ON NEUMANN HEMIVARIATIONAL INEQUALITIES
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We derive a nontrivial solution for a Neumann noncoercive hemivariational in-
equality using the critical point theory for locally Lipschitz functionals. We use
the Mountain-Pass theorem due to Chang (1981).

1. Introduction

The problem under consideration is a hemivariational inequality of Neumann
type. Let Z C RN be a bounded domain with a C'-boundary I'. We have

—div <||Dx(z)||P-2Dx(z)> €9j1(z x(2)) ae onZ

ox . (1.1)
o €0j2(z1(x(2))) ae.onl, 2< p<oco.
np

Here the boundary condition is in the sense of Kenmochi [7] and 7 is the
trace operator (see Kenmochi [7, page 123]).

The study of hemivariational inequalities has been initiated and developed by
Panagiotopoulos [8]. Such inequalities arise in physics when we have nonconvex,
nonsmooth energy functionals. For applications, one can see [9].

Many authors studied Dirichlet hemivariational inequalities (cf. Gasifiski and
Papageorgiou [5], Goeleven et al. [6], and others). Here we are interested in
finding nontrivial solutions for Neumann hemivariational inequalities.

In Section 2, we recall some facts and definitions from the critical point the-
ory for locally Lipschitz functionals and the subdifferential of Clarke.

2. Preliminaries

Let X be a Banach space and let Y be a subset of X. A function f : Y — R is
said to satisfy a Lipschitz condition (on Y) provided that, for some nonnegative
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scalar K, we have

|fO)-f)| <Klly-x| (2.1)

for all points x, y € Y. Let f be a Lipschitz function near a given point x, and let
v be any other vector in X. The generalized directional derivative of f at x in the
direction v, denoted by f°(x;v) is defined as follows:

f7(sv) = limsup St I0), (22)
t10

where y is a vector in X and t a positive scalar. If f is a Lipschitz function of
rank K near x, then the function v — f°(x;v) is finite, positively homogeneous,
subadditive, and satisfies | f°(x;v)| < K||v||. In addition, f° satisfies f°(x;—v) =
(=f)°(x;v). Now we are ready to introduce the generalized gradient which is
denoted by df(x) as follows:

of (x) ={weX*: fox;v) > (w,v) Vv e X}. (2.3)

Some basic properties of the generalized gradient of locally Lipschitz functionals
are the following:

(a) df (x) is a nonempty, convex, weakly compact subset of X* and ||w||. < K
for every w in o f (x);
(b) for every v in X, we have

fO(x;v) = max {(w,v) :wedf (x)}. (2.4)
If f1, f, are locally Lipschitz functions then
o(fi+f2) Cofi+afa. (2.5)

Recall the Palais-Smale condition ((PS)-condition) introduced by Chang [2].

Definition 2.1. We say that a Lipschitz function f satisfies the (PS)-condition
if for any sequence {x,}, |f(x,)| is bounded and A(x,) = min,eyf(x,) [[Wllx — 0
possesses a convergent subsequence.

The (PS)-condition can also be formulated as follows (see [4]).
(PS); ,: whenever (x,,) C X, (e4), (8,) C R, are sequences with &, — 0, §, — 0,
and such that

flxn) =0 fxn) < f)+ea||x—xu| if [[x =4 < (2.6)

then (x,) possesses a convergent subsequence x,; — £.
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Similarly, we define the (PS)} condition from below, (PS)} _, by interchanging
x and x, in inequality (2.6). And finally we say that f satisfies (PS)’ provided
that it satisfies (PS); , and (PS)}_. Note that these two definitions are equivalent
when f is a locally Lipschitz functional.

The following theorem is the Mountain-Pass theorem for locally Lipschitz
functionals.

Tueorem 2.2. If a locally Lipschitz functional f : X — R on the reflexive Banach
space X satisfies the (PS)-condition and the hypotheses:

(i) there exist positive constants p and a such that
f(u)>a VxeX with x| =p; (2.7)

(if) £(0) =0 and there exists a point e € X such that

llell >p, f(e) <0, (2.8)
then there exists a critical value ¢ > a of f determined by
c =;relg tg}g)li]f(g(t)), (2.9)
where
G={geC([0,1],X):g(0)=0, g(1) =e}. (2.10)

In what follows, we will use the well-known inequality
N ! ! '
2 (aj(m—-a; () (nj=n;) > Cln-n|” (2.11)
1

forn,n € RN, with a;(n) = |n|P~2y;.

3. Existence theorem

Let X = WbP(Z). Our hypotheses on jj, j, are the following:
H(j;): the map j; : ZxR — R is such that z — ji(z,x) is measurable and
x — j1(z,x) is locally Lipschitz;
(i) for almost all z € Z, all x € R, and all v € 9j,(z,x), we have |v(z)] <
alx|P oo x|PY
(ii) there exists 8 > p and r, > 0 such that for all |x| > r,, and v € 9}, (2, x), we
have 0 < 0j,(z,x) < vx, and moreover, there exists some a € L!(Z) such
that j,(z,x) > c3)x|? —a(z) for every x € R;
(iii) uniformly for almost all z € Z, we have

ji(z,x)
|x|?

<0(z) (3.1)

limsup
x—0

with 0(z) € L* and 0(z) < 0 with strict inequality in a set of positive
measure.
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H(j,): the map j»(z,x) is such that z — j>(z,x) is measurable and j,(z,-) is a
locally Lipschitz function such that for almost all z € Z, x € R, and v € 92 (z, x)
we have |[v(2)| < a1 (2) +c1|x]¥, 0<u < p—1with ay € L%, ¢ >0, j2(-0) € L*(Z),
and finally j,(z,-) > 0 for almost all z € Z.

TraeoreM 3.1. If hypotheses H(j,) and H(j,) hold, then problem (1.1) has a non-
trivial solution x € WP (Z).
Proof. Let ®: W'P(Z) — R and y : W'P(Z) — R, be defined by
. 1 .
O(x) = —f j1(z.x(2)) dz, y(x) = ElIDng +f j2(z1(x(2)))do.  (3.2)
z r

Clearly, ®@ is locally Lipschitz (see Chang [2]), while we can check that y is

locally Lipschitz too. Set R= O +y.

CraM 3.2. The function R(-) satisfies the (PS)-condition (in the sense of Costa and
Gongalves).

We start with (PS), first. Let {x,},>1 € WP(Z) such that R(x,) — ¢ when
n— oo and

R(xp) SR(x)+eq||x—xu| with [[x—x,| <0 (3.3)
The above inequality is equivalent to the following:
R(x)—=R(x,) > —&n||x—xu|| with |[x—x,]| <8, (3.4)

where ¢, 8, — 0. Choose x = x,, + dx,, with &]|x,|| < &,. Divide by é. So, if § — 0
we have

lim R(xy+0x,) —R(x4)

lim 3 < R (%p3%n). (3.5)

Then we obtain
R (Xn3%n) > —€n || % |- (3.6)

For the (PS),, - we have the following: let {x, } ;-1 C W"?(Z) such that R(x,) —
¢ when n — oo and

R(x) SR(xy) +eu||x—xu|| with [[x—x,| <5 (3.7)
The above inequality is equivalent to the following:
0 < (=R)(x) = (=R) (x4) +&n||x—xu|| with ||x—x,|| <6, (3.8)
Choose here x = x,, — x,, with §||x,|| < §,,. We obtain

0< (—R)(x+8(—x4)) = (=R) (x4) + €40 || s |- (3.9)
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Divide this by . In the limit, we have

(-R) (xn +6(_xn)) -(-R) (-xn)

OS};E% 3 + & |2xa])- (3.10)
Note that
_R n 6 —An - _R n
%irré( ) (on + 9 g )) = (R () < (=R)? (X5 —%xn) = R (X3 Xn). (3.11)

So finally we obtain again (3.6).
Also,

1 1 1
—||D (x4 +8x2) ||‘; ——||Dxu|| = == || Dxn ||§(1 —-(1+6)7). (3.12)
p p p
So if we divide this by § and let § — 0, we have that it is equal to ||Dx,,||5.
Finally, there exists v,(z) € 0®(x,) such that (v, x,) = ©°(x,5x,) and w, €
0j2(z, T(x,4(2))) such that
(Wns Xn)p = W) (X3260)  with y1(x) = f j2(z,7(x(2))) do. (3.13)
r
Note that
v, € 8<—j j1(2x4(2)) dz> = —af j1(z.x4(2)) dz. (3.14)
z z

So, from (3.6), it follows that

j VX (2) dz— || Dx,, ||§ —f WX do < & ||
z r

, (3.15)

for some v, € 9([,, j1 (2, xu(2)) dz).

Suppose that {x,} € W'?(Z) was unbounded. Then (at least for a sub-
sequence), we may assume that ||x,|| — oo. Let y, = x,,/(||x4]|), n > 1, and it is
easy to see that || y,|| = 1. By passing to a subsequence if necessary, we may as-
sume that

Y=y in Wh(2),
n—— in LP(Z s
Yn—y in L?(Z) (3.16)
yn(z) — y(2) a.e.onZ asn— oo,
[yn(2)| < k(2) a.e.on Z with ke LP(Z).

Recall that from the choice of the sequence {x,}, we have |R(x,)| < M, for
some M; >0andalln>1,

§||Dxn||§+ejrj2 (z,7(x4(2))) da—@fzjl (2, x4(2)) dz < OM;. (3.17)
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On the other hand, we have
I VX (2) dz— || Dx,, ||§ —J’ WaXn do < &, ||x|- (3.18)
z r

Adding inequalities (3.17) and (3.18) we obtain

0 Nipo N
<p 1>”D'x"”p+J‘Z (Vn(Z)xn(Z) 9]1<Z,xn(2)))d2

f (j2(2,7(x4(2))) =Wa(2)xn(2)) do (3.19)

< OM; + &, | % |-

From H(j;)(ii), we have that for all |x| > M and v € 9j,(2,x), 0 < (2, x) <
vx. From H(j;)(i), we know that |v| < ¢1]x|?~! + c;|x|?"~!. Using Lebourg mean
value theorem (see Clarke [3, Theorem 2.3.7, page 41]) we have that for all x e R

ji(zx)=ji(z,0) = wx (3.20)
with w € dji(z,s) where s € (0, x). Recall that j;(z,0) € L*(Z). So
|j1(zx)| < o1 +calxl? +c3lx|?. (3.21)

So for |x| < M, we have that |v| < C and |j,(z,x)| < C for all v € dj (2, x) for
some C > 0. Thus, there exists some M > 0 such that vx—60j,(z,x)+M > 0 for all
xeR.

Therefore, (3.19) becomes

<% - 1) || Dxy ||P +I J2(27(%u(2))) = Wn(2)x4(2)) do < OM, + &, || x || + M.
(3.22)
Dividing by ||x,||?, we get
Jr Ga(z T(xn(Zﬁ)) |Ipwn(z)xn(z)) do o (3.23)
Xn

Indeed, from the Lebourg mean value theorem, we have that for any x € R,

J2(2,x) = j2(2,0) = wx, (3.24)

with w € djz(z,s) where s € (0,x). From H(j,), we have that for every w €
0j2(z,s), [w| < 1+ cas|*. Moreover, note that j,(z,0) € L*. So,

|j2(z, )| < c1lx|+calx ! +cs. (3.25)
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Thus,
i G2(z,1(x4(2))) =wa(2)xn(2)) do
[l ]I
ut+l
SJ‘ c1|xn(i)| d(H_J‘ Cz|xn(Z)I|7 dot Gt . (3.26)
] ro ] [
1
”xn”Ll(r) c ||x”||z:“(l") Cq
S 2 ’
[ (B A
Note that
”x”“Ll(F) < K”x"nl/q,l,r < C”x””Lp,Z’ ( )
3.27

[l | '2:+11<r) <K||x| If;:;,p,r < Clfoxa] /1422’

(see Adams [1, page 217]), recall that 4 +1 < p. Now we have finished the claim.

Going back to (3.22) we have that |[Dy,|| — 0. From the weak lower semicon-
tinuity of the norm functional, we have that | D y|| <liminf || Dy, || <limsup ||D y,||
— 0. Therefore, we infer that y, — y in W#(Z) (recall that y, — y weakly in
W'P(Z) and [|[Dy,|| — [[Dy|| = 0). So, y =& € R. But, [|y,[l = L, so [[y]| = 1, thus
y =&+#0. Suppose that & > 0, then x,,(z) — co. From H(jj;)(ii) we have that, for
allxeR, ji(z,x) > ¢ |x|? —a(z). So it is clear that

R(xn> 1 1 0
< —||Dyn||"——c1f lyn(2)|° dz
0 P 0-
bl P .
+J‘ g(z)(9 izt fpj2 (Z,T(x,,(gz))) da.
Z |l [
Recall that from the choice of the sequence we have that
R(xn
(x Z > M . (3.29)
llall™ [l
As before it is easy to see that
.[ j2(z,7(x4(2))) do ) .
: —0,  —||Dya||f———= —0. (3.30)
0 p 60—
[l P B o

So from (3.28) we have that 0 < —¢;|£|?|Z|. But this is a contradiction. So
{x,} € WbP(Z) is bounded.
From the properties of the subdifferential of Clarke, we have

OR(xy) COD(x,) +0y (x,)

3.31
g8®(xn)+8<%||Dxn||§>+IF8j2(z,T(xn(z)))dg (3.31)
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(see Clarke [3, page 83]). So we have

(W 9) = (A y) + (2 (), ¥y - L V(D) y(2) de (3.32)

with 7,(z) € 9j2(z, T(x,4(2))), vu(2) € 9j1 (2, %4(2)), and w,, the element with min-
imal norm of the subdifferential of R and A : W'P(Z) — WLP(Z)* such that
(Ax,y) = [,(IDx(2)||P~*(Dx(2), Dy(z))r~) dz. But x, 2 xin WHP(Z), so x, —
x in LP(Z) and x,(z) — x(z) a.e. on Z by virtue of the compact embedding
WLP(Z)CLP(Z).

Note that the trace of x, belongs to W42 (T), thus, from H(j,), the trace of
r, € L1(I). Recall that there exists some K > 0 such that ||x,||1/4,p,r < K||x,ll1,p,2-
Therefore, r,, is bounded in L4(T) and moreover, in (W% (T))* (the dual space
of WY4F(T)). Choose y = x,, —x, then we obtain

|<T(r,,),xn—x>r| — 0. (3.33)

With (-, -)r we denote the natural pairing of (W%?(T), (WV4F(T))*).

Then in the limit we have that lim sup(Ax,, x,—x) =0 (note that v, is bounded
in LP"(Z)). By virtue of inequality (2.11), we have that Dx,, — Dx in L?(Z). So
we have x, — x in W"?(Z). The claim is proved. O

For every £ € R, & #0, we have

- jz(z,f)do—j (5 8)d = 5 R(E)

(3.34)
< g |, e 0o [ (e
As before we show that
€[ J‘
(z,&)dz< - (z,&)do — 0. (3.35)
|£|9f h e e )

Thus R(§) — —oo as |&] — oo.

In order to use the Mountain-Pass theorem, it remains to show that there
exists p > 0 such that for ||x|| = p, R(x) > a > 0. In fact, we will show that for
every sequence {x,} C WUP(Z) with ||x,|| = p» | 0, R(x,) > 0. Indeed, suppose
not. Then there exists some sequence {x,} such that R(x,) <0. Thus,

1
’ [| Dxa| < L J1(zx4(2)) dz, (3.36)

recall that j, > 0. Dividing this inequality by ||x,||? and letting y,(2z) = x,(2)/||xx]l,
then

IIDanIPS_[ pM dz. (3.37)
Z

[l ll”
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From H(j;)(iii) we have that for almost all z € Z, for any € > 0, we can find § >0
such that for |x| < 6,

Pii(zx) < (0(2) +¢)|x|P. (3.38)
On the other hand, as before for almost all z € Z and all |x| > §, we have
plivE )] <alxl +elxl?. (3.39)

Thus we can always find y > 0 such that p|ji(z,x)| < (6(z) +¢€)|x|? +y|x|?" for all
x € R. Indeed, choose y > ¢, +|0(z) +&—¢;||8|P~F", we obtain

xn(z
||Dyn||P<J‘ (6(2)+¢) |yn(z)|sz+yf | ”P dz

(3.40)
Sf (9(z)+£)|yn(z)|pdz+y1||xn||1’ B
z
Here we have used the fact that W'?(Z) embeds continuously in L¥" (Z). So
0< [[Dyall2 < el yullh+ 1]l (3.41)

Therefore, in the limit we have that |[Dy,||, — 0. Recall that y, — y weakly in
WULP(Z). So ||Dyll, <liminf||Dy,||, <limsup |[Dy,|l, — 0. So [[Dy|l, = 0, thus
y =& e R. Note that Dy, — Dy weakly in L?(Z) and ||Dy,l|l, — [[Dyll, s0 yn — y
in WL2(Z). Since || yq|| = 1, ||y]| = 1 so & # 0. Suppose that & > 0. Going back to
(3.40), we have

0< L (0(2)+€) ¥l (z) dz+y, || || 7. (3.42)
In the limit we have
0< L (0(z) +¢) &P dz < ekP|Z], (3.43)
recall that 6(z) < 0. Thus IZ 0(z)éP dz = 0. But this is a contradiction. So the
claim is proved.

By Theorem 2.2, there exists x € W#(Z) such that 0 € dR(x). That is, 0 €
oD (x) + 0y (x). So, we can say that

j w(z)y(z) = f ||Dx(z)||p_2 (Dx(z), Dy(z)) dz+f v(2)x(z)do (3.44)
z z r

for some w € L1 (Z) such that w(z) € 9j,(z,x(z)) for some v € dj2(z, 7(x(2)))
and for every y € W#(Z). Choose now y = s € C2(Z), we obtain

f w(z)s(z j || Dx(z ||P ?(Dx(z), Ds( (2)) dz. (3.45)
z
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But div(||Dx(z)||P~*Dx(z)) € L1 (Z) because w€ L1 (Z) (see Kenmochi [7, Propo-
sition 3.1, page 132]).

Going back to (3.44) and letting y = C*(Z) and finally using [7, the Green
formula 1.6], we have that —dx/dn, € dj,(z, 7(x(2))).
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