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This work is devoted to the study of a quasilinear elliptic system of resonant type.
We prove the existence of infinitely many solutions of a related nonlinear eigen-
value problem. Applying an abstract minimax theorem, we obtain a solution of
the quasilinear system −∆pu = Fu(x,u,v), −∆qv = Fv(x,u,v), under conditions
involving the first and the second eigenvalues.

1. Introduction

1.1. The problem and some previous results. We consider a gradient elliptic
system

−∆pu = Fu(x,u,v), −∆qv = Fv(x,u,v). (1.1)

Elliptic problems involving the p-Laplacian have been studied by several au-
thors (cf. [3, 7, 8, 10, 11]). We recall some results from the work of Boccardo and
de Figueiredo [4].

It is well known that the solutions of (1.1) in W =W1,p
0 (Ω)×W1,q

0 (Ω) are the
critical points of the functional

Φ(u,v) =
1
p

∫
Ω
|∇u|p +

1
q

∫
Ω
|∇v|q−

∫
Ω
F(x,u,v) (1.2)

under the following three assumptions:

(1) Ω ⊂ R
N is a bounded domain, 1 < p,q < N , so that the following contin-

uous embeddings hold:

W
1,p
0 (Ω) ⊂ Lp∗(Ω), W

1,q
0 (Ω) ⊂ Lq∗(Ω); (1.3)
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(2) F : Ω̄×R×R → R is C1 and verifies the following growth condition:

∣∣F(x, s, t)
∣∣ ≤ c(1+ |s|p∗ + |t|q∗) ∀x ∈ Ω̄; s, t ∈ R; (1.4)

(3) in order to have Φ ∈ C1(W,R), we assume
∣∣Fs(x, s, t)∣∣ ≤ C(1+ |s|p∗−1 + |t|q∗(p∗−1)/p∗) ∀x ∈ Ω̄; s, t ∈ R,
∣∣Ft(x, s, t)∣∣ ≤ C(1+ |t|q∗−1 + |s|p∗(q∗−1)/q∗) ∀x ∈ Ω̄; s, t ∈ R.

(1.5)

The geometry of Φ depends strongly on the values of α and β in the estimate

∣∣F(x, s, t)
∣∣ ≤ c(1+ |s|α+ |t|β) ∀x ∈ Ω̄; s, t ∈ R, (1.6)

where α ≤ p∗, β ≤ q∗. In this work we are interested in the case α = p, β = q
(systems of resonant type).

In our case, it is quite adequate to assume the following condition on F: con-
sider the function

L(x, s, t) =
1
p
Fs(x, s, t)s+

1
q
Ft(x, s, t)t−F(x, s, t). (1.7)

Assume that

lim
‖(s,t)‖→∞

L(x, s, t) = ±∞ uniformly for x ∈Ω. (1.8)

This assumption implies that Φ satisfies the following compactness Cerami con-
dition.

Definition 1.1. Let X be a Banach space and Φ ∈ C1(X,R). Given c ∈ R, we say
that Φ satisfies condition (Cc), if

(1) any bounded sequence (un) ⊂ X such that Φ(un) → c and Φ′(un) → 0 has
a convergent subsequence;

(2) there exist constants δ,R,α > 0 such that

∥∥Φ′(u)
∥∥‖u‖ ≥ α ∀u ∈Φ−1([c−δ,c+δ]

)
with ‖u‖ ≥ R. (1.9)

If Φ ∈ C1(X,R) satisfies condition (Cc) for every c ∈ R, we say that Φ satisfies
condition (C).

Condition (C) was introduced by Cerami [5]. It was shown in [2] that from
condition (C) it is possible to obtain a deformation lemma, that is fundamental
in order to get minimax theorems.

In order to avoid resonance, Boccardo and de Figueiredo [4] introduced an
assumption on F involving an eigenvalue problem

−∆pu−aGu(u,v) = λ|u|p−2u,

−∆qv−aGv(u,v) = λ|v|q−2v,
(1.10)
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where a = a(x) ∈ L∞(Ω) and G is a C1 even function G : R → [0,∞) such that

G
(
c1/ps, c1/qt

)
= cG(s, t) ∀c > 0, (1.11)

G(s, t) ≤ K
(

1
p
|s|p +

1
q
|t|q

)
. (1.12)

We call such a G a (p,q) homogeneous function.
It is easy to see that (1.11) implies (1.12). A (p,q)-homogeneous function

satisfies

1
p
Gs(s, t)s+

1
q
Gt(s, t)t = G(s, t). (1.13)

Examples of (p,q) homogeneous functions are

(1) G(s, t) = c1|s|p +c2|t|q,
(2) G(s, t) = c|s|α|t|β with α/p+β/q = 1 where c, c1, c2 are constants.

The following results are proved in [4].

Theorem 1.2. Problem (1.10), with G as above, has a first eigenvalue λ1(a), char-
acterized variationally by

λ1(a) = inf
(u,v) �=(0,0)

(1/p)
∫
Ω |∇u|p +(1/q)

∫
Ω |∇v|q− ∫Ω aG(u,v)

(1/p)
∫
Ω |u|p +(1/q)

∫
Ω |v|q (1.14)

which depends continuously on a in the L∞-norm.

Theorem 1.3. Assume (1.5), (1.6) with α = p, β = q, and that the following con-
ditions hold:

(1) there exist positive numbers c, R, µ, and ν such that

1
p
sFs(x, s, t)+

1
q
tFt(x, s, t)−F(x, s, t) ≥ c(|s|µ+ |t|ν) for |s|, |t| > R, (1.15)

(2) there exists G as above, such that

lim sup
|s|,|t|→∞

F(x, s, t)
G(s, t)

≤ a(x) ∈ L∞(Ω), (1.16)

where λ1(a) > 0.

Then the functional Φ is bounded from below and the infimum is achieved.

1.2. The existence of infinitely many eigenfunctions. Let � be the class of com-
pact symmetric (C = −C) subsets of the space W . We recall that for C ∈ � the
Krasnoselskii genus gen(C) is defined as the minimum integer n such that there
exists an odd continuous mapping ϕ : C→ (Rn−{0}) (cf. [1]). We note

�k =
{
C ∈ � : gen(C) ≥ k}. (1.17)
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For an arbitrary symmetric subset S of W −{0} the genus over compact sets γ(S)
is defined by

γ(S) = sup
{

gen(C) : C ⊂ S, C ∈ �, C compact
}
. (1.18)

Now we may state our main result on the eigenvalue problem.

Theorem 1.4. The eigenvalue problem (1.10), withG as above, has infinitely many
eigenfunctions given by

λk(a,G) = inf
C∈�k

sup
(u,v)∈C

(1/p)
∫
Ω |∇u|p +(1/q)

∫
Ω |∇v|q− ∫Ω aG(u,v)

(1/p)
∫
Ω |u|p +(1/q)

∫
Ω |v|q (1.19)

and λk(a,G) → ∞ as k → ∞. Moreover, λk depends continuously on a in the L∞-
norm.

Remark 1.5. Equivalently if we define

S =
{

(u,v) ∈W :
1
p

∫
Ω
|u|p +

1
q

∫
Ω
|v|q = 1

}
, (1.20)

we have

λk(a,G) = inf
C∈�k ,C⊂S

sup
(u,v)∈C

1
p

∫
Ω
|∇u|p +

1
q

∫
Ω
|∇v|q−

∫
Ω
aG(u,v). (1.21)

We will write λk(a) instead of λk(a,G), when the dependence on the (p,q)-
homogeneous function G is clear from the context.

1.3. The existence result for resonant systems. Applying Theorem 1.4 and an
abstract minimax principle from [9], we prove the following theorem.

Theorem 1.6. Assume that F : Ω ×R ×R → R verifies (1.5), (1.6) with α = p,
β = q, (1.8), and that a1,a2 ∈ L∞(Ω) satisfy

a1(x) ≤ lim inf
|s|,|t|→∞

F(x, s, t)
G1(s, t)

≤ lim sup
|s|,|t|→∞

F(x, s, t)
G2(s, t)

≤ a2(x) (1.22)

with G1 andG2 two (p,q)-homogeneous functions and λ1(a1,G1) < 0 < λ2(a2,G2),
where λ1(a1,G1), λ2(a2,G2) are given by (1.19). Then problem (1.1) has at least
one solution.

Remark 1.7. The conditions above could be reformulated in terms of a different
eigenvalue problem, for a ∈ L∞(Ω), a(x) > 0

−∆pu = µaGu(u,v), −∆qv = µaGv(u,v). (1.23)

This problem also has infinitely many eigenvalues given by

µk(a) = inf
C∈�k

sup
(u,v)∈C

(1/p)
∫
Ω |∇u|p +(1/q)

∫
Ω |∇v|p∫

Ω aG(u,v)
. (1.24)
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The condition λ1(a) < 0 is equivalent to µ1(a) < 1, and the condition λ2(a) > 0
is equivalent to µ2(a) > 1.

Remark 1.8. As an example for Theorem 1.6, we may take

G1(s, t) = G2(s, t) = |s|α|t|β (1.25)

with α/p+β/q = 1;

F(x, s, t) = λ|s|α|t|β +c|s|µ|t|δ, (1.26)

where c �= 0 is a constant, and we assume that

µ1(1) < λ < µ2(1) (1.27)

and µ < α, δ < β, where µ1(1), µ2(1) are defined as above (with a ≡ 1).

2. The eigenvalue problem

2.1. The functional framework. We apply the following abstract theorem due
to Amann [1].

Theorem 2.1. Suppose that the following hypotheses are satisfied:

• X is a real Banach space of infinite dimension, that is uniformly convex;
• A : X → X∗ is an odd potential operator (i.e.,A is the Gateaux derivative of

� : X → R) which is uniformly continuous on bounded sets, and satisfies
condition (S)1: if uj ⇀ u (weakly in X) and A(uj) → v, then uj → u
(strongly in X).

• For a given constant α > 0, the level set

Mα =
{
u ∈ X : �(u) = α

}
(2.1)

is bounded and each ray through the origin intersects Mα. Moreover, for
every u �= 0, 〈A(u),u〉 > 0 and there exists a constant ρα > 0 such that
〈A(u),u〉 ≥ ρα on Mα.

• The mapping B : X → X∗ is a strongly sequentially continuous odd poten-
tial operator (with potential �), such that �(u) �= 0 implies that B(u) �= 0.

Let

βk = sup
C∈�,C⊂Mα

inf
u∈C

�(u). (2.2)

Then if βk > 0, there exists an eigenfunction uk ∈Mα with �(u) = βk. If

γ
({
u ∈Mα : �(u) �= 0

})
=∞, (2.3)

then there exist infinitely many eigenfunctions.
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We will work in the Banach space

W =W1,p
0 (Ω)×W1,q

0 (Ω) (2.4)

equipped with the norm

∥∥(u,v)
∥∥
W =

√
‖u‖2

p +‖v‖2
q. (2.5)

As each factor is uniformly convex, we can conclude that W is uniformly convex
(see [6]). Given (u∗, v∗) ∈W−1,p′(Ω)⊕W−1,q′(Ω) we may think of it as an element
of W∗:

〈(
u∗, v∗

)
,(u,v)

〉
=
〈
u∗,u

〉
+
〈
v∗, v

〉
. (2.6)

Then we have W∗ ∼=W−1,p′(Ω)⊕W−1,q′(Ω) (isometric isomorphism), where the
norm in W∗ is given by

∥∥(u∗, v∗)∥∥W∗ =
√∥∥u∗∥∥2 +

∥∥v∗∥∥2
. (2.7)

With the notations of Theorem 2.1, we define

�0(u,v) =
1
p

∫
Ω
|∇u|p +

1
q

∫
Ω
|∇v|q, (2.8)

�(u,v) = �0(u,v)−
∫
Ω
aG(u,v)+M

(
1
p

∫
Ω
|u|p +

1
q

∫
Ω
|v|q

)
, (2.9)

with a and G as in the statement of Theorem 1.4, and M a fixed constant such
that M > K‖a‖L∞ , where K is the constant in (1.12).

We write �a instead of � when we want to remark the dependence on the
weight a

A(u,v) =
(−∆pu−aGu(u,v)+M|u|p−2u,−∆qv−aGq(u,v)+M|v|q−2v

)
,

�(u,v) =
1
p

∫
Ω
|u|p +

1
q

∫
Ω
|v|q,

B(u,v) =
(|u|p−2u, |v|q−2v

)
.

(2.10)

In order to apply Theorem 2.1, we prove the following two lemmas.

Lemma 2.2. (1) A is uniformly continuous on bounded sets.
(2) A verifies the (S)1 condition.

Proof. We write A = A1−A2, where

A1(u,v) =
(−∆pu,−∆qv

)
,

A2(u,v) =
(
aGu(u,v)−M|u|p−2u,aGv(u,v)−M|v|q−2v

)
.

(2.11)
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We claim thatA2 : W →W∗ verifies that: if (uj ,vj) ⇀ (u,v) inW , thenA2(uj ,vj)
→ A2(u,v) in W∗.

Indeed, if (uj ,vj) ⇀ (u,v), then

(
uj ,vj

) −→ (u,v) in Lp(Ω)×Lq(Ω) (2.12)

and we obtain that

Gu
(
uj ,vj

) −→ Gu(u,v) in Lp
′
(Ω),

Gv
(
uj ,vj

) −→ Gv(u,v) in Lq
′
(Ω).

(2.13)

Hence, A2(uj ,vj) → A2(u,v) in W∗.
Let (uj ,vj) ⇀ (u,v) in W such that

A
(
uj ,vj

) −→ (z,w). (2.14)

Therefore A2(uj ,vj) → A2(u,v) and then A1(uj ,vj) → (z,w)+A2(u,v). Since A1

verifies condition (S)1, it follows that (uj ,vj) → (u,v). �

Lemma 2.3. (1) The set Mα = {(u,v) ∈W : � = α} is bounded.
(2) Every ray t ·(u,v) with (u,v) �= 0 intersects Mα.
(3) There exists a constant ρα > 0 such that

〈
A(u,v),(u,v)

〉 ≤ ρα. (2.15)

(4) Condition (2.3) is satisfied.

Proof. (1) As we have fixed M > K‖a‖L∞ on Mα, then

α = �(u,v) ≥ 1
p
|∇u|p +

1
q
|∇v|q (2.16)

and the proof is complete.
(2) Let f (c) = �(c(u,v)), f (0) = 0,

f (c) =
cp

p

∫
Ω
|∇u|p +

cq

q

∫
Ω
|∇v|q

−
∫
Ω
aG(cu,cv)+M

(
cp

p

∫
Ω
|u|p +

cq

q

∫
Ω
|v|q

)
.

(2.17)

From (1.12) and the choice of M, we have

f (c) ≥ cp

p

∫
Ω
|∇u|p +

cq

q

∫
Ω
|∇v|q −→ +∞ (2.18)

as c→∞. Since f is continuous, there exists c ∈ R such that f (c) = α.
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(3) We have

〈
A(u,v),(u,v)

〉
=
∫
Ω
|∇u|p +

∫
Ω
|∇v|q

−
∫
Ω
a
[
Gu(u,v)u+Gv(u,v)v

]
+M

(∫
Ω
|u|p +

∫
Ω
|v|q

)
.

(2.19)

Then, using (1.13)

〈
A(u,v),(u,v)

〉 ≥ min{p,q}�(u,v) = min{p,q}α. (2.20)

(4) In order to see that γ(Mα) ≥ k, it is enough to show that Mα contains
subsets homeomorphic to the unit sphere in R

k by an odd homeomorphism.
Hence, the proof is completed. �

2.2. The continuous dependence of λk(a) on a. In this section we prove that
the eigenvalue λk(a) depends continuously on the weight a in the L∞-norm.
This result will be used for proving Lemma 3.3.

Proposition 2.4. The eigenvalue λk(a) depends continuously on a in the L∞-
norm.

Proof. We have

∣∣�a(u,v)−�b(u,v)
∣∣ ≤ K ‖a−b‖L∞

(
1
p

∫
Ω
|u|p +

1
q

∫
Ω
|v|q

)
, (2.21)

whereK is given by condition (1.12), with �a, �b as above. Let ε > 0. Then there
exists C ∈ �k, C ⊂ S such that

sup
(u,v)∈C

�a(u,v) ≤ λk(a)+
ε

2
. (2.22)

Then for any (u,v) ∈ C, if ‖a−b‖L∞ ≤ δ = ε/2K we get

�b(u,v) ≤ �a(u,b)+
ε

2
≤ λk(a)+ε. (2.23)

It follows that

sup
(u,v)∈C

�b(u,v) ≤ λ2(a)+ε (2.24)

and we obtain

λk(b) ≤ λk(a)+ε. (2.25)

By reversing the roles of a and b, we get |λk(a)−λk(b)| ≤ ε. �
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3. Proof of the existence theorem

3.1. A minimax principle. Our main tool for proving Theorem 1.6 will be an
abstract minimax principle due to El Amrouss and Moussaoui [9].

Theorem 3.1. Let Φ be a C1 functional on X satisfying condition (C), let Q be a
closed connected subset of X such that ∂Q∩∂(−Q) �= ∅, and let β ∈ R. Assume that

(1) for every K ∈ �2 there exists vK ∈ K such that Φ(vK ) ≥ β and Φ(−vK )
≥ β,

(2) a = sup∂Q Φ < β,
(3) supQΦ <∞.

Then Φ has a critical value c ≥ β given by

c = inf
h∈Γ

sup
x∈Q

Φ
(
h(x)

)
, (3.1)

where Γ = {h ∈ C(X,X) : h(x) = x for every x ∈ ∂Q}.

3.2. Compactness conditions

Lemma 3.2. Suppose that F satisfies (1.6), (1.8), and (1.22). Then the functional
Φ, given by (1.2), satisfies the Cerami condition.

Proof. In a similar way to [9, Lemma 3.1], we see that the first condition in
Definition 1.1 holds.

We will prove that the second condition in Definition 1.1 holds, in the case
L(x, s, t) → −∞ as ‖(s, t)‖ → ∞ (the case L(x, s, t) → +∞ is similar). To do that,
assume by contradiction that there exists a sequence (un,vn)n∈N ⊂W such that

Φ
(
un,vn

) −→ c, εn =
∥∥Φ′(un,vn)∥∥∥∥(un,vn)∥∥ −→ 0,

∥∥(un,vn)∥∥ −→∞.
(3.2)

Therefore,
∣∣∣∣ 1
p

〈
Φu

(
un,vn

)
,un

〉
+

1
q

〈
Φv

(
un,vn

)
, vn

〉−Φ(
un,vn

)∣∣∣∣ −→ c (3.3)

or equivalently

lim
n→∞

∣∣∣∣
∫
Ω

1
p
Fu

(
x,un,vn

)
un+

1
q
Fv
(
x,un,vn

)
vn−F

(
x,un,vn

)∣∣∣∣ = c. (3.4)

We define

zn = α
1/p
n un, wn = α

1/q
n vn, (3.5)

where

αn =
1

�0
(
un,vn

) −→ 0 (3.6)
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with �0 given by definition (2.8). We have that �0(zn,wn) = 1 so (zn,wn) is
bounded in W . After passing to a subsequence, we may assume that

zn z in W1,p(Ω),

wn w in W1,q(Ω),

zn −→ z in Lp(Ω), a.e. in Ω,

wn −→ w in Lq(Ω), a.e. in Ω.

(3.7)

Now we show that (z,w) �= (0,0)

Φ
(
un,vn

)
�0

(
un,vn

) = 1−
∫
ΩF

(
x,un,vn

)
�0

(
un,vn

) . (3.8)

From (1.22), we get that for any ε > 0, there exists Cε > 0 such that

F(x, s, t) ≤ (
a2(x)+ε

)
G2(s, t)+Cε. (3.9)

As a consequence
∫
Ω
F
(
x,un,vn

) ≤
∫
Ω

(
a2(x)+ε

)
G2

(
un,vn

)
+Cε|Ω|, (3.10)

then ∫
ΩF

(
x,un,vn

)
�0

(
un,vn

) ≤ αn
∫
Ω

(
a2(x)+ε

)
G2

(
un,vn

)
+Cε|Ω|αn. (3.11)

Since

αn

∫
Ω

(
a2(x)+ε

)
G2

(
un,vn

)
=
∫
Ω

(
a2(x)+ε

)
G2

(
zn,wn

)
(3.12)

in the limit we get

0 ≥ 1−
∫
Ω

(
a2(x)+ε

)
G2(z,w) (3.13)

and we conclude that G2(z,w) �≡ 0.
Let

L(x, s, t) =
1
p
Fs(x, s, t)s+

1
q
Ft(x, s, t)t−F(x, s, t). (3.14)

By (1.8) (and since L is continuous), L(x, s, t) ≤ −M. It follows that
∫
Ω
L
(
x,un,vn

) ≤
∫
{G2(z,w) �=0}

L
(
x,un,vn

)
+M

∣∣{x : G2
(
z(x),w(x)

)
= 0

}∣∣. (3.15)

Note that

αnG2
(
un,vn

) −→ G2(z,w). (3.16)
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So in the set {x : G2(z(x),w(x)) �= 0}, G2(un,vn) → +∞, and then by (1.11), we
have that un(x), vn(x) → ∞. It follows that L(un,vn) → −∞ by condition (1.8).
Hence the first integral tends to −∞ by Fatou lemma, and we get

lim
n→∞

∫
Ω
L
(
x,un,vn

)
= −∞. (3.17)

This contradicts (3.4), and the proof is completed. �

3.3. Geometric conditions. In this section we show that the functional Φ satis-
fies the geometric conditions of Theorem 3.1.

Lemma 3.3. Let F satisfy the assumptions of Theorem 1.6. Then the functional Φ,
given by (1.2), satisfies

(1) there exists (ϕ,ψ) ∈W such that Φ(c1/pϕ,c1/qψ) →−∞ as c→ +∞;
(2) for everyK ∈ �2 there exists (uK ,vK ) ∈ K and β ∈ R such thatΦ(uK ,vK ) ≥

β and Φ(−uK ,−vK ) ≥ β.

Proof. (1) As λ1(a,G1) < 0, we may choose ε > 0 such that λ1(a1 − ε,G1) < 0. Let
(ϕ,ψ) be the first eigenfunction for the problem

−∆pu−
(
a1(x)−ε)G1u(u,v) = λ|u|p−2u in Ω,

−∆qv−
(
a1(x)−ε)G1v(u,v) = λ|v|q−2v in Ω,

u = v = 0 in ∂Ω,

(3.18)

normalized by

1
p

∫
Ω
|ϕ|p +

1
q

∫
Ω
|ψ|q = 1. (3.19)

Then, using (1.13), we get

1
p

∫
Ω
|∇ϕ|p +

1
q

∫
Ω
|∇ψ|q−

∫
Ω

(
a1(x)−ε)G1(u,v) = λ1

(
a1−ε,G1

)
. (3.20)

By (1.22), we have

F(x, s, t) ≥ (
a1(x)−ε)G1(s, t)−Cε. (3.21)

It follows that

Φ
(
c1/pϕ,c1/qψ

) ≤ c
(

1
p

∫
Ω
|∇ϕ|p +

1
q

∫
Ω
|∇ψ|q

−
∫
Ω

(
a1(x)−ε)G1(ϕ,ψ)

)
+Cε|Ω|

≤ cλ1
(
a1−ε,G1

)
+Cε|Ω|,

(3.22)

and so Φ(c1/pϕ,c1/qψ) →−∞ as c→ +∞.
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(2) Since λ2(a2,G2) > 0, we may choose ε > 0 such that λ2(a2 + ε,G2) > 0.
Given K ∈ �2 and this ε > 0, we claim that there exists (uK ,vK ) ∈ K verifying

λ2
(
a2 +ε,G2

)( 1
p

∫
Ω

∣∣uK ∣∣p +
1
q

∫
Ω

∣∣vK ∣∣q
)

≤ 1
p

∫
Ω

∣∣∇uK ∣∣p +
1
q

∫
Ω

∣∣∇vK ∣∣q−
∫
Ω

(
a2(x)+ε

)
G2

(
uK ,vK

)
.

(3.23)

By (1.22), we have

F(x, s, t) ≤ (
a2(x)+ε

)
G2(s, t)+Cε. (3.24)

It follows that

Φ
(
uK ,vK

) ≥ 1
p

∫
Ω

∣∣∇uK ∣∣p +
1
q

∫
Ω

∣∣∇vK ∣∣q

−
∫
Ω

(
a2(x)+ε

)
G2

(
uK ,vK

)−Cε|Ω|

≥ λ2
(
a2 +ε,G2

)( 1
p

∫
Ω

∣∣uK ∣∣p +
1
q

∫
Ω

∣∣vK ∣∣q
)
−Cε|Ω|

≥ −Cε|Ω| = β.

(3.25)

Similarly,

Φ
(−uK ,−vK) ≥ −Cε|Ω| = β. (3.26)

�

3.4. Proof of Theorem 1.6. We apply Theorem 3.1. We take

Q =
{(|c|1/p−1cϕ, |c|1/q−1cψ

)
, −R ≤ c ≤ R}, (3.27)

where (ϕ,ψ) is given by Lemma 3.3. Q is closed and compact (it is the image of
[−R,R] under a continuous mapping). Also ∂Q = ∂(−Q) = {(±R1/pϕ,±R1/qψ)} �=
∅. By Lemma 3.3 if we choose R big enough, we have

sup
∂Q

Φ < β. (3.28)

Also supQΦ < +∞ since Q is compact and Φ is continuous. The functional Φ
verifies condition (C) by Lemma 3.2. Then all the conditions of Theorem 3.1 are
fulfilled and the proof is completed. �
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actas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón
I, (1428) Buenos Aires, Argentina

E-mail address: mcmarian@dm.uba.ar

http://www.ime.unicamp.br/rel_pesq/1997/rp51-97.html
http://www.ime.unicamp.br/rel_pesq/1997/rp51-97.html
mailto:pdenapo@dm.uba.ar
mailto:mcmarian@dm.uba.ar

