AN INVERSE PROBLEM FOR EVOLUTION
INCLUSIONS

BUI AN TON
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An inverse problem, the determination of the shape and a convective coefficient
on a part of the boundary from partial measurements of the solution, is studied
using 2-person optimal control techniques.

1. Introduction

LetH, ¥, U;; j = 1,..., N be Hilbert spaces and let ¢ be a lower semi-continuous
(Ls.c.) function from H x Hﬁ-\il U; into R* with ¢(-;u) convex on H.
Consider the initial-value problem

Y +0(y;u)+ f(t,y;u)30 on(0,T), ¥(0) = yo. (1.1)

With some conditions on ¢ and on f, the set R(u) of all “strong” solutions of
(1.1) is nonempty. Let f; be mappings of L*(0, T;9€;) x U into R* and associate
with (1.1) the cost functionals

T
]j(y;u):j fi(y(s)su)ds, j=1,...,N, (1.2)
0

with D(¢(-, 1)) C 3, for all u € U = [T}, U;.

The existence of an open loop of (1.1), (1.2) with ¢ independent of the con-
trol u, has been established in Ton [7]. With optimal shape design and with in-
verse problems in mind, we will consider the case when ¢ depends on the control
u as it appears in the top order term of the partial differential operators involved
in the problems.

Optimal design of domains has been investigated by Barbu and Friedman [1],
Canadas et al. [2], Gunzburger and Kim [3], Pironneau [6], and others. Inverse
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problems have been studied by Canadas et al. [2], Lenhart et al. [4], Lenhart and
Wilson [5], and others.

In contrast with all the cited works where a single cost functional is involved,
we will consider the N-person optimal control approach. It is well known that
for N-control, open and closed loops are two different notions. In this paper, the
existence of an open loop of (1.1), (1.2) is established in Section 3, that is, there
exists @ € U such that

]j(j/;ﬂjfl, ﬁj) S]j()/;ﬂjﬁ,vj‘), ‘v’ye?]i(ﬂjﬁ,vj), VVj S Uj; j= 1,...,N, (13)

where Uj are given compact convex subsets of the control spaces AU; and 7; is
the projection of U onto [T, 4 Wk
With a cost functional f; defined by

[0 =1y60-hED 0 )y (14)

where Q) is a proper subset of the domain and where k is a measurement of the
solution y of (1.1) in the subdomain Q, then (1.1), (1.2) becomes an inverse
problem.

Applications to parabolic inequalities are carried out in Section 4 and the no-
tation and the main assumptions of the paper are given in Section 2.

2. Notation and assumptions

Let H, #;,U;; j = 1,..., N be Hilbert spaces. The norm in H is denoted by || - ||
and (-,-) is the inner product in the space. Throughout, U is a given compact
convex subset of the control space U = HL ;.

Assumption 2.1. Let ¢ be a mapping of H xU into R*. We assume that

(1) for each u € U, D(¢(-;u)) is dense in H;

(2) ¢(y;u) is an Ls.c. function from H x U into R* and is convex on H for
each given u € U;

(3) there exists a positive constant ¢ such that

ciyl’ < o(ysu),  VyeD(p(y;u)), YueU; (2.1)
(4) for each positive constant C,
{y:o(y;u)<C} (2.2)
is a compact convex subset of H for each given u € U;

(5) if u,, — u in U, then

T T
j go(y(s);u)ds:liinj‘ o(y(s);un)ds, Vye ﬂ D(¢(:u))NL*(0, T;H).
0 0 u, €U

(2.3)
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The subdifferential of ¢(y;u) at y is the set

op(y;u)={g:g€H, olx;u)—(y;u) > (g, x—y), VxeD(p(su))}.  (2.4)

It is known that A(y;u) = dp(y;u) is maximal monotone in H. The images of
A(y;u) are closed, convex subsets of H.

Let f(y;u) be a mapping of L*(0, T;H) x WU into L?(0, T;H) satisfying the
following assumption.

Assumption 2.2. We assume that there exists a constant C such that

L sl < COL+lull +o(ysu)) (2.5)
for all y € D(¢(-;u)), all u € AU.
Throughout, the set of solutions of (1.1) is denoted by R(u).

Assumption 2.3. Let f; be mappings of L*(0, T; #;) x W into R*. We assume that
(1) D(¢(su)) C ¥; for all u € Us;
(2) suppose that

p(y"u") +|| (yn),”LZ(O,T;H) <G

(2.6)
u"e U [y u"} — {y,u} inL*(0, T;H)xU,
then
T T
J fj(y;u)dtzlimj fi(y"su™)dt. (2.7)
0 n—=w Jo

3. Open loop control

The main result of this section is the following theorem.

THEOREM 3.1. Let ¢, f be as in Assumptions 2.1 and 2.2, and let f; be continuous
mappings of L*(0, T;9¢;) x U into R*. Suppose that yo € D(¢(-;u)) for allu € U.
Then there exists { 7,01} € {L*(0, T;H)NR(i1)} x U such that

]j(j/;ﬂjﬂ,aj)S]j(}/;ﬂjﬁ,l/j), Vye@i(ﬂja,vj), VVjEUj,j=1,...,N. (31)
Moreover, there exists a positive constant C, independent of u such that
- 2 2
esssup @ (§(0)s8) +[17'[| 2o, + 1A 5 8) o0 13m0
(3.2)
< C{ 1+sup ¢ (yosu) },

uelU
where A(¥;it) is an element of the set 0o(¥; ).

First, we will show that the set R(u) is nonempty.
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THEOREM 3.2. Suppose all the hypotheses of Theorem 3.1 are satisfied. Then for
each given u € U, there exists a solution y of (1.1) with

||y’||i2(O)T;H) + ||A(y;u)||i2(O)T;H) +esssupg(y(t);u) <C{1+ ||u||02u}. (3.3)
The constant C is independent of u and A(y;u) is an element of dp(y;u).
Proof. For a given u € U, the existence of a solution y of (1.1) with
(9.7, Aly;u)} € L(0, T;H) x (L*(0, T; H) ) (3.4)

is known (cf. Yamada [8]).
We will now establish the estimate of Theorem 3.2. We have

(v, 99(ysu)) + |99 (ys ) |+ (f (y510), 9 (y3u)) = 0. (3.5)

With our hypotheses on f, we get

d
—o(y;u)+ ||8g0(y;u)||2 <C{1+ ||u||02u+g0(y(t);u) }. (3.6)
dt

It follows from the Gronwall lemma that

ess[sz{?fp(y(t);u) 110003172 0 ey < CLLF Nl )- (3.7)
te(0,

The different constants C are all independent of u.
With the estimate (2.1), we deduce from (1.1) and from Assumption 2.2 that

1 W50y < CLL+ Nl (3.8)
The theorem is thus proved. O

Set

B = {y : ")’,“U(O,T;H) +supesssup @(y;u) < C(l +sup ||u||ou> } (3.9)
ueU

ueU

Consider the evolution inclusion
Y +0p(y;u)+ f(x;u) 20  on (0,T), y(0) =y, (3.10)

with x € Bc.

In view of Theorem 3.2, inclusion (3.10) has a unique solution which we will
write as y = R(x; u).

Denote by

T
]j(x;y;u)zjo fi(y(s)u)ds, j=1,...,N, (3.11)
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the cost functionals associated with (3.10) and where y = R(x;u) is the unique
solution of (3.10).
Let

4

Y(xuv) = D Ji (% ymuv;), (3.12)
j=1

where y; = R(x;mju, v;).

LemMa 3.3. Suppose all the hypotheses of Theorem 3.1 are satisfied. Then for each
given {x,u} € Bex U, there exists v* € U such that

Y (xu,v*) =d(x;u) = inf {¥(x;u,v) : ve U} (3.13)
Proof. Let {v"} be a minimizing sequence of (3.13) with
d(x;u) <V (su,v") <d(xu)+nl. (3.14)

Since v" € U and U is a compact subset of U, we obtain by taking sub-
sequences that v* — v* in AU. Let Y7 = R(x;mju, v), then from the estimates
of Theorem 3.2 we obtain, by taking subsequences, that

7 O A s ™)

* )/ o 2 2 2 (315)
— {yL7)sx) inL(0, T;H) < (L0, T5 H) )
From the definition of subdifferential, we have
T T
.[ (P(z(t);ﬂf”’v;lk)dt‘f e(yj (s mju Vi) dt
0 ' (3.16)

T
> j (AQ @smuwvit),z—yi*) dt,
0
forallze L*(0, T;H).

It follows from Assumption 2.1 that

T T T
I @ (z(t);mju, v}‘)dt—j go(y}‘(t);nju, v}“) dtzf (Xj,z—y;f(t))dt. (3.17)
0 0 0
Hence
Xi =A(y;f;71ju, v;‘) (3.18)
It is clear that y; = R(x;7ju, v;f) and thus,
N
d(xsu) =Y (xuv*) = Z]f (x5 ) mju, v;f), (3.19)

j=1

).

where y; = R(x;ju, Vi
The lemma is proved. O
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Let
X(u)={v' :¥Y(xsuv) <¥Y(xuv), Vve U} (3.20)

LEmMMA 3.4. Let g; be a continuous mapping of U; into R* and suppose that g; is
1-1. Then there exists a unique ¥ € X (x;u) such that

gj(¥;) =inf {g; (v;‘) v eX(xu)l (3.21)

Proof. The set X(x;u) is nonempty and with our hypothesis on gj, it is clear
that

dj(x;u) =inf {g; (v;‘) v eX(xu)l (3.22)

exists.
Let v7 be a minimizing sequence of the optimization problem (3.22) with

dj(xu) <gj(v) < di(xu)+n!, j=1,..,N, (3.23)

and v" € X (x, u).

Let y}‘ = R(x;mju, vJ’.‘) be the unique solution of (3.10) with controls {7;ju, v]’.’}
and f(x;7ju, v). Then from the estimates of Theorem 3.2, we obtain, by taking
subsequences, that

Ul ONS AGEmw v} — {35 3} in L0, T3H)x (L0, T3H))

(3.24)
Since v" € U, we get by taking subsequences that v — ¥ in AU.
A proof, as in that of Lemma 3.3, shows that
Xi =A@ ), 9= R0, 95). (3.25)
Hence 7 € X (x;u). We now have
gi(¥j) =d;j(x;u) = inf {gj(v;) v eX(xu)). (3.26)
Since g; is 1-1, ¥ is unique. The lemma is proved. O
Let & be the nonlinear mapping of B¢ x U into B¢ x U, defined by
L(xu) = {97}, (3.27)

where 7 is the element of U given by Lemma 3.4 and § = R(x;7ju,¥;) is the
unique solution of (3.10) with control {rm;u, ¥;} and f(x;7;u, ;).

LemMa 3.5. Suppose all the hypotheses of Theorem 3.1 are satisfied. Then &, de-
fined by (3.27), has a fixed point, that is, there exists { j, @t} € B¢ x U such that
Ly, w)={y, u}.
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Proof. (1) We now show that & has a fixed point by applying Schauder’s the-
orem. Since B¢ x U is a compact convex subset of L2(0, T; H) x U and since £
takes B¢ x U into itself, it suffices to show that & is continuous.

(2) Let {x", u"} bein Bcx U and let

y]’f = R(x";mju", flj'.‘), 9" as in Lemma 3.4. (3.28)

Since {x"u"} € B¢ x U and B x U is a compact subset of L2(0, T; H) x A,
there exists a subsequence such that

{x" u", 9"} — {x*u ) in L*(0, T;H) x U x U. (3.29)

From the estimates of Theorem 3.2, we get

U ONLAGE = (5 O} in L0 T3H) X (L0, TS D)
(3.30)
A proof, as in that of Lemma 3.3, shows that
Xi=AQsu), i =R(xSmiut,v)). (3.31)
(3) We now show that u* € X (x*, 9). Since
Llu",x"} = {v", y"), (3.32)
it follows from the definition of & that
Y(x"uhv"h) <Y (xu'v), Vvel,
(3.33)

N N
le'j(x”;y]’-’;nju”, v?) < Z;]j (x”;zg‘;ﬂju”, vi), WveU,
= j=

where z? =R(x"; mju",v;) is the unique solution of (3.10) with controls {7;u",v;}
and f(x"; mu", vj).
Again from the estimates of Theorem 3.2, we deduce as above that

{2}, (), A(Zsu")) — {2, 2, A(zi3u*) ) in L2(0, T H) x (L*(0, T;H)):

J J weak*
(3.34)
It then follows from (3.33) that
N N
Z]j(x*;y;‘;nju*, ;) < Z]f (x*5zj3mutsvy), Yvel, (3.35)
=1 =1

that is,

V(x55u,v) <Y (x*5ut,v), VvelU. (3.36)
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Hence
d(x*,u*) =¥ (x*u’, v) = inf {¥(x55u%,v) :ve U}. (3.37)
Moreover, we have
limg; (v1)=gi(?;), j=L...N. (3.38)
By hypothesis, g; is 1-1 and so ¥, the unique element of X (x*;u*), with
gi(¥j) =inf{g;(v;) :ve X (x"u")}, (3.39)

is in X (x*;u*). It follows that L{x*, u*} = {y*, 7}.
The operator & is continuous and thus, it has a fixed point by Schauder’s
theorem. The lemma is thus proved. O

Proof of Theorem 3.1. Let £ be asin (3.33). Then it follows from Lemma 3.5 that
< has a fixed point, that is, there exists {7, &1} with

LAy, a} ={y,a}. (3.40)
Thus,
V+A(pa)+ f(5;3) =0 on (0,T); y(0) = yp. (3.41)
Moreover,
N N
Z]j(j/;ﬂjﬂ,ﬂj)SZ]j(yj;ﬂjﬁ,Vj), V)/]‘Eg{(ﬂjﬂ,vﬂ, Vv e U. (3.42)
=1 =1
Take v = (7;i1, v;) and we obtain from (3.42) that
Ti (st i) <Jj (yjsmjth vi), - Vy; € R(mjihv)). (3.43)

Repeating the process N times we get the theorem. O

4. Applications

In this section, we give some applications of Theorem 3.1 to parabolic initial
boundary value problems. For simplicity, we take N = 2.

Let G be a bounded open subset of R? with a smooth boundary and let
Q=Gx(0,2), Ir=Gx{2}, 41)

4.1

Q(m) ={(&n:{eG 0<n<u(§))},

where u; is a continuous function of G into [1, 2]. The top of the cylinders Q(u),

Q are
() ={(&ui(&):£€G}, T (4.2)
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Make the change of variable { = 21/u; and set

yen=y(555) = v, 43)
As done in great details in [4, pages 946—948], we get
V2y=VeF(&Gu) Ve Y(E,() +u' FVY - Vuy, (4.4)
where F(&, (;u;) is the matrix
1 0 (g u)u;’
0 1 —{(dgur)u;’ . (4.5)

~{(@gu)uy =C(@qu)uyt V| ur 4w

w(w) =2u7"\ 1+ |V |, (4.6)

4.1. An inverse problem for a nonlinear heat equation. Consider the initial
boundary value problem

Set

y'=Ay=f(y) on Q(u1) x(0,T),
y=0 on 0Q(u;)/Tx(0,T),
dy (4.7)
3. ewf(y) onT(uy)x(0,T),
y(-0) = yo on Q(uy),
where 8 € 0j(r) and j(r) is an Ls.c. convex function from R* to [0, oo].
Let
r 2
Ji (511, u2) =f f |y (& ui(8))| dédt,
076 (4.8)

T 2
]2()/;1/11,142)=J‘0 f0|y—h(£,n>| dE dn di

be the cost functionals associated with (4.7) and let & be the measurement of the
solution y of (4.7) in the sub-region Q.
We denote

Uj={u;: ”uj”Hs(G) <G 1<u(§) <2, 0<uy(§) <C} (4.9)

and let U; = L*(G). It is clear that the U; are compact convex subsets of the space
of controls AU;.
We will take

H=1*Q), ¥, =L*(G), ¥, =1*(Q), QcQ. (4.10)

The main result of this subsection is the following theorem.
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THEOREM 4.1. Let yo be in H}(Q) and let f be a continuous function of y, u with
| f(rsu)| < C{1+]y|+]ul}. (4.11)

Let h be a given function in L*(0, T; L*(Q)) where Q is a proper subset of Q and let
j(r) be an Ls.c. convex function on R with values in [0, +oo]. Then there exists

(3.9} € L(0, TsH' (Q(i1))) N L= (0, T;L7(Q()))

xL2(0, T;L*(Q(in))) x U (412

such that 9 is a solution of the initial boundary value problem (4.7) in Q(i1) x
(0, T); and
J(Pstn, o) < (psin,v2), Vv eUs,

IS N (4.13)
L(pstn, i) <L (x5v1,00), Vv e U,

where x, y are the solutions of (4.7) with controls {vy, iz}, {{11, v2} in Q(v1)x (0, T)
and in Q(91) x (0, T), respectively.

Problems of type (4.7) arise in the study of heat transfer between solids and
gases under nonlinear boundary conditions.

As carried out in [4], we make the change of variable { = 2u;'y and set
y(&,n) =Y(& ). Then (4.7) is transformed into the following problem:

Y -V (F(u)-VY)+u;'FVY-Vu; = f(Y,u) onQx(0,T),
Y=0 ondQ/Tx(0,T),

oY (4.14)
5 eu(um)wp(Y) onTIx(0,T),
Y(,0)=y onQ
with cost functionals
T
Ji(Ysu1,u) =f I |Y(&2)| dEdt, (4.15)
0Ja

L(Ysup,u) = Jj '[Q ‘Y(f, i—t’) —h(¢, n;t)'zdfdndt, (4.16)

where 4 is as in expression (4.6).

Our aim is to find the controls u;, u, so that the solution y of (4.7), if it is
unique, is as close to the measurement 4 in Q as possible.

Let ¢ be the mapping of H x U; x U, into R* given by

%||F(u)VY||iZ(Q)+Ly(u1)u2j(Y)d0, j(Y)eL(D),

+oo0, otherwise,

o(Ysup,up) =

(4.17)
where j(r) is an Ls.c. convex function from R to [0, +oo] with j(0) = 0.
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By abuse of notation, we will write y for Y (&, {,t) when there is no confusion
possible.

LEmMMA 4.2. Let ¢ be as in (4.17). Then ¢ satisfies Assumption 2.1.

Proof. (1) Itis clear that ¢(y;u) is an Ls.c. function from H x U into R* and that
Cr(Q) cD(¢(-,u)) forallue U.
(2) It was shown in [4, pages 949-952] that

| Faorwypazac> ciyl o (4.18)
Q

for all y with F(u)Vy € H, y =0 on 0Q/T.
Since j(r) and u are both positive functions, we get

clyliip g S @ysu), ¥y eD(g). (4.19)

(3) By the Sobolev imbedding theorem, the set

{y:o(y;u)<C} (4.20)

is a compact subset of H = L*(Q).

(4) Suppose that u} — u; in H with ' € U,. Since ! is in Uy, it follows from
the definition of U; and from the Sobolev imbedding theorem that there exists
a subsequence such that u} — u; € H*(G) and in C'(G).

With F(u), u(u) as above, it is trivial to check that we have

T T
lim j o(y(s);ul)ds= f lim ¢(y(s);ul)ds. (4.21)
U

LemMA 4.3. Let ¢ be as in (4.16). Then o¢p(y;u) = -V - (F(u)Vy) = A(y;u) with

D(A(y;u)) = {)’ :V-(F(u)Vy) €H, y=00n0dQ/T,
a)/ . (4.22)
~3, € u(u)uz(y) on }

Proof. For y € H'(Q) with V-F(u)Vy in L*(Q), we know that F(u)Vy-n €
H_1/2’2(8Q).
Let A(y;u) = -V -F(u)Vy with

D(A(y;u)) = {y:yeH, V- (F(u)Vy) €H, y=0o0noQ/T,
(4.23)

d
—%ye,u(ul)uzy on F}.

We now show that A is maximal monotone on H and that A C dg(y;u).
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(1) It is clear that A(-;u) is monotone in H. For y € D(A(;u)) and x €
D(¢(-;u)), we have

d
—(V-F(u)Vy,x-y)=(F(u)Vy,Vx-y)- <£,x—y>, (4.24)
where (-, ) is the pairing between H-">2(T') and its dual.
It follows that
—(V-F(u)Vy,x—y) <o(x;u)—o(y;u). (4.25)

Hence A(y;u) € 0p(y;u).

(2) To show that A(y;u) is maximal monotone, it suffices to show that
I+A(-;u) is onto.

Since () € dj(y) is maximal monotone, its resolvent operator (I +AB)~! is
nonexpansive for all A > 0.

Consider the elliptic boundary value problem

~V-(Fw)Vy)=f onQ  y»=0 ondQT,
9 1 (4.26)
() +A=—yi=p(u)m(+AB)"x  onT.

For (f,x) € L*(Q) x L*(T'), there exists a unique solution y, of (4.17) with
1 € H'(Q). Let L be the mapping of L*(T) into itself given by

L<\/y(u1)u2x> =/u(ur) w2 yalr. (4.27)

(3) We now show that L is a contraction. Let L be as above, then

5
IQF(u)IV(yi—yi)lz— <$(yi—y§),yi—y§> =0. (4.28)

As shown in [4, pages 949 and 952] we have

d
ellyi =23~ {5, =373 ) <0 (4.29)
Thus,
2
C”J’Al _J’)ZL ||12L11(Q) +A7! ” \ p(ur)ua ()’i —)’i> “LZ(F)
<A (u(u)w {(T+AB) %" = (T +AB) ' X7}, yi = 77) (4.30)

< Vit =D [ i -

We have used the nonexpansive property of (I+A8)! in the above estimate. We
know that

|L2(r)'

2 2
a”)’i‘)’f”p(r) < ||)’)1L_)’)2L||H1(Q>’ (4.31)

where a is a positive constant.
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Thus,
2
Aacll =il + [V ,.
(4.32)
< V() Oh =) | o [V =) | -
It follows that
[Vetm i -], sy Ve -2, @)
with
u)uz|| .
y= [l (ur)ua | o <1 (4.34)
Aac+ ||u(ur)uz| o )
Thus, L is a contraction mapping. There exists a unique y, such that
V- (Fu)Vp)=f onQ,
=0 onadQ/T, (4.35)

0
#(“1)“2%”% =u(u)u(I+AB)"'yy onT.

(4) By a standard argument, we get from (4.35) the following estimate:

Il < Cllf - (4.36)

Let A — 0", and we get by taking subsequences that y) — y in (H(Q))weakN
L2(Q). It is clear that y = 0 on dQ/T. On the other hand,

)
oy =) wd (IR = p(w)iai(y), (437)
where f3) is the Yosida approximation of f.
Since
Br(m) €(U+AB) 1), (T+AP)~'yy—y in LA(D), (4.38)
it follows from the maximal monotonicity of 8 that
)
-2y €l ywp(y). (4.39)
n
The lemma is proved. O

Proof of Theorem 4.1. Consider the optimal control problem
Y'-V-(F(u)VY)+g(Y;u)=0 on Qx(0,7T),

Y=0 on (0Q/T')x(0,T),
(4.40)

—%Ye.u(ul)uzﬁ(Y) onTx(0,T),

Y(-0) =y on Q
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with
g(Ysu) =—u'F(u)VY -V, - f(Y,u) (4.41)

and cost functionals

T 2
h(YﬂﬁJQ)ZJ f Y (&, 2:0)|" dé dt,
0JG

T
Jo(Ysu1,u) =I .[
0Ja

It is easy to check that g and ]y, J, satisfy Assumptions 2.2 and 2.3, respectively.
It follows from Lemmas 4.2 and 4.3 and from Theorem 3.1 that there exists an
open loop control i of (4.36) and (4.40), that is, we have

5 (4.42)
dE dn dt.

v(s e ) -hEn.

Y e 12(0, T;HY(Q)) L™ (0, T;LX(Q)),

o , (4.43)
(Y A(Y;2)} € (L*(0, T;L%(Q))),

solution of (4.36) with controls i1. Moreover,

]1(1:[;1?1,1?2) <h ()/;ftlﬂjz), (4.40)

LY, i) < (xu,i2),
for all y € R(iiy,v2), for all v, € Uy, all x € R(uy, i12), and all uy € Uy.

Now set
- - 2

pEm =160 =-7(521) (4.45)

and we get the stated result. O

4.2. Parabolic variational inequalities. Consider the initial boundary value
problem

y=Ay=f(y)  onQ(ur)x(0,T),

y=0 on (0Q/T) x(0,T), (4.46)
Y1) > ux(§) onI'x(0,T),
y(0)=yo on Q
with cost functionals
T
Ji (s w1, 1) =f j Ly (& un();1) | dE,
076 (4.47)

T 2
T (s ) =f0 fﬂly(f,n;t)—h(f,n)l dé dndt,



Bui An Ton 49

where F is the partial measurement of the solution y of (4.46) in the subdomain
Qx(0,T), Uy is as before and

Uy ={v:|Ivllms) <C 0<vonG}. (4.48)

The main result of this subsection is the following theorem.
THEOREM 4.4. Let yo be an element of H'(Q) with
dQ
yo=0 on T yo2v20 onI, VveU,. (4.49)
Lethe L*(0, T;L*(Q)) where Q is a proper subset of Q(uy) for all uy € Uy and
let f be as in Assumption 2.2. Then there exists
(..} € 12(0, TsH' (Q(@))) nL= (0. s L2(Q(@)))

xL2(0, T;L2(Q(in)) ) x U (430

with

Ji(§s i, i) <Ti (ys i v2),

o . (4.51)
Jo (95 tun, dt2) < Jo (o651, 812),

for all solutions y of (4.46) with controls 11, v, all solutions x of (4.42) with controls
uy, iy and all {M], Vz} e Uy x U,.

As before, we make the change of variables { = 24/u; and as in Section 4.1,
we transform (4.42) into a problem in a fixed domain

Y -V-F(w)VY) = f(Y,u)+u'F(u;)VY-Vu; on Qx(0,T),
Y=0 onodQ/Tx(0,T),

(4.52)
Y>u, aeonIx(0,T),
Y(,0)=y onQ
The cost functionals become
T 2
L (Y5u,up) =f f |Y(&2;1)| déadt,
0-¢ (4.53)

T 2
o (Ysu1,ur) =f f dé dndt.
0Ja

Y<f, i—?#) ~h(& n5t)

Set

K(uw)={y:y€L*(0,T;L*(Q)), y > up a.e.onI'x (0, T)}. (4.54)
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Then K (1) is a closed convex subset of L2(0, T;H). Let
1 (7
o(ysu) = EJ‘ f F(u)|Vy* dEd(dt+Ix,)(y), (4.55)
07Q

where I (,,) is the indicator function of the closed convex set K (u,) of L?(0, T; H)
and

D(¢(y;u)) = {y:y €L*(0, T;H'(Q)), y=00n (9Q/T)x(0,T),

(4.56)
y>uy onT'x (0, T)}.
LEmMA 4.5. Let ¢ be as in (4.53). Then ¢ satisfies Assumption 2.1.
Proof. As in the proof of Lemma 4.2, we have
(3 > cllyln Yy € D(glsw). (4.57)
It is clear that
09(y;u) =V (F(u)-Vy) +0Ik(u,)(y). (4.58)

All the other conditions of Assumption 2.1 can be verified without any
difficulty. O

LEmMA 4.6. Suppose all the hypotheses of Theorem 4.4 are satisfied. Then there
exists a solution Y of

Y'+0¢(Y;a) > f(Y,i)+i,"F(i) VY- Vi, Y(0) = yo, (4.59)
{Y, Y, 09(Y;a),-n} € (L*(0, T;H' (Q)) nL™ (0, T; L*(Q)))
(4.60)
x (L2(0, T;12(Q)))* x U.
Moreover,
Ji(Ysin, @) < Ty (s, v2), (4.61)

L (Ysin, i12) < Jo (511, 102,

for all solutions y, x of (4.55) with controls {iiy, v, }, {uy, @iz}, respectively, and for
all {uy,v,} in Up x U,.

Proof. The proof is an immediate consequence of Theorem 3.1 and Lemma 4.5.
]

Proof of Theorem 4.4. Let {Y,i1} be as in Lemma4.6 and set y(&n5t) =
Y (& 25/11). Then $, i is a solution of (4.52) and (4.53). The theorem is proved.
O



Bui An Ton 51

References

(1]
(2]

(3]

(8]

V. Barbu and A. Friedman, Optimal design of domains with free-boundary problems,
SIAM J. Control Optim. 29 (1991), no. 3, 623-637.

G. Canadas, F. Chapel, M. Cuer, and J. Zolésio, Shape interfaces in an inverse problem
related to the wave equation, Inverse Problems: An Interdisciplinary Study (Mont-
pellier, 1986), Adv. Electron. Electron Phys., Suppl., vol. 19, Academic Press, Lon-
don, 1987, pp. 533-551.

M. D. Gunzburger and H. Kim, Existence of an optimal solution of a shape control
problem for the stationary Navier-Stokes equations, SIAM J. Control Optim. 36
(1998), no. 3, 895-909.

S. Lenhart, V. Protopopescu, and J. Yong, Identification of boundary shape and re-
flectivity in a wave equation by optimal control techniques, Differential Integral
Equations 13 (2000), no. 7-9, 941-972.

S. Lenhart and D. G. Wilson, Optimal control of a heat transfer problem with convective
boundary condition, J. Optim. Theory Appl. 79 (1993), no. 3, 581-597.

O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer Series in Compu-
tational Physics, Springer-Verlag, New York, 1984.

B. A. Ton, An open loop equilibrium strategy for quasi-variational inequalities and for
constrained non-cooperative games, Numer. Funct. Anal. Optim. 17 (1996), no. 9-
10, 1053-1091.

Y. Yamada, On evolution equations generated by subdifferential operators, J. Fac. Sci.
Univ. Tokyo Sect. IA Math. 23 (1976), no. 3, 491-515.

Bur AN ToN: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VAN-
COUVER, BC, CanaADA V6T 172
E-mail address: bui@math.ubc.ca


mailto:bui@math.ubc.ca

