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Under very simple conditions, we prove the existence of one positive and one
negative solution of an asymptotically linear elliptic boundary value problem.
Even for the resonant case at infinity, we do not need to assume any more condi-
tions to ensure the boundness of the (PS) sequence of the corresponding func-
tional. Moreover, the proof is very simple.

1. Introduction

In this paper, we consider the existence of one-signed solutions for the following
Dirichlet problem:

−∆u= f (x,u), x ∈Ω,

u= 0, x ∈ ∂Ω,
(1.1)

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω. The
conditions imposed on f (x, t) are as follows:

(f1) f ∈ C(Ω×R,R); f (x,0)= 0, for all x ∈Ω.
(f2) lim|t|→0( f (x, t)/t)= µ, lim|t|→∞( f (x, t)/t)= � uniformly in x ∈Ω.

Since we assume (f2), problem (1.1) is called asymptotically linear at both zero
and infinity. This kind of problems have captured great interest since the pio-
neer work of [1]. For more information, see [2, 3, 4, 5, 6, 7, 8, 11, 12] and the
references therein.

Obviously, the constant function u= 0 is a trivial solution of problem (1.1).
Therefore, we are interested in finding nontrivial solutions. Let F(x,u) =∫ u

0 f (x,s)ds. It follows from (f1) and (f2) that the functional

J(u)= 1
2

∫
Ω
|∇u|2dx−

∫
Ω
F(x,u)dx (1.2)
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is of class C1 on the Sobolev space H1
0 :=H1

0 (Ω) with norm

‖u‖ :=
(∫

Ω
|∇u|2

)1/2

, (1.3)

and the critical points of J are solutions of (1.1). Thus we will try to find critical
points of J . In doing so, we have to prove that the functional J satisfies the (PS)
condition.

We denote by 0 < λ1 < λ2 ≤ λ3 ≤ ··· ≤ λi ≤ ··· the eigenvalues of (−∆,H1
0 )

with eigenfunctions φi. If � is an eigenvalue of (−∆,H1
0 (Ω)), then the problem is

resonant at infinity. This case is more delicate. To ensure that J satisfies the (PS)
condition usually one needs to assume additional conditions, such as the well-
known Landesman-Lazer condition, see, for example, [3, 4]; the angle condition
at infinity, see [2].

Recently, in the case 0≤ µ < λ1 < �, Zhou [12] obtained a positive solution of
problem (1.1) under (f2) and the following conditions:

(H1) f ∈ C(Ω×R,R); f (x, t)≥ 0, for all t≥0, x∈Ω and f (x, t)≡ f (x,0)≡0,
for all t ≤ 0, x ∈Ω.

(H2) ( f (x, t)/t) is nondecreasing with respect to t ≥ 0, a.e. on x ∈Ω.

Note that our assumption (f1) is weaker than (H1). And condition (H2) is a
strong assumption.

In this paper, we prove that (f1) and (f2) are sufficient to obtain a positive so-
lution and a negative solution of problem (1.1). Our main result is the following.

Theorem 1.1. Assume that f satisfies (f1) and (f2). If µ < λ1 < �, then problem
(1.1) has at least two nontrivial solutions, one is positive, the other is negative.

Note that in Theorem 1.1, even in the resonant case, we do not need to as-
sume any additional conditions to ensure that J satisfies the (PS) condition. Thus
Theorem 1.1 greatly improves previous results, such as Zhou’s [12]. This fact is
interesting. The proof of Theorem 1.1 will be stated in Section 2.

We can also consider the asymptotically linear Dirichlet problem for the
p-Laplacian

−∆pu= f (x,u), x ∈Ω,

u= 0, x ∈ ∂Ω,
(1.4)

where 1 < p < +∞. Let 0 < λ
p
1 < λ

p
2 ≤ λ

p
3 ≤ ··· be the sequence of variational

eigenvalues of the eigenvalue problem

−∆pu= λ|u|p−2u, x ∈Ω,

u= 0, x ∈ ∂Ω.
(1.5)
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It is known that −	p has a smallest eigenvalue (see [5]), that is, the princi-
ple eigenvalue, λ

p
1 , which is simple and has an associated eigenfunction ϕ1 ∈

W
1,p
0 (Ω)∩C1(Ω) that is strictly positive in Ω and

∫
Ωϕ

p
1 = 1. λ

p
1 is defined as

λ
p
1 =min

{∫
Ω
|�u|p : u∈W

1,p
0 (Ω),

∫
Ω
|u|p = 1

}
. (1.6)

Assuming (f1) and the following condition:

(f′2) lim|t|→0( f (x, t)/|t|p−2t) = µ, lim|t|→∞( f (x, t)/|t|p−2t) = � uniformly in
x ∈Ω,

we obtain the following theorem.

Theorem 1.2. Assume that f satisfies (f1) and (f ′2). If µ < λ
p
1 < �, then problem

(1.4) has at least two nontrivial solutions, one is positive, the other is negative.

Remark 1.3. (1) The existence of a positive solution of problem (1.4) was ob-
tained by Li and Zhou [7, Theorem 1.1], under (H1), (f′2) with µ= 0 and

(H′
2) ( f (x, t)/tp−1) is nondecreasing in t > 0, for x ∈Ω.

Condition (H2) is a strong assumption. Moreover, if � is an eigenvalue of (1.5),
they need another condition

(f F) limt→∞{ f (x, t)t− pF(x, t)} = +∞ uniformly a.e. x ∈Ω

to produce a positive solution. Thus Theorem 1.2 extends [7, Theorem 1.1]
greatly.

(2) Obviously, Theorem 1.1 is a special case of Theorem 1.2. But we would
rather state the proof of Theorem 1.1 separately, because the proof is very simple
and clear.

2. Proof of Theorem 1.1

In this section, we will always assume that (f1) and (f2) hold and give the proof
of Theorem 1.1.

Consider the following problem:

−∆u= f+(x,u), x ∈Ω,

u= 0, x ∈ ∂Ω,
(2.1)

where

f+(x, t)=


f (x, t), t ≥ 0,

0, t ≤ 0.
(2.2)

Define a functional J+ : H1
0 →R,

J+(u)= 1
2

∫
Ω
|∇u|2dx−

∫
Ω
F+(x,u)dx, (2.3)

where F+(x, t)= ∫ t0 f+(x,s)ds. We know J+ ∈ C1(H1
0 ,R).
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Lemma 2.1. J+ satisfies the (PS) condition.

Proof. Let {un} ⊂H1
0 be a sequence such that

∣∣J+(un)∣∣≤ c, J ′+
(
un
)−→ 0. (2.4)

It is easy to see that

∣∣ f+(x,u)u
∣∣≤ C

(
1 + |u|2). (2.5)

Now (2.4) implies that for all φ∈H1
0

∫
Ω

(∇un∇φ− f+
(
x,un

)
φ
)
dx −→ 0. (2.6)

Set φ= un, we have

∥∥un∥∥2 =
∫
Ω
f+
(
x,un

)
un dx+

〈
J ′+
(
un
)
,un
〉

≤
∫
Ω
f+
(
x,un

)
un dx+ o(1)

∥∥un∥∥
≤ C+C

∥∥un∥∥2
2 + o(1)

∥∥un∥∥,
(2.7)

where ‖ · ‖2 is the standard norm in L2 := L2(Ω). We claim that ‖un‖2 is
bounded. For otherwise, we may assume that ‖un‖2 → +∞. Let vn = un/‖un‖2,
then ‖vn‖2 = 1. Moreover, from (2.7) we have

∥∥vn∥∥2 ≤ o(1) +C+
o(1)∥∥un∥∥2

·
∥∥un∥∥∥∥un∥∥2

= o(1) +C+ o(1)
∥∥vn∥∥. (2.8)

That is, ‖vn‖ is bounded. So, up to a subsequence, we have

vn⇀ v in H1
0 , vn −→ v in L2, for some v with ‖v‖2 = 1. (2.9)

From (2.6) it follows that

∫
Ω

(∇v∇φ− �v+φ
)
dx = 0, ∀φ ∈H1

0 , (2.10)

where v+ =max{0,v}. From this and the regularity theory we have

−∆v = �v+, x ∈Ω,

v = 0, x ∈ ∂Ω.
(2.11)

The maximum principle implies that v = v+ ≥ 0. But � > λ1 and hence v ≡ 0
which contradicts with ‖v‖2 = 1.
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Since ‖un‖2 is bounded, from (2.7) we get the boundness of ‖un‖. A standard
argument shows that {un} has a convergent subsequence. Therefore, J+ satisfies
the (PS) condition. �

Lemma 2.2. Let φ1 > 0 be a λ1-eigenfunction of (−∆,H1
0 ) with ‖φ1‖ = 1, if µ <

λ1 < �, then

(a) there exist ρ,β > 0 such that J+(u)≥ β for all u∈H1
0 with ‖u‖ = ρ;

(b) J+(tφ1)→−∞ as t→ +∞.

Proof. See the proof of [12, Lemma 2.5]. �

Now, we are in a position to state the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemmas 2.1, 2.2, and the Mountain Pass Theorem [9,
Theorem 2.2], the functional J+ has a critical point u+ with J+(u+) ≥ β. But
J+(0) = 0, that is, u+ �= 0. Then u+ is a nontrivial solution of (2.1). From the
strong maximum principle, u+ > 0. Hence u+ is also a positive solution of (1.1).

Similarly, we obtain a negative solution u− of (1.1).
The proof is completed. �

Remark 2.3. If we assume further that f ∈ C1(Ω×R,R) and � is not an eigen-
value of (−∆,H1

0 ), that is, � ∈ (λi,λi+1) for some i≥ 2. Then the functional J de-
fined in Section 1 satisfies the (PS) condition. Using Morse theory, we can prove
that problem (1.1) has one more nontrivial solution u with Ci(J,u) �= 0, where
Ci(J,u) is the ith critical group of J at u.

Remark 2.4. If we assume that µ= µ(x), � = �(x), and µ(x) < λ1, �(x)∈ L∞(Ω),
�(x) ≥ λ1, mes{x ∈ Ω : �(x) > λ1} > 0, then the conclusion of Theorem 1.1
is valid too. Since under this assumption, by (2.11) we can get λ1

∫
Ω vφ1 =∫

Ω∇v∇φ1 =
∫
Ω �(x)vφ1, thus v ≡ 0.

3. Proof of Theorem 1.2 and final remarks

In this section, we sketch the proof of Theorem 1.2 and give some remarks. First,
we recall the concept Fučik spectrum and a related result.

The Fučik spectrum of p-Laplacian with Dirichlet boundary condition is de-
fined as the set Σp of those (a,d)∈R2 such that

−∆pu= a
(
u+
)p−1−d

(
u−
)p−1

, x ∈Ω,

u= 0, x ∈ ∂Ω,
(3.1)

has a nontrivial solution, where u+ =max{u,0} and u− =max{−u,0}. By [5],
we know that if (a,d) ∈ Σp and (a,d) �∈ R× λ

p
1 , (a,d) �∈ λ

p
1 ×R, then a > λ

p
1 ,

d > λ
p
1 . We will also need the following lemma, which is due to Zhang and Li

[11, Lemma 3].
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Lemma 3.1. Assume that h∈ C(Ω×R,R),

lim
t→+∞

h(t)
|t|p−2t

= a, lim
t→−∞

h(t)
|t|p−2t

= d. (3.2)

If (a,d) /∈ Σp, then the functional ϕ : W
1,p
0 (Ω)→R,

ϕ(u)= 1
p

∫
Ω
|∇u|p dx−

∫
Ω
H(u)dx (3.3)

satisfies the (PS) condition, where H(u)= ∫ u0 h(t)dt.

Sketch of the proof of Theorem 1.2. As in Section 2, consider the trancated prob-
lem

−∆pu= f+(x,u), x ∈Ω,

u= 0, x ∈ ∂Ω,
(3.4)

where f+ is defined as in (2.2). Due to the maximum principle (see [10]), solu-
tions of (3.4) are positive, thus are solutions of (1.4). We have

lim
t→−∞

f+(x, t)
|t|p−2t

= 0, lim
t→+∞

f+(x, t)
|t|p−2t

= �. (3.5)

Since � > λ
p
1 , one deduces directly from the definition of Fučik spectrum that

(�,0) /∈ Σp, thus by Lemma 3.1, we deduce that the C1-functional

J+(u)= 1
p

∫
Ω
|∇u|p dx−

∫
Ω
F+(x,u)dx (3.6)

satisfies the (PS) condition on the Sobolev space W
1,p
0 (Ω) with norm

‖u‖1,p =
(∫

Ω
|∇u|p dx

)1/p

, (3.7)

where F+(x, t)= ∫ t0 f+(x,s)ds.
As [7, Lemma 2.3], the functional J+ admits the “Mountain Pass Geometry.”

Thus J+ has a nonzero critical point, which is a nontrivial solution of (3.4). From
the strong maximum principle (see [10]), it is also a positive solution of (1.4).

Similarly, we obtain a negative solution of (1.4). �
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Remark 3.2. Problems (1.1) and (1.4) can be resonant at infinity, this is the main
difficulty in verifying the (PS) condition. But after trancating, the problems are
not resonant with respect to the Fučik spectrum. Thus, from the Fučik spectrum
point of view, the corresponding functionals of the trancated problems satisfies
the (PS) condition naturally. And our limit conditions at zero allow us to use the
trancation technique and apply the Mountain Pass Theorem.

These are the main ingredient of this work.

Remark 3.3. In fact, let P := {u∈H1
0 : u(x)≥ 0, a.e.}, the functional J does not

satisfies the (PS) condition on the whole space H1
0 whenever � = λi, i > 1, but

from our proof J satisfies the (PS) condition on P. That is, the unbounded (PS)
sequences do not belong to P. This idea may be used to weaken the compact
conditions for other problems.
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