ON THREE-POINT BOUNDARY VALUE PROBLEM
WITH A WEIGHTED INTEGRAL CONDITION FOR
A CLASS OF SINGULAR PARABOLIC EQUATIONS
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We deal with a three-point boundary value problem for a class of singular par-
abolic equations with a weighted integral condition in place of one of stan-
dard boundary conditions. First we establish an a priori estimate in weighted
spaces. Then, we prove the existence, uniqueness, and continuous dependence
of a strong solution.

1. Introduction

In Q= {(xt) eR*:0<x<b, 0<t< T}, we consider the following problem:
given functions g, vo, M, m, y, 1, and y,, find the function v = v(x, t) as a solu-
tion of

v a0 ( vy _
gv‘at x ax<xax>—f(x,t), (xt)€eQ,
Lv=v(x,0) =v(x), 0<x<b, (1.1)

J xv(x, t)dx =m(t), 0<a<b, 0<t<T,
0

and, on x = b, one of the following conditions:

v(bt) =u(t), 0<t<T, (1.2)
%:yl(ﬂ, 0<t<T, (1.3)
avél;, ) +pv(b,t) =u(t), 0<t<T, ek, (1.4)
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518  Singular parabolic equation with integral condition

together with the compatibility conditions

J:xvo(x) dx=m(0),  v(b) = p(0), (1.5)
[vy(b) = u1(0), vo(b) + Prvo(b) = u2(0), resp.]. (1.6)

We describe the complete investigation for problem (1.1) and (1.2). The investi-
gation is similar for problems (1.1), (1.3) and (1.1), (1.4).

We note that problem (1.1) and (1.2) has not been studied previously. It
arises from some physical problems. For instance, if u denotes temperature in
a heat conduction problem, then m(t) represents the heat moment in the region
0 < x < a at time t. Problems for second-order singular parabolic equations with
two-point boundary values were considered in [1, 6, 11]. In [1], it is treated
a problem with homogeneous Dirichlet condition and the integral condition
f(f v(x, t)dx = 0. As for [6, 11], are investigated problems which combine Dirich-
let condition with the integral condition fob x*v(x,t)dx = m(t), and Neumann
condition with the integral condition fob xv(x,t)dx = m(t), respectively. How-
ever, in [6, 11], we cannot replace Dirichlet condition by Neumann or Robin
conditions and conversely, owing to operators of multiplication constructed to
establish a priori estimates for the considered problems. For other equations
with integral boundary condition(s), we refer the reader to (2, 3, 4, 5, 8, 7, 9],
and the references therein.

In this paper, we prove that problem (1.1) and (1.2) admits a unique strong
solution that depends continuously upon the data. The proof is based on an
energy inequality and on the density of the range of the operator associated to
the abstract formulation of the stated problem.

The paper is divided as follows. Section 2 is devoted to some preliminaries
needed in throughout. In Section 3, we prove the uniqueness and continuous
dependence of the solution. Then, in Section 4 we establish the existence of the
solution.

2. Preliminaries

We start by reducing (1.1) and (1.2) to an equivalent problem with homoge-
neous boundary conditions. For this purpose, we introduce a new unknown
function u which represents the deviation of the function v(x, t) from the func-
tion

_ 2a — 3x
"~ 2a-3b

6(x—b)

v (2@ —3a%b)

u(t) + m(t). (2.1)

Therefore, problem (1.1) and (1.2) becomes: find a function u = u(x, t) solution
of
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Pu = % - @a—ax (xg—:é) ~ fub), (2.2)
Lot = u(x,0) = 1o (x), (23)
Exu(x, Ddx=0,  ub,t)=0, (2.4)
with
Joaxuo(x) dx=0,  u(b)=0. (25)

Assumption 2.1. For all t € [0, T], we assume
0<c<alt) <c, /()] < ca. (2.6)
Assumption 2.2. Forall t € [0, T], we assume
0<c3<a(t), [a" ()| < cq. (2.7)
Throughout the paper, we use the following notation:
Q" =(0,b)x(0,7), 0=<71=<T;

stu=[w@dg  sru=[ j:uw, dnde,

o {L e w(x) = {xz, £ (2.8)

0, x€lab], a’, x€[ab],
LW () 2
Mu = R Eat +w(x)at.
It is easy to observe, for x € [0, a], that
95 (xu) = 55 (xu) = 3 (xu) = 0, (2.9)
J (5Fu)’dx < 4J x*u® dx. (2.10)
0 0

We introduce function spaces needed in our investigation. We denote by
L2(0,b) the weighted Lebesgue space that consists of all measurable functions
u equipped with the finite norm

b 12
lull20,0) := <L o(x) | u(x, -) |2dx> . (2.11)

By HL(0,b) we denote the weighted Sobolev space defined as the space of all
functions u € L2(0,b) such that du/dx belongs to L2(0,b). The corresponding
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norm is

b .
el iy o) = (JO a(x)<|u(x, -)|2+ ‘ aug;, )

2 12
) dx) . (2.12)

If o(x) =1, L2(0,b) and H}(0, b) are identified with the standard spaces L?(0, b)
and H'(0, b), respectively. By H'(0, b;x%8, x), we denote the weighted Sobolev
space with the finite norm

5 1/2

) dx) . (2.13)

We denote by Bi’: (0,a) the weighted Bouziani space, first introduced in [5, 6],
with finite norm

du(x, -)
ox

b
el &1 0,b326,0) 1= (L (sz(x) lu(x, )| +x‘

a 1/2
”u”B;:;‘(O,a) = (JO | 9% (Eu) |2dx> . (2.14)

Moreover, we use C(0,T;H) and L2(0, T;H) for the sets of continuous and
L2-integrable mappings (0, T) — H, respectively.
We, now, write problem (2.2), (2.3), and (2.4) as an operator equation

Lu = (f,u), (2.15)

where L = (£,¢) is an unbounded operator, with domain D(L), acting from
B to F, where D(L) is the set of functions u belonging to L?(0, T;L2(0,b)) for
which du/at, (1/x)(du/0x), 0*u/dx?, 0*u/dtox € L*(0, T;L%(0,b)) and u satisfying
conditions (2.4), B is the Banach space obtained by completing the set D(L) with
respect to the norm

1/2
a 2
ou ) , (2.16)
ot l20,1512,,(0,b))

and F is the Hilbert space L*(0, T;L2(0,b)) X H},,(0, b) consisting of all elements
(f,up) for which the following norm is finite

lullg = <||u||é(O,T;H;W(O,;,)) q

172
2
I[(f.uo)llr = (”f”%,Z(o,T;L;(o,b)) +H“0||H;W(o,b)) . (2.17)
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3. Uniqueness and continuous dependence
First, we establish the following energy inequality.

THeOREM 3.1. Under Assumption 2.1, the following estimate holds for any function
ue D(L):

lullg < clLullp, (3.1)

where c is a positive constant independent of u.

Proof. Taking the scalar product in L2(0, b) of (2.2) and Mu, and integrating the
result over (0, ), we have

JT (f(: t)»Mﬁ(" t))LZ(O b) dt

0
_L ou(-,t o J (auc(')t)t < aué.t,t)>>p(o,h)dt

at

J, (05 (5 )

‘LT (“(”a(’“a”éx’ ”)795‘ (¢ e ”))W) d.

Integrating by parts the last three terms on the right-hand side of (3.2), we obtain

W I E—— dt
J;( ar Wk § ot 12(0,b)
du(-t) *< aa(-,t))>
_ZJ (x TR ¢ ot LZ(O,a)dt
T ou\ | ¢
* —_— =
SX(‘fat) Odt 0.

B Jor (“(t) ox ( auéx : ) y)mw “

du ou |? T ouou |’
=—J a(n 22 % dt—J xa oc(t)a—g dt
ou(-,t) ou(- ,l‘))
+2L (a0, 2 o

+ j ( (5 240 t)’aza<-,t>)mb)dt

ox otox
u(-,1) Ju(, t)) a(7) ||oul-, ) ||?
= R dt
2J0 (“(t) ox ot /1200 Tl L3, (0.b)
oc(O) IJT , ‘
2 - t - dt)
||”0||L W(0) T 5 o o' (t) ax |l o
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(" ou(-, t)) w *( 8&(-,1‘)))

J (“(t)ax( ax ) x5\ ) o

8u( t < _u)

ot

J —
2 e

> t.
ot )Liz (0,a)

(3.3)
Substituting (3.3) into (3.2), yields
T 3 2
zj ou(-,1) dt +al
oll ot iz, on 12,(0.b)
T
=2 [ (FCDMC ) g (3.4)
2 T lou(- ) |
+a(0 +J t' dt.
o )HuO”Lﬁw(o’b) 0 @ (®) ox 2, 0p)

According to Cauchy inequality and (2.10), the first term on the right-hand side
of (3.4) is estimated as follows:

ZJT (f (-, 0),Mu(-, t))L;(o,b) dt

0

! 2 ! 2
<261 | 1FCOlmet 22 | 10 o4t

2 (7 (|au, 0P Lo,
e doll ot llgroa  &Joll 9t iz 0p)
T T 2
; e b, Ly [7outs
< (281a+£2a )JO ||f( ’t)||L)2((0,b) dt+ (81 + & 0 at L)%W(O)b) dt.
(3.5)

Inserting (3.5) into (3.4), and choosing ¢ and ¢, so that the last integral in the

right-hand side of (3.5) will be absorbed in the left-hand side of (3.4), we get by
virtue of Assumption 2.1 that

au( t) dt+ ¢ ‘ ou(-, 1) ) |2
12,(0.0) ox iz, 0b)
“llou(- )|
s68azj O dt+ o ||ub || +c J ’ dt.
0 ||f( )||L§(o,b) 1|| 0||L§W(o,b) 2 0 Ox 12.(0)

(3.6)
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Adding the obvious inequality

ou(-, 1)
ot

||“('>T)||igw(o,b) < [luo

2
Ja
L3, (0.b)

(3.7)

2 T 2
2,00 T L (H“(', t)||L§w(0,b) + ’

to (3.6), we conclude that

[

ou(-, 1)

2
5 dt+{|u Dl op)

13,(0,b) (3.8)
! 2 2 ! 2
< s ], 1FCo0NRom e+ Nl o)) +66 | G0l o

where

max (68a%,¢1,1) max (cz, 1)
e C6 e (3-9)
min (1/2, co) min (1/2, ¢o)

Hence, application of Gronwall’s type inequality [3, Lemma 1] gives

[

ou(-, 1)

ot

2
HY,(0,b)

dt+|u(-,7)|
12,(0)

2
<csexp(csT) (||f||%2(o,T;L§(o,b)) dt+ ||”0||Hxlw(o,b>)-

(3.10)

As the right-hand side of (3.10) is independent of 7, we take the upper bound of
the left-hand side. Hence, we obtain the required estimate. O

Since we have no information concerning LB except that LB C F, we extend L,
so that inequality (3.1) holds for the extension and LB is the whole space. For
this purpose, we state the following proposition.

ProrosiTiON 3.2. Under the hypotheses of Theorem 3.1, the operator L: B — F
possesses a closure.

Proof. The proof is similar to that in [8]. ]
Let L be the closure of the operator L, and D(L) its domain.

Definition 3.3. The solution of equation

Lu = (f,u) (3.11)

is called strong solution of problem (2.2), (2.3), and (2.4).
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Passing to the limit in inequality (3.1), we obtain

llullg < c||Lul|p (3.12)

from which, we have the following corollaries.

CoOROLLARY 3.4. Under the hypotheses of Theorem 3.1. If, there exists a strong so-
lution of problem (2.2), (2.3), and (2.4), then it is unique and depends continuously
upon (f, uo).

COROLLARY 3.5. The range LB is closed in F, and LB = LB.

4, Existence of the solution

THEOREM 4.1. Under Assumptions 2.1 and 2.2, problem (2.2), (2.3), and (2.4)
admits a unique solution in the sense of Definition 3.3, for arbitrary f € L*(0, T;
L2(0,b)) and ug € H),,(0,b), such that ue C(0, T;H.,(0,b)) and du/ot € L*(0, T}
L)zcw(oy b))‘

Proof. Section 3 implies that L is injective. Therefore, to show the existence of
the solution, it suffices to prove that L is surjective. This can be fulfilled if we
establish the density of LB in F. To this end, we state the following result which
we need below.

ProprosITION 4.2. Under the hypotheses of Theorem 4.1, if
(gu, E)LZ(O,T;LE(O,b)) = 0 (4.1)

for arbitrary u € Dy(L) = {u/u € D(L) : fu = 0} and some w € L*(0, T;L2(0, b)),
then w vanishes almost everywhere in Q.

Suppose that for the moment that Proposition 4.2 has been proved, and turn-
ing to the proof of Theorem 4.1. Let the element ( f, 4y) € F be orthogonal to LB,
that is, let

(Lu, (f, Llo))F = (gu, ?)Lz(O,T;L)%(O,b)) + (Eu, HO)HJW(O,b) = 0, ue D(L). (4.2)

Assuming in (4.2) that u is replaced by any element of Dy(L). It follows from
Proposition 4.2 that f = 0. Hence

(6wuo) 1 (o) =0, u€D(L). (4.3)

But the set £B is everywhere dense in H.,,(0, b). The above relation implies that
o = 0. Consequently LB = F. To complete the proof of Theorem 4.1, it remains
to prove Proposition 4.2.
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Proof of Proposition 4.2. 'We start by constructing the function w. Since equality
(4.1) holds for arbitrary element of Dy(L), we express it in the following form:

0, 0<t<s
y=1 rt (4.4)

%u dr, s<t=<T,

s OT
and 0v/0t is solution of the equation
T
—a(1)3(x) 5 (5 a”) ra? - J 0 7)dr = g, (4.5)
ot ot ¢

where s is an arbitrary fixed number in [0, T].

It is easy to see from (4.4) that v e Dy(L) = {u/u € D(L) :u=0fort <s} <
Dy(L), and from (4.5) that 9v/ot|,—r = 0. Differentiating (4.5) with respect to t,
it yields

0t = 2 (a(t)&(x)ﬁ*z (f av) (t)—) (4.6)

LeMMA 4.3. Under the hypotheses of Theorem 4.1, the function w defined by (4.6)
belongs to L*(s, T; L2(0, b)).

Proof of Lemma 4.3. Set y(x,t) := S(x)sz(f(av/at)) — ov/dt, then w(x,t) =
o (t)y + a(t)(9y/dt). We first prove that ' (¢)y is bounded in L*(s, T;L2(0,b)).
Indeed, we have according to Assumption 2.1

e yI; <dllyl}
Yllasmiezob) = €21V 1112 (s 1512(0,0))

<[ | s(owar (65) -5)

ov Tt ov |’
522(I eSS ddt+J | x| %] axar).
“ s Ox x gat x s ()X() ot @)
4.7
By virtue of inequality (2.10), it yields
2 2
/12 2 6 Ll ov
o : <32¢ga’||=; +265|| =
|| )’HLz(s,T,Li(O,b)) 2 ot LZ(S’TLZ(M)) 21| 5¢ LTI s
<23 max (16a% 1) v '
: Ot s razomy

It remains to prove that a(f)(dy/0t) belongs to L*(s, T;L2(0,)). To this end, we
must use the following lemma, in which we summarize some of the properties
of the averaging operator ¢, defined by

(0ey)(-1) := lJTgo(t_t,>y(-,t')dt’, (4.9)

€ Js &
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where ¢ € C*(R), ¢ = 0 in the neighborhood of t = sand t = T and outside the
interval (s, T'), and such that

B O o P

Lemma 4.4. (i) If y € L*(s, T; H), the function 0.y € C*(s, T;H);
(11) if”Qe)/”Lz(s,T;H) =< ”)’”LZ(S,T;H): and ”Qey - y||L2(s,T;H) —0ase— 0;
(iii) (d/dt)eey = 0:(d/dt)y, u € Ds(L);
(iv) if y € L*(s, T;H), then ||(9/0t)(a0cy — @eay)ll12(s 30 — 0 as € — 0.

Proof. Proof of this lemma is similar to that of [10, Lemma 9.1]. |

We apply operators ¢, and d/0t to (4.5), it follows

a2 00y = 2 (0) + S (alDey ~ 0alt)y) ~a (D, (41D

from which, we obtain, using (4.8), and properties (ii), (iii) of Lemma 4.4, that

2

0
[MORES"

L2(s, T;L2(0,b))

s3(H%(eeg)

+H2(a —Q.y)
ot Q) — Qey

2

L2(s, T;L2(0,b))

2
’ 2
+|[a Qe)’||L2(s,T;L§(o,h))) (4.12)

L2(s, T5L3(0,b))

2

%’
< 3H +3H (XQ O
ot |25, 1512(0,0)) FTACA ») L2(s, T5L2(0,b))
0
+ 6¢5 max (16a°, 1)‘ v )
ot ll12(s 1512 (0,0))

Since the norm of a(#)(9/0t)0.y is bounded in L2(s, T;L2(0, b)), then we pass
to the limit in the above inequality, by taking into account property (iv) in
Lemma 4.4, we conclude that

2

a2
H 3t |l razom (4.13)

4.13
ov|[

< max (3,96c2a%, 6¢3) ( e TLZW?))).
5, T;L2(0,

L2(s, T5L2(0,b)) '

%1,

It then follows from (4.8) and (4.13) that w € L?(s, T; L2(0, b)). O
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Substituting (2.2) and (4.6) into (4.1), we get

af ot E) 12(s, TLZ(Oa at) ot ot L2(s, T5L2(0,b))
a a L2(s,T;L2(0,a))
L2(s, T;L2(0,b))

Integrating by parts each term of (4.14), by taking into account (4.4) and
(4.5), we obtain

Sl (5)))
<xat’at<“5x Ea LstLZ(Oa

Jdv o

- oo (25 P oo () s
(x% %( g))Lz(s,T;LZ(O,b))

7))
<f ot ) ) J 12(sTi12(0,a))

dxdt+ E Jaxza(T)a'(T)|v(x, T) |2dx (4.15)
2 Jo

~(og (+57) 3( 5
Yox \Fox ) ot \¢

[ [

,J J xz((x'z(t)+oc(t)oc”(t))|v|2dxdt

J J ( S*—+(x(t)ﬁ* )x%dxdt,

(o (<50) 5 e a”))
"‘ax xax Tot\ "ot LstLZ(Ob))

)l o 5

2 @ o awe o)

V

ov(x,T) |

p dx

j xa(T)e (T)
v |’

It then follows from (4.15) that

T ra
2J sz 2
s JO

9 ov |2
ot
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2

+[ a3z (245) 2dx+[0bxa(s> W) | g
+j“x2a<T>a'(T>|v T>|2dx+J:xa(T)a'<T> e D) 2
[ [ (a) e [ o]
JJ B+ a(Ha’ (1) |v]? dxdt
+J J (@ () +alt)a’ (8)x|
—ZJ J ((x(t S*—+(x(t)8* )x%dxdt.
(4.16)

Applying the Cauchy inequality and inequality (2.10) to the last term on the
right-hand side of (4.16), we obtain

T (a v o
— *_ 4 —_
zL L (a(t)ﬁx 2 (3 )xa dxdt

T ra a 2
SJ sz o J azdtJ S;‘Q dx
s s 0 ot
+2J o dtJ |55 | dx
“ ov|?
a4 2
ol [f3 st a2 o

T a
+8J o’ dtJ x|v|>dx
s 0

T b
SL (a+8aa? )dtJ (891; dx
T , b ov 2
+8J o dtJ (xzé(x)|v|2+x o >dx
s 0

Inserting (4.17) into (4.16) and employing Assumptions 2.1 and 2.2, we con-
clude that

aV aV S 2 aV ',S 2 5
' ’ ( ) ’ ( ) ||V('> T)||Hl(0 bix26,x)
Ot [ 12(s, 731 (0,63328,%) ot ltr 0. ot Mo b8,
T 2 2
V(')t) aV(',t) 2
=¢ D opcan | 46
7 L ( ot BYY(0,a) ot 12(0.6) || ||H1(O,h,x28,x)

(4.18)



Abdelfatah Bouziani 529

where

max (¢, c; +8act +a,c3 +cicq +8¢%)

= 4.19
7 min (2¢2, co, coc3) (4.19)
To continue, we introduce a new function 0 defined by
9
0xt):= | Zdr, (4.20)
t or

from which we deduce that 0(x,s) = v(x, T) and v(x, t) = 0(x,s) — 0(x, t). Hence,
inequality (4.18) becomes

o’ ‘av("s) ’ +(1=265(T=3)) |6~ 9)|
> 1 x2
Ot 12(0, 7511 (0,b,x26,)) ot IBb*(0,a)nL2(0.b) H'(0bix?0.x)
T (ov(-,t) | 2
SZC7J <‘ ot L +{10C D[ 0 45226, | At
s By, (0,a)nL2(0,b)
(4.21)
If s verifies 1 — 2¢7(T — sp) = 1/2, then the above inequality implies
ov || ‘av(-,s) : 2
9V - +116(-,9) .
‘ ot 1120, 7311 (0,b,26,%)) ot Il amnrz(ob) I ||H1(o,b,xza,x)
(4.22)
aV(',t) 2

ot

T
S4C7J (’
s

for all s € [so, T']. By virtue of [3, Lemma 1] for the interval (s, T), (4.22) implies

that

(4.23)
from which we conclude that dv/dt = 0 and thus w = 0 almost everywhere in
(50, T) % (0,b). As s is an arbitrary fixed point in [0, T'], using the same reasoning
again, from which, step by step, we deduce that w = 0 almost everywhere in Q.
This achieves the proof of Theorem 4.1. O

2
+ ||0( " t)”H‘(O,b;xZ&x)) dt,

BY¥(0,a)nL2(0,b)

ov |

ot

(-s) |’
ot

<0,

+ ||9("S)||§—11(0,b;x25,x) + ’

L2(0,T;H1(0,b,x28,x)) BYF(0,a)nL2(0,b)
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