] o I (x1 422 4+23) + (1= (y1 +y2+3) |

3 3
11— 1¢Au+(1—&)aull
3
(-0 )
3
A o
:;(1—§>+(1—g)<1—§)
=§<1— Hx1+x2+x3||>+(1_§)<1_ ||)’1+)72+Y3||>.
3 3
Hence
2
8( .zt uzt,uzs (¢6, +(1- )6y
(u Uz, U3, U3 (Cél (1-2)e, ) 20)
< ¢8(u,uar, uzr, uzz; €1) +(1—2)8 (u, uar, uzy, uz; €2).
Since
5% (e) =inf {8(u, uz1,uz1,uzi€) : ull = |uat] = |usi | = |uz| = 1. 21

{uzl, U3 } linearly independent},



Teck-Cheong Lim 247

and the inequality in Lemma 2 is preserved under passing to infimum, inequality (11)
for k = 2 follows.

For general k, we have (szrl) + 1 unit vectors u, usg, ... and the proof is similar to
the one above. O

COROLLARY 5. Let X be a Banach space. Then 8;? (€) is continuous on [0, u(k)).

X
Proof. Take ||x1|| = 1and x», ..., xx41 inasmall ball centered at x. Then, by Lemma 3,
A(x1,...,Xk4+1) is small. Since 1 — ||x;+---+xx411|/(k+ 1) is close to 0, we see that

85?) (¢) is continuous at 0.

Continuity of Sg() (e) on (0, Mgﬁ)) follows immediately from the inequality (11). O
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