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By means of Morse theory we prove the existence of a nontrivial solution to a su-
perlinear p-harmonic elliptic problem with Navier boundary conditions having
a linking structure around the origin. Moreover, in case of both resonance near
zero and nonresonance at +oo the existence of two nontrivial solutions is shown.

1. Introduction and main results

Let p > 1 and Q C R" be a smooth bounded domain with n > 2p + 1. We are
concerned with the existence of nontrivial solutions to the p-harmonic equation

A(JAulP?Au) =g(x,u) inQ (1.1)
with Navier boundary conditions
u=Au=0 onoQ, (1.2)
where g : @ xR — R is a Carathéodory function such that for some C > 0,
lg(x )] < C(1+]s]77h) (1.3)

fora.e.xe Qandall se R, being 1 < g < p, and p. =np/(n-2p).
It is well known that the functional @ : W2?(Q)n W(; P(O)>R

@(u):lj |Au|de—j Glx,u) dx, (1.4)
Pla 0
with G(x,s) = [; g(x, 1) dt, is of class C' and

(D' (w) J |[AulP2AuApdx— J‘ glx, u)pdx (1.5)
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for each ¢ € W22(Q)N WOI’P (). Moreover, the critical points of @ are weak
solutions for (1.1). Notice that for the eigenvalue problem

A(JAulP?Au) = MulPu  in Q (1.6)

with boundary data (1.2), as for the p-Laplacian eigenvalue problem with Dirich-
let boundary data,

A, = inf supj |[AulPdx, n=12,... (1.7)
0

A€l ueA

is the sequence of eigenvalues, where
L= {AC W (@)W, (Q\{0}: A=A, y(A) > n}, (1.8)

being y(A) the Krasnoselski’s genus of the set A. This follows by the Ljusternik-
Schnirelman theory for C!'-manifolds proved in [13] applied to the functional

Tlaa(u) =f \Aul? dx,
0

(1.9)
M= {u € WZ’P(Q)OWOLP(Q) : I |ul? dx = 1},
o
since . is a C'-manifold with tangent space
T, M= {w e W2P(Q)n Wg’p(Q) : f [ulP2uwdx = 0}. (1.10)
Q

The next remark is the starting point of our paper.

Remark 1.1. It has been recently proved by Drabek and Otani [4] that (1.6) with
boundary data (1.2) has the least eigenvalue

Al(p):inf{j |AulP dx : ue WP (Q)n W, (Q), llullf = 1} (1.11)
Q

which is simple, positive, and isolated in the sense that the solutions of (1.6) with
A =1 (p) form a one-dimensional linear space spanned by a positive eigenfunc-
tion ¢, (p) associated with A;(p) and there exists § > 0 so that (A;(p),A:(p) +9)
does not contain other eigenvalues. The situation is actually more involved with
Dirichlet boundary conditions

u=Vu=0 onodQ (1.12)

and, to our knowledge, it is not clear whether the first eigenspace has the previ-
ous good properties; the fact is that while Navier boundary conditions allow to
reduce the fourth-order problem into a system of two second-order problems,
Dirichlet boundary conditions do not. Some pathologies are indeed known, for
instance, the first eigenfunction of A?u = Au with boundary data (1.12) may
change sign [12].



S.Liu and M. Squassina 127

Remark 1.2. Let V = span{¢,} be the eigenspace associated with A;, where
[¢1]l2,p = 1. Taking a subspace W ¢ WP ()N W;’P(.Q) complementing V, that
is, W»P(Q)n W(;’P(Q) = V@ W, there exists A > ; with

f |Au|de>ij |ul? dx (1.13)
Q Q

for each u € W (in case p = 2, one may take A = 1,).

We may now assume the following conditions:
(9€,) there exist R >0 and A e]/ll,/i[ such that

ls| <R == Ails]” < pGlx,s) < Als]P, (1.14)

fora.e.xeQand eachseR;
(#,) there exist 9 > p and M > 0 such that

Is| > M= 0<9G(x,s) <sg(x,s), (1.15)

fora.e. x € Q and each s e R.

Assumption (%) corresponds to a resonance condition around the origin
while (3,) is the standard condition of Ambrosetti-Rabinowitz type.

TaEOREM 1.3. Assume that conditions (¥,) and (¥,) hold. Then problem (1.1)
with boundary conditions (1.2) admits a nontrivial solution in WZ’P(Q)HW&’P(_Q).

Now replace (J€,) with a nonresonance condition at +oo.

THEOREM 1.4. Assume that condition (¥,) holds and that for a.e. x € Q

. pGx,s)

Isl=+oo  |s]?

<A (1.16)

Then problem (1.1) with boundary conditions (1.2) admits two nontrivial solutions
in W2P(Q)n W, (Q).

We use variational methods to prove Theorems 1.3 and 1.4. Usually, one uses
a minimax type argument of mountain pass type to prove the existence of so-
lutions of equations with a variational structure. However, it seems difficult to
use minimax theorems in our situation. Thus we will adopt an approach based
on Morse theory. Notice that there were a few works using Morse theory to treat
p-Laplacian problems with Dirichlet boundary conditions (see [9] and the ref-
erences therein). Moreover, to the authors’ knowledge, (1.1) has a very poor
literature; the only papers in which a p-harmonic equation is mentioned are
[1, Section 8] and [4].

The existence of multiple solutions depends mainly on the behaviour of
G(x,s) near 0 and at +oo. Without the above resonant or nonresonant condi-
tions to obtain multiple solutions seems hard even in the semilinear case p = 2.
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Remark 1.5. Arguing as in [9], it is possible to prove Theorem 1.4 by replacing
assumption (1.16) with the following conditions:

im M =\, lim {g(x,s)s—pG(x,s)} = +oo (1.17)

[s|=+oo |S|p |s|=+oo
for a.e. x € Q (resonance condition at +o0).
Remark 1.6. The existence of solutions u € Wg’P (Q) of the quasilinear problem

A(JAulP?Au) = g(x, u) in 0,

(1.18)
u=Vu=0 on o

under the previous assumptions (#;) is, to our knowledge, an open problem.

2. Proofs of Theorems 1.3 and 1.4

In this section, we give the proof of our main results. It is readily seen that

= fQ aul?d) " (2.1)

is an equivalent norm of the standard space norm of W2#(Q)n Wol’p (Q). For @
a continuously Fréchet differentiable map, let @' denote its Fréchet derivative.

LemMA 2.1. The functional @ satisfies the Palais-Smale condition.

Proof. Let (up) C W*P(Q)N W;’p(Q) be such that |®(uy)| < B, for some B >0
and @'(u,) —» 0ash— +oo. Letd = supy,>o P(up). Then we have

9d +[|unl|, , > 9D (un) = (D' (un), un)
9
_ <__1> ||uh||§p_j [9G (x, un) - g (x, up) ] dx
p {lunl=M)
- 9G (x, up) — g (x, up ) up| dx
L|uh|<M1 | (o)) (2.2)

9
> (oDl [ 1960w gl
p {lunl<M)

9 p
> (5-1) I, -0

for some D € R. Thus (uy,) is bounded and, up to a subsequence, we may as-
sume that u, — u is, for some u, in W>?(Q)n WOI’P (Q). Since the embedding
W2P(Q)Nn W&’P (Q) < L1(Q) is compact, then a standard argument shows that
up — u strongly and the proof is complete. O

Now recall the notion of “Local Linking,” which was initially introduced by
Liu and Li [8] and has been used in a vast amount of literature (cf. [2, 5, 6, 11]).
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Definition 2.2. Let E be a real Banach space such that E = V& W, where V and
W are closed subspaces of E. Let @ : E — R be a C!-functional. We say that @ has
a local linking near the origin 0 (with respect to the decomposition E = Ve W),
if there exists ¢ > 0 such that

ueV:jul| <o= o0(u) <0,
2.3
ueW:0<|ull <o= d(u) >0. (23)

We now show that our functional @ has a local linking near the origin with
respect to the space decomposition W2?(Q)n W(}’p (Q) = Ve W, according to
Remark 1.2.

LemMA 2.3. There exists ¢ > 0 such that conditions (2.3) hold with respect to the
decomposition W>P(Q)n WS’P(_Q) =VoW.

Proof. For u € V, the condition |Jul,, < ¢ implies u(x) < R for a.e. x € Q if
¢ > 0 is small enough, being R > 0 as in assumption (#(;). Thus foru e V,

1
= — P —
D(u) pfg |[Aul? dx L)G(x,u)dx

A ) (2.4)
=—‘f |u|de—j G(x,u)dx=f —llulp—G(x,u)] <0
pJa Q (ju<ry LP

provided that ||u||;,, < ¢ and @ is small.
To prove the second assertion, take u € W. In view of (1.3) and (1.13) we have

1
i P dy—
D(u) pL)|Au| dx L}G(x,u)dx

=1f (|Aul? —A|ul?) dx
PJao

—<I +f ><G(x,u)—&|u|1’>dx
{lWl<R)J {jul>R) p

1 A » S 1 A » ;
> (15 )1 e | it > 2 (12 ), ~Clal

where p < s < p, and ¢, C are positive constants. Since s > p, it follows that
@(u) > 0 for ¢ > 0 sufficiently small. O

(2.5)

Assume that u is an isolated critical point of @ such that ®(u) = c. We define
the critical group of @ at u by setting for each g € Z

Cy(@,u) = Hy (Do, D\ (1)), (2.6)

being H;(X, Y) the gth homology group of the topological pair (X, Y) over the
ring Z and @, the c-sublevel of @. For the detail of Morse theory and critical
groups, we refer the reader to [3].
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Since dimV =1 < +o0, by combining Lemma 2.3 and [7, Theorem 2.1], we
obtain the following result.

LeMMA 2.4. The point 0 is a critical point of @ and C,(®D,0) # {0}.
We now investigate the behavior of @ near infinity.

LeMMA 2.5. There exists a constant A > 0 such that
a<-A= Q,=8%, (2.7)

where S* ={u € W2>P(Q)OW01’P(Q) lullo,p =1},

Proof. By integrating inequality (1.15), we obtain a constant C; > 0 with
Is| > M= G(x,5) > Culsl? (2.8)

a.e. in 2 and for each s € R. Thus, for u € S*, we have ®(fu) — —oo, as t goes to
+oo. Set

A= <1+1>M§£”(Q) _max |g(x,s)|+1, (2.9)
P Ox[-M,M]

being £ the Lebesgue measure. As in the proof of [10, Lemma 2.4] we obtain

J‘Q G(x,u)dx— % fog(x, u)udx

L1 (2.10)
<(=-= (x, ) udx+A-1.
(9 P) J‘[|u>M}g
Fora < -A and
|t
O(tu)=—-| Gx,tu)dx<a (ueS®), (2.11)
P Jao
in view of (2.8) and (2.10), arguing as in the proof of [10, Lemma 2.4],
d
= O(tu) < 0. (2.12)

dt

By the implicit function theorem, there is a unique T' € C(5%, R) such that
VueS®, O(T(wu)=a. (2.13)

Foru #0, set T(u)= (/|lull2,p) T (u4/||uel|,p). Then TeC(W*P(Q)N W(:’P(_Q)\{O},
R) and

Vue W (Q)nW,P(@\(0}), o(T(w)u)=a. (2.14)
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We define now a functional T': W2 (Q)n Wol’p(Q)\{O} — R by setting

Plu) = T(u) %fq)(u) >a, (2.15)
1 if ©(u) <
Since @(u) = a implies T(u) = 1, we conclude that
T e C(W*P(Q)nW,?(2)\(0},R). (2.16)

Finally, let 77: [0, 1] x WZ’P(Q)OWOI’p(Q)\{O} — W2>P(Q)0W3’p(9)\{0},
n(s,u) = (1-s)u+sT(wu. (2.17)

It results that 7 is a strong deformation retract from W>#(Q)n W&’P (2)\{0} to

@,. Thus @, = W2 (Q)n W, P (Q)\{0} = §=. 0

Remark 2.6. A result similar to Lemma 2.5 has been proved for the Laplacian —A
n [3, 14], under the additional conditions

0g(x,t)

g € CI(QXR) R)) gt(x) O) = a
t o

=0. (2.18)
We recall the following topological result due to Perera [11].
LemMAa 2.7. Let Y C B C A C X be topological spaces and q € Z. If
Hy(A,B)#{0},  Hy(X,Y)=1{0}, (2.19)
then it results that
Hya(X,A)#{0)  or  Hya(BY)#(0). (2.20)

Proof of Theorem 1.3. By Lemma 2.1, @ satisfies the Palais-Smale condition. Note
that @(0) = 0, by [3, Chapter I, Theorem 4.2], there exists ¢ > 0 with

Hy (., D_) = C(®,0) # {0}. (2.21)
If A is as in Lemma 2.5, for a < —A we have @, = §*, which yields
H (WP (Q)nW,?(Q), ®,) = Hi (WP (Q)n W, P (2),8°) = {0}.  (2.22)
Therefore, being @, € _, C O,, Lemma 2.7 yields
Hy(W*P(@Q)nW,P(Q), @) #{0)  or  Ho(0,®,) #{0}. (223)
It follows that @ has a critical point u for which
O(u) >¢ or —-e>0(u) >a. (2.24)

Therefore, u # 0 and (1.1), (1.2) possess a nontrivial solution. O
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Recall from [9] the following three-critical point theorem.

LemMA 2.8. Let X be a real Banach space and let ® € C'(X,R) be bounded from
below and satisfying the Palais-Smale condition. Assume that @ has a critical point
u which is homologically nontrivial, that is, C;(®, u) # {0} for some j, and it is not
a minimizer for . Then © admits at least three critical points.

Proof of Theorem 1.4. By Lemma 2.8, taking into account Lemma 2.4, it suffices
to show that @ is bounded from below. Indeed, by (1.16) there exist ¢ > 0 small
and C > 0 such that

)h—s

G(x,s) < s|P +C (2.25)

for a.e. x € Q and each s € R. This, by (1.11), immediately yields

1 1
Ou) > Slluly, =5 (i —e) lullp - C£"(@)

Ai—¢
(-
A
as ||lull,,p — +oo. Then @ is coercive and satisfies the Palais-Smale condition. In

particular Lemma 2.8 provides the existence of at least two nontrivial critical
points of ®. O

(2.26)

>||u||§p—c58"(9) — +o0

WV
S
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