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1. Introduction

We consider the quasilinear elliptic boundary value problem,

−∆pu = α+(x)
(
u+)p−1−α−(x)

(
u−

)p−1 + f (x,u), u ∈W
1,p
0 (Ω), (1.1)

where Ω is a bounded domain in Rn, n ≥ 1, ∆pu = div(|∇u|p−2∇u) is the p-
Laplacian, 1 < p < ∞, u± = max{±u,0}, α± ∈ L∞(Ω), and f is a Carathéodory
function on Ω×R satisfying a growth condition,

∣∣ f (x, t)
∣∣ ≤ qV(x)p−q|t|q−1 +W(x)p−1, (1.2)

with 1 ≤ q < p and V,W ∈ Lp(Ω). We assume that (1.1) is resonant from one
side in the sense that either

λl ≤ α±(x) ≤ λl+1−ε (1.3)

or

λl +ε ≤ α±(x) ≤ λl+1, (1.4)

for two consecutive variational eigenvalues, λl < λl+1 of −∆p on W
1,p
0 (Ω), and

some ε > 0 (see Section 2 for the definition of the variational spectrum).
The special case where α+(x) = α−(x) ≡ λl and q = 1 was recently studied by

Arcoya and Orsina [1], Bouchala and Drábek [3], and Drábek and Robinson [8]
(see also Cuesta et al. [6] and Dancer and Perera [7]). In the present paper, we
prove a single existence theorem for the general case that includes all their results
and much more.
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Denote by N the set of nontrivial solutions of the asymptotic problem

−∆pu = α+(x)
(
u+)p−1−α−(x)

(
u−

)p−1
, u ∈W

1,p
0 (Ω), (1.5)

and set

F(x, t) :=
∫ t

0
f (x, s)ds, H(x, t) := pF(x, t)− t f (x, t). (1.6)

Our main result is the following theorem.

Theorem 1.1. Problem (1.1) has a solution in the following cases:

(i) equation (1.3) holds and
∫
ΩH(x,uj) → +∞,

(ii) equation (1.4) holds and
∫
ΩH(x,uj) → −∞ for every sequence (uj) in

W
1,p
0 (Ω) such that ‖uj‖ → ∞ and uj/‖uj‖ converges to some element of

N . In particular, (1.1) is solvable when (1.3) or (1.4) holds and N is empty.

As is usually the case in resonance problems, the main difficulty here is the
lack of compactness of the associated variational functional, which we will over-
come by constructing a sequence of approximating nonresonance problems,
finding approximate solutions for them using linking and min-max type argu-
ments, and passing to the limit (see Rabinowitz [10] for standard details of the
variational theory). But first we give some corollaries and deduce the results of
[1, 3, 8]. In what follows, (uj) is as in the theorem, that is, ρj := ‖uj‖ → ∞ and
vj := uj/ρj → v ∈N .

First, we give simple pointwise assumptions on H that imply the limits in
the theorem.

Corollary 1.2. Problem (1.1) has a solution in the following cases:

(i) equation (1.3) holds, H(x, t) → +∞ a.e. as |t| →∞, and H(x, t) ≥ −C(x),
(ii) equation (1.4) holds, H(x, t) → −∞ a.e. as |t| → ∞, and H(x, t) ≤ C(x)

for some C ∈ L1(Ω).

Note that this corollary makes no reference to N .

Proof. If (i) holds, then H(x,uj(x)) = H(x,ρjvj(x)) → +∞ for a.e. x such that
v(x) 	= 0 and H(x,uj(x)) ≥ −C(x), so∫

Ω
H
(
x,uj

) ≥ ∫
v 	=0

H
(
x,uj

)−∫
v=0

C(x) −→ +∞ (1.7)

by Fatou’s lemma. Similarly,
∫
ΩH(x,uj) →−∞ if (ii) holds. �

Note that the above argument goes through as long as the limits in (i) and (ii)
hold on subsets of {x ∈Ω : v(x) 	= 0} with positive measure. Now, taking w = v±

in ∫
Ω
|∇v|p−2∇v ·∇w =

∫
Ω

[
α+(x)

(
v+)p−1−α−(x)

(
v−
)p−1

]
w (1.8)
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gives

∥∥v±∥∥p =
∫
Ω±

α±(x)
(
v±
)p ≤ ∥∥α±∥∥∞

∥∥v±∥∥p
p∗µ

(
Ω±

)p/n
≤ ∥∥α±∥∥∞S

−1
∥∥v±∥∥p

µ
(
Ω±

)p/n
,

(1.9)

where Ω± = {x ∈ Ω : v(x) ≷ 0}, p∗ = np/(n − p) is the critical Sobolev expo-
nent, S is the best constant for the embedding W

1,p
0 (Ω) ↪→ Lp∗(Ω), and µ is the

Lebesgue measure in Rn. So

µ
(
Ω±

) ≥ (
S
∥∥α±∥∥−1

∞
)n/p

, (1.10)

and hence

µ
({
x ∈Ω : v(x) = 0

}) ≤ µ(Ω)−Sn/p
(∥∥α+

∥∥−n/p
∞ +

∥∥α−∥∥−n/p
∞

)
. (1.11)

Thus, we have the following corollary.

Corollary 1.3. Problem (1.1) has a solution in the following cases:

(i) equation (1.3) holds, H(x, t) → +∞ in Ω′ as |t| → ∞, and H(x, t) ≥
−C(x),

(ii) equation (1.4) holds, H(x, t) → −∞ in Ω′ as |t| → ∞, and H(x, t) ≤ C(x)

for some Ω′ ⊂ Ω with µ(Ω′) > µ(Ω)−Sn/p(‖α+‖−n/p∞ + ‖α−‖−n/p∞ ) and C ∈
L1(Ω).

Similar conditions on H were recently used by Furtado and Silva [9] in the
semilinear case p = 2.

Next, note that

H+(x)
(
v+(x)

)q +H−(x)
(
v−(x)

)q
≤ liminf

H
(
x,uj(x)

)
ρ
q
j

≤ limsup
H
(
x,uj(x)

)
ρ
q
j

≤H+(x)
(
v+(x)

)q +H−(x)
(
v−(x)

)q
,

(1.12)

where

H±(x) = liminf
t→±∞

H(x, t)
|t|q , H±(x) = limsup

t→±∞

H(x, t)
|t|q . (1.13)

Moreover,

∣∣H(
x,uj(x)

)∣∣
ρ
q
j

≤ (p+q)V(x)p−q
∣∣vj(x)

∣∣q +
(p+1)W(x)p−1

∣∣vj(x)
∣∣

ρ
q−1
j

(1.14)
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by (1.2), so it follows that

∫
Ω
H+

(
v+)q +H−

(
v−
)q ≤ liminf

∫
ΩH

(
x,uj

)
ρ
q
j

≤ limsup

∫
ΩH

(
x,uj

)
ρ
q
j

≤
∫
Ω
H+

(
v+)q +H−

(
v−
)q
.

(1.15)

Thus we have the following corollary.

Corollary 1.4. Problem (1.1) has a solution in the following cases:

(i) equation (1.3) holds and
∫
ΩH+(v+)q +H−(v−)q > 0 for all v ∈N ,

(ii) equation (1.4) holds and
∫
ΩH+(v+)q +H−(v−)q < 0 for all v ∈N .

When α+(x) = α−(x) ≡ λ1 and q = 1 this reduces to the result of Bouchala and
Drábek [3].

Finally, we note that if

t f (x, t)
|t|q −→ f±(x) a.e. as t −→ ±∞, (1.16)

then

F(x, t)
|t|q =

1
|t|q

∫ t

0

[
s f (x, s)
|s|q − f±(x)

]
|s|q−2sds+

f±(x)
q

−→ f±(x)
q

(1.17)

and hence

H(x, t)
|t|q −→

(
p

q
−1

)
f±(x), (1.18)

so Corollary 1.4 implies the following corollary.

Corollary 1.5. Problem (1.1) has a solution in the following cases:

(i) equation (1.3) holds and
∫
Ω f+(v+)q + f−(v−)q > 0 for all v ∈N ,

(ii) equation (1.4) holds and
∫
Ω f+(v+)q + f−(v−)q < 0 for all v ∈N .

This was proved in Arcoya and Orsina [1] and Drábek and Robinson [8] for
the special case α+(x) = α−(x) ≡ λl and q = 1.

2. Proof of Theorem 1.1

First we recall some facts about the variational spectrum of the p-Laplacian. It
is easily seen from the Lagrange multiplier rule that the eigenvalues of −∆p on

W
1,p
0 (Ω) correspond to the critical values of

J(u) =
∫
Ω
|∇u|p, u ∈ S :=

{
u ∈W

1,p
0 (Ω) : ‖u‖p = 1

}
. (2.1)
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Moreover, J satisfies the Palais-Smale condition (cf. Drábek and Robinson [8]).
Thus, we can define an unbounded sequence of min-max eigenvalues by

λl := inf
A∈�l

max
u∈A

J(u), l ∈ N, (2.2)

where

�l =
{
A ⊂ S : ∃ a continuous odd surjection h : Sl−1 −→ A

}
(2.3)

and Sl−1 is the unit sphere in Rl.

Lemma 2.1. λl is an eigenvalue of −∆p and λl →∞.

Proof. If λl is a regular value of J , then there is an ε > 0 and an odd homeomor-
phism η : S→ S such that η(Jλl+ε) ⊂ Jλl−ε by [2, Theorem 2.5] (the standard first
deformation lemma is not sufficient because the manifold S is not of class C1,1

when p < 2). But then taking A ∈ �l with max J(A) ≤ λl +ε and setting Ã = η(A),
we get a set in �l for which max J(Ã) ≤ λl − ε, contradicting the definition of λl.
Finally, denoting by µl →∞ the usual Ljusternik-Schnirelmann eigenvalues, we
have λl ≥ µl since the genus of each A in �l is l, so λl →∞. �

It is not known whether this is a complete list of eigenvalues when p 	= 2
and n ≥ 2. However, the variational structure provided by this portion of the
spectrum is sufficient to show that the associated functional admits a linking
geometry in the nonresonant case. We only consider (i) as the proof for (ii) is
similar. Let

α
j
±(x) =



α±(x), if α±(x) ≥ λl +

1
j
,

λl +
1
j
, if α±(x) < λl +

1
j
,

(2.4)

so that

λl +
1
j
≤ α

j
±(x) ≤ λl+1−ε,

∣∣αj
±(x)−α±(x)

∣∣ ≤ 1
j
, (2.5)

and let

Φ j(u) =
∫
Ω
|∇u|p−αj

+(x)
(
u+)p−αj

−(x)
(
u−

)p− pF(x,u), u ∈W
1,p
0 (Ω). (2.6)

First, we show that there is a uj ∈W
1,p
0 (Ω) such that∥∥uj

∥∥∥∥Φ′
j

(
uj
)∥∥ −→ 0, inf Φ j

(
uj
)
> −∞. (2.7)

By (2.2), there is an A ∈ �l such that

J(u) ≤ λl +
1
2 j

, u ∈ A. (2.8)
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For u ∈ A and R > 0,

Φ j(Ru) = Rp
[
J(u)−

∫
Ω
α
j
+(x)

(
u+)p +α

j
−(x)

(
u−

)p]−∫
Ω
pF(x,Ru)

≤ −R
p

2 j
+ p

(
‖V‖p−qp Rq +‖W‖p−1

p R
) (2.9)

by (1.2), (2.5), and (2.8), so

max
u∈A

Φ j(Ru) −→ −∞ as R −→∞. (2.10)

Next, let

� =
{
u ∈W

1,p
0 (Ω) :

∫
Ω
|∇u|p ≥ λl+1

∫
Ω
|u|p

}
. (2.11)

For u ∈ �,

Φ j(u) ≥ ε‖u‖pp− p
(
‖V‖p−qp ‖u‖qp +‖W‖p−1

p ‖u‖p
)
, (2.12)

so

inf
u∈�

Φ j(u) ≥ C := min
r≥0

[
εr p− p

(
‖V‖p−qp rq +‖W‖p−1

p r
)]

> −∞. (2.13)

Now use (2.10) to fix R > 0 so large that

maxΦ j(RA) < C, (2.14)

where RA = {Ru : u ∈ A}.
Since A ∈ �l, there is a continuous odd surjection h : Sl−1 → A. Let

Γ =
{
ϕ ∈ C

(
Dl,W

1,p
0 (Ω)

)
: ϕ|Sl−1 = Rh

}
, (2.15)

where Dl is the unit disk in Rl with boundary Sl−1. We claim that RA links �
with respect to Γ, that is,

ϕ
(
Dl)∩� 	= ∅ ∀ϕ ∈ Γ. (2.16)

To see this, first note that the proof is done if 0 ∈ ϕ(Dl). Otherwise, denoting by
π the radial projection onto S, Ã := π(ϕ(Dl))∪−π(ϕ(Dl)) ∈ �l+1, and hence

max
u∈π(ϕ(Dl))

J(u) = max
u∈Ã

J(u) ≥ λl+1, (2.17)

so π(ϕ(Dl))∩� 	= ∅, which implies that ϕ(Dl)∩� 	= ∅.
Now it follows from a deformation argument of Cerami [5] that there is a uj

such that ∥∥uj

∥∥∥∥Φ′
j

(
uj
)∥∥ −→ 0,

∣∣Φ j
(
uj
)−cj∣∣ −→ 0, (2.18)
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where

cj := inf
ϕ∈Γ

max
u∈ϕ(Dl)

Φ j(u) ≥ C, (2.19)

from which (2.7) follows.
We complete the proof by showing that a subsequence of (uj) converges to

a solution of (1.1). It is easy to see that this is the case if (uj) is bounded, so
suppose that ρj := ‖uj‖ → ∞. Setting vj := uj/ρj and passing to a subsequence,

we may assume that vj → v weakly in W
1,p
0 (Ω), strongly in Lp(Ω), and a.e. in

Ω. Then∫
Ω

∣∣∇vj∣∣p−2∇vj ·∇
(
vj −v

)

=

(
Φ′

j

(
uj
)
, v j −v

)
pρ

p−1
j

+
∫
Ω

[
α
j
+(x)

(
v+
j

)p−1−αj
−(x)

(
v−j
)p−1 +

f
(
x,uj

)
ρ
p−1
j

](
vj −v

) −→ 0,

(2.20)

and we deduce that vj → v strongly in W
1,p
0 (Ω) (cf. Browder [4]). In particular,

‖v‖ = 1, so v 	= 0. Moreover, for each w ∈W
1,p
0 (Ω), passing to the limit in(

Φ′
j

(
uj
)
,w

)
pρ

p−1
j

=
∫
Ω

∣∣∇vj∣∣p−2∇vj ·∇w

−
[
α
j
+(x)

(
v+
j

)p−1−αj
−(x)

(
v−j
)p−1 +

f
(
x,uj

)
ρ
p−1
j

]
w

(2.21)

gives that∫
Ω
|∇v|p−2∇v ·∇w−

[
α+(x)

(
v+)p−1−α−(x)

(
v−
)p−1

]
w = 0, (2.22)

so v ∈N . Thus, (
Φ′

j

(
uj
)
,uj

)
p

−Φ j
(
uj
)
=
∫
Ω
H
(
x,uj

) −→ +∞, (2.23)

contradicting (2.7).
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the p-Laplacian, J. Differential Equations 159 (1999), no. 1, 212–238.

[7] E. N. Dancer and K. Perera, Some remarks on the Fuč́ık spectrum of the p-Laplacian
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