ONE-SIDED RESONANCE FOR QUASILINEAR
PROBLEMS WITH ASYMMETRIC NONLINEARITIES

KANISHKA PERERA

Received 22 October 2001

1. Introduction

We consider the quasilinear elliptic boundary value problem,
~Apu = (0) (W) o () (W) T fou), ue WP(Q), (1.1)

where Q) is a bounded domain in R", n > 1, Ayu = div(|VulP=2Vu) is the p-
Laplacian, 1 < p < oo, u* = max{+u,0}, ax € L*(Q), and f is a Carathéodory
function on Q xR satisfying a growth condition,

|fGe )] <qV )P T + W (x)P™, (1.2)

with 1 < g < pand V, W € LP(Q). We assume that (1.1) is resonant from one
side in the sense that either

M<as(x) <A —¢ (1.3)
or
Aite<an(x) <A, (1.4)

for two consecutive variational eigenvalues, A; < Aj1; of ~A, on WJ’P (Q), and
some ¢ > 0 (see Section 2 for the definition of the variational spectrum).

The special case where o, (x) = a_(x) = A; and g = 1 was recently studied by
Arcoya and Orsina [1], Bouchala and Drabek [3], and Drabek and Robinson [8]
(see also Cuesta et al. [6] and Dancer and Perera [7]). In the present paper, we
prove a single existence theorem for the general case that includes all their results
and much more.
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54  One-sided resonance

Denote by N the set of nontrivial solutions of the asymptotic problem
~Apu= o () ()P () ()P, ue wyt(Q), (1.5)

and set
F(x,t):= jtf(x, s)ds, H(x,t):= pF(x,t)—tf(x,1t). (1.6)
0

Our main result is the following theorem.

THEOREM 1.1. Problem (1.1) has a solution in the following cases:
(i) equation (1.3) holds and [, H(x,u;) — +oo,
(ii) equation (1.4) holds and fQH(x, uj) — —oo for every sequence (u;) in
W(:’P(Q) such that ||u;|| — oo and u;j/||u;|| converges to some element of
N. In particular, (1.1) is solvable when (1.3) or (1.4) holds and N is empty.

As is usually the case in resonance problems, the main difficulty here is the
lack of compactness of the associated variational functional, which we will over-
come by constructing a sequence of approximating nonresonance problems,
finding approximate solutions for them using linking and min-max type argu-
ments, and passing to the limit (see Rabinowitz [10] for standard details of the
variational theory). But first we give some corollaries and deduce the results of
[1, 3, 8]. In what follows, (uj) is as in the theorem, that is, pj = lujll = oo and
vj:=uj/pj—veN.

First, we give simple pointwise assumptions on H that imply the limits in
the theorem.

CoROLLARY 1.2. Problem (1.1) has a solution in the following cases:
(i) equation (1.3) holds, H(x,t) — +co a.e. as |t| — oo, and H(x,t) > —C(x),
(ii) equation (1.4) holds, H(x,t) — —co a.e. as |t| — oo, and H(x,t) < C(x)
for some C € L}(Q).

Note that this corollary makes no reference to N.

Proof. 1f (i) holds, then H(x,u;j(x)) = H(x,pjvj(x)) — +oo for a.e. x such that
v(x) #0and H(x, uj(x)) > -C(x), so

jH(x,uj)zf H(x,uj)—J‘ C(x) — +oo (1.7)
Q V#0 v=0

by Fatou’s lemma. Similarly, fQ H(x,u;) — —oo if (ii) holds. O

Note that the above argument goes through as long as the limits in (i) and (ii)
hold on subsets of {x € Q : v(x) # 0} with positive measure. Now, taking w = v*
in

J [Vv|P2Vy.Vw = I [oc+(x)(v+)p71 —(x,(x)(v_)Pfl] w (1.8)
Q Q
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gives

/n
V(1" =L2 o () (v)” < flae | v 150 (2)”

<ol S v I ()™,

(1.9)

where Q. = {x € Q : v(x) = 0}, p* = np/(n—p) is the critical Sobolev expo-
nent, S is the best constant for the embedding WS’P (Q) < LP"(Q), and p is the
Lebesgue measure in R". So

_I\"P
() 2 (Slleell )™ (1.10)
and hence

p({xe Qv =0}) <p(@) =8P (Jloce |17 + [l [| 7). (1.11)

foe)

Thus, we have the following corollary.

CoROLLARY 1.3. Problem (1.1) has a solution in the following cases:

(i) equation (1.3) holds, H(x,t) — +oo in Q' as [t| — oo, and H(x,t) >
-C(x),

(ii) equation (1.4) holds, H(x,t) — —oo in () as |t| — oo, and H(x,t) < C(x)
for some Q' C Q with u(Q) > u(Q) = S"P (las 227 + la_]|22"?) and C €
LI(Q).

Similar conditions on H were recently used by Furtado and Silva [9] in the
semilinear case p = 2.
Next, note that

H,(x)(v'(x))1+H_(x) (v (x))1

H s Uj H > Uj
< liminf(x+](x)) <limsup w (1.12)
Pj P

<H.(x)(v'(x)) T+ H-(x) (v"(x))",

where
. cH(xt) I (x,t)
Hi(x)_hglilgf T Hi(x)—htrgis;p T (1.13)
Moreover,
H(x, u; DW )1 y;
| (xuq](x))lS(p+q)v(x)p_qlvj(x)|q+(p+) 2 1] RPN

gq-1
J j
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by (1.2), so it follows that

(%, “J)

Pj

[oH (x, “J) J‘

j H,(v")"+H_(v")?<liminf 2———~ JaHl
Q

(1.15)
<limsup =*———-—~ Hy(vH1"+H_(v)™.

Thus we have the following corollary.

COROLLARY 1.4. Problem (1.1) has a solution in the following cases:
(i) equation (1.3) holds and f0ﬂ+(v+)q +H (v7)1>0forallveN,
(ii) equation (1.4) holds and fQ H,(v")1+H_(v7)i< 0 forallveN.

When a (x) = a_(x) =1, and g = 1 this reduces to the result of Bouchala and
Drabek [3].
Finally, we note that if

tffg; 2 _>f:t(x) a.e.ast — oo, (1.16)
then
1 ("[sfxs) 2 fi(x) M
It [t L [ R )] s sds+—— . (1.17)
and hence

so Corollary 1.4 implies the following corollary.

CoROLLARY 1.5. Problem (1.1) has a solution in the following cases:
(i) equation (1.3) holds and fQ fr(vH)1+ fo(v7)1 >0 forallveN,
(ii) equation (1.4) holds and [, f.(v*)1+ f-(v")1 <0 forall ve N.

This was proved in Arcoya and Orsina [1] and Drébek and Robinson [8] for
the special case a;.(x) = a_(x) =1 and g = 1.
2. Proof of Theorem 1.1

First we recall some facts about the variational spectrum of the p-Laplacian. It
is easily seen from the Lagrange multiplier rule that the eigenvalues of A, on

WS’P (Q) correspond to the critical values of

J(u) = IQ|Vu|P, ueS:={ue wyr(Q):|lull,=1}. (2.1)
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Moreover, J satisfies the Palais-Smale condition (cf. Drabek and Robinson [8]).
Thus, we can define an unbounded sequence of min-max eigenvalues by

A= inf maxJ(u), leN, (2.2)
AeF; ucA
where
%) ={A cS:3a continuous odd surjection h : s — A} (2.3)

and S"! is the unit sphere in R
LEMMA 2.1. A is an eigenvalue of =A, and A} — .

Proof. 1f A; is a regular value of ], then there is an ¢ > 0 and an odd homeomor-
phism 7 : S — S such that #( Jh+e) € Ji¢ by [2, Theorem 2.5] (the standard first
deformation lemma is not sufficient because the manifold S is not of class C"!
when p < 2). But then taking A € %; with maxJ(A) <A;+eand setting A = n(A),
we get a set in &, for which max] (A) < A—¢, contradicting the definition of A;.
Finally, denoting by y; — oo the usual Ljusternik-Schnirelmann eigenvalues, we
have A; > y; since the genus of each A in & is [, so A; — oo. O

It is not known whether this is a complete list of eigenvalues when p # 2
and n > 2. However, the variational structure provided by this portion of the
spectrum is sufficient to show that the associated functional admits a linking
geometry in the nonresonant case. We only consider (i) as the proof for (ii) is
similar. Let

| (), ifa(0)>A+L,
al(x) = ) ]1 (2.4)
A]+7, ifOCi(x)<A[+7,

so that

m% <)< |al(0-a.(0)] < % (2.5)

and let
D;(u) :f |Vu|p—ai(x)(u*)p—oc];(x)(u’)p—pF(x, u), uc WS’P(Q). (2.6)
Q
First, we show that thereisa u; € W&’P (Q) such that
By (2.2), there is an A € F; such that

J(u)gAz+i., ueA. (2.8)
2j
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Forue AandR >0,

@R =R [ -

Q

ai(x)(tf)P +(x],'(x)(u_)p] —JQpF(x,Ru)

>0 (2.9)
- -1
<=3; +p(IVIZ "R+ IWIETR)
by (1.2), (2.5), and (2.8), so
max®;(Ru) — -0 as R— oo. (2.10)
ueA
Next, let
yz{uEWS’p(Q):j |VulP 2/\”1'[ |u|1’}. (2.11)
Q Q
Forued,
- -1
®; () > ellully - p (IVIEuelf + WLl ), (2.12)
)
; ) —mi p_ P=q.q p-1 _
inf ®;(u) > C:= min [sr p<||V||P i+ Wl r)] > —co. (2.13)
Now use (2.10) to fix R > 0 so large that
max®;(RA) < C, (2.14)
where RA = {Ru:u€A}.
Since A € Fj, there is a continuous odd surjection h : Sl AL Let
T= {go € C(Dl, W(}’P(Q)) L glgn = Rh}, (2.15)

where D' is the unit disk in R! with boundary S!. We claim that RA links ¥
with respect to T, that is,

e(DNYNF #0 Vgel. (2.16)

To see this, first note that the proof is done if 0 € ¢(D'). Otherwise, denoting by
7 the radial projection onto S, A := 7(¢(D"))U-n(p(D")) € F}41, and hence

max J(u) =max](u) > An, (2.17)
uen(p(D')) ueA

so 7(p(D")) N # @, which implies that (D) NS # @.
Now it follows from a deformation argument of Cerami [5] that there is a u;
such that

lui||2; ()|l — 0, |@;(u;)~cj| —0, (2.18)
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where

¢j=inf max ®;(u) >C, (2.19)
¢el uegp(D!)

from which (2.7) follows.

We complete the proof by showing that a subsequence of (u;) converges to
a solution of (1.1). It is easy to see that this is the case if (4;) is bounded, so
suppose that p; := ||u;|| — co. Setting v; := u;/p; and passing to a subsequence,
we may assume that v; — v weakly in W(:’p(Q), strongly in LP(Q)), and a.e. in
Q. Then

jQ|ij|p_2ij~V(vj—v)

S el L2

(vi-v) —0,
(2.20)

and we deduce that v; — v strongly in W(;’p (Q) (cf. Browder [4]). In particular,
V|l = 1, so v # 0. Moreover, for each w € WJ’P(Q), passing to the limit in

D' (u
7( () f |Vv; |22V, - Y

o (2.21)
[< GO ocf-'<x><v;>‘”+%]w
Pj
gives that
j |VV|P‘2VV- Vw-— [m(x)(w)p—l _oc,(x)(v—)l”l]W =0, (2.22)
Q
so v € N. Thus,
D' (uj),u;
M—(D](uj)zj‘ H(x,uj) — +oo, (2.23)
p Q

contradicting (2.7).
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