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We prove that the class of regular saddle surfaces in the hyperbolic or spherical
three-space coincides with the class of regular surfaces with curvature not greater
than the curvature of the surrounding space. We also show that a similar result
for nonregular surfaces is incorrect.

1. Introduction

Among surfaces in a three-dimensional Euclidean space E3, two classes of sur-
faces are of fundamental importance: the convex and saddle surfaces. A saddle
surface is a surface from which it is impossible to cut off a crust by any plane. In
the regular case, each of the above classes is closely connected with the sign of the
Gaussian curvature; a regular convex surface has nonnegative Gaussian curva-
ture at each point and a saddle surface has a nonpositive Gaussian curvature. In
fact, the class of regular saddle surfaces in E3 coincides with the class of regular
surfaces of nonpositive Gaussian curvature [3]. In our work, we extend the char-
acterization of regular saddle surfaces in E3 to simply connected 3-manifolds of
constant curvature. Notice that it is still an open question whether a regular sur-
face in En (n > 3) of nonpositive curvature is a saddle surface [1, page 12]. Our
main result is the following theorem.

Theorem 1.1. A regular surface in a hyperbolic or spherical three-space is a saddle
surface if and only if its Gaussian curvature is everywhere not greater than the
curvature of the surrounding space.

Theorem 1.1 and its proof employ a new metric definition of a saddle surface
that is equivalent to the classical definition. This definition enables us to take
advantage of the geodesic structure of spaces of constant curvature, as well as the
existence of geodesic mappings between the Euclidean space and the hyperbolic
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and spherical three-space. For our purposes, we use the Beltrami-Klein model
for the hyperbolic three-space because of its simple geodesic structure.

In Section 2, we briefly discuss saddle surfaces in spaces of constant curva-
ture and their relation with geodesic mappings (Corollary 2.3). In Section 3, we
prove Theorem 1.1, and in Section 4, we present an example showing that the
condition of regularity in Theorem 1.1 is essential. Now, we discuss some neces-
sary terminology.

The Beltrami-Klein model for the hyperbolic three-space H3
κ (κ < 0) is rep-

resented by the set {(x1,x2,x3) ∈ R3 : x2
1 + x2

2 + x2
3 < 1/(−κ)} equipped with the

metric tensor

ds2 =
(

1/κ+
∑3

i=1 x
2
i

)(∑3
i=1dx

2
i

)
−
(∑3

i=1 xi dxi
)2

κ
(

1/κ+
∑3

i=1 x
2
i

)2 . (1.1)

In this model, a geodesic segment is a Euclidean line segment, and an orthogonal
transformation of R3 is a Beltrami-Klein isometry (the converse is not correct).
A regular surface in the Beltrami-Klein model of H3

κ (κ < 0) is a surface which
can be locally represented as the graph of a C2-function of two variables, which
has everywhere a (nonzero) normal vector, and is inside the ball x2

1 + x2
2 + x2

3 <
1/(−κ).

The spherical three-space is an open hemisphere of E4,

S
3
+

(
κ−1/2)=

{(
x1,x2,x3,x4

)∈R
4 : x2

1 + x2
2 + x2

3 + x2
4 =

1
κ
, x4 > 0

}
, κ > 0,

(1.2)
equipped with the induced metric. As it is well known, a geodesic segment in
this space is an arc of a great circle. A linear transformation of R4 represented
by a matrix of the form

(A3×3 0
0 1

)
with A orthogonal is an isometry of the upper

open hemisphere in E4. A regular surface in S3
+(κ−1/2) is a surface represented in

the form

r(x, y)= a
(
x, y, f (x, y),κ−1/2), (1.3)

where a= (1 + κx2 + κy2 + κ f 2(x, y))−1/2 and f is a regular function of two vari-
ables.

Both H3
κ and S3

+(κ−1/2) are Riemannian simply connected manifolds of con-
stant sectional curvature κ in which any pair of points can be joined by a unique
geodesic segment.

2. Saddle surfaces in E3, H3
κ, S3

+(κ−1/2)

In this section, M denotes anyone of the spaces E3, H3
κ, S3

+(κ−1/2). The convex
hull of a subset A⊂M, denoted by conv(A), is defined to be the smallest convex
set which contains the subset A; conv(A) can be also realized as the union of
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all sets G(n)(A), with G(0)(A)= A, G(1)(A) is the union of all geodesic segments
between points of A, and G(n)(A)=G(1)(G(n−1)(A)) for any n > 1.

A surface f in M is any continuous mapping f : D →M, where D denotes
the closed unit disk on the plane. In the Euclidean space E3 we say that a plane
P cuts off a crust from the surface f if among the connected components of
f −1( f (D) �P) there is one with positive distance from the boundary of D. If U
is such a component, then the set f (U) is called a crust.

A surface f in E3 is said to be a saddle surface if it is impossible to cut off a
crust from it by any plane.

Saddle surfaces in H3
κ and S3

+(κ−1/2) can be defined by means of the operation
of cutting off crusts by hyperbolic or spherical planes. Instead of this definition
we will make use of the following equivalent coordinate free definition, first in-
troduced in [2], which depends only on the geodesic structure of the surround-
ing space.

Definition 2.1. A surface f in H3
κ and S3

+(κ−1/2) is said to be a saddle surface if

f (intγ)⊂ conv
(
f (γ)

)
(2.1)

for every Jordan curve γ in the closed unit disk having positive distance from the
unit circle.

Saddle surfaces in H3
κ and S3

+(κ−1/2) can be simply characterized (Corollary
2.3) by means of the following two geodesic mappings between the Euclidean
space and H3

κ and S3
+(κ−1/2). A mapping between two spaces which preserves

geodesic segments is called a geodesic mapping.

The inclusion mapping id : H3
κ → E3. Consider the Beltrami-Klein model of H3

κ

(κ < 0). Since geodesic segments in the Beltrami-Klein model of H3
κ coincide

with the Euclidean line segments, the inclusion mapping id : H3
κ → E3 with

id(x)= x and its inverse are geodesic mappings.

The central projection ϕ : S3
+(κ−1/2) → E3. Consider the central projection

ϕ : S3
+(κ−1/2) → E3 (κ > 0) with ϕ(x1,x2,x3,x4) = κ−1/2(x1/x4,x2/x4,x3/x4). The

central projection takes a point x on S3
+(κ−1/2) to the intersection of the hyper-

plane {x4 = κ−1/2} ≡ E3 with the straightline through the point x and the ori-
gin of E4. Under the mapping ϕ great circles go to straightlines and vice versa.
Therefore, both ϕ and ϕ−1 are geodesic mappings.

Let N be anyone of the spaces E3, H3
κ, S3

+(κ−1/2). The next proposition follows
directly from the definition of saddle surfaces and convex hull.

Proposition 2.2. If f : D→M is a saddle surface, and ϕ : M→N is a continuous
geodesic mapping, then ϕ◦ f is a saddle surface in N .

Corollary 2.3. (i) A surface in H3
κ is a saddle surface if and only if it is a saddle

surface in E3. (ii) A surface in S3
+(κ−1/2) is a saddle surface if and only if its image

under the central projection is a saddle surface in E3.
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3. Proof of Theorem 1.1

The hyperbolic space. Let � be a regular surface in the Beltrami-Klein model of
H3

κ represented as the graph of a function z = f (x, y) in a neighborhood of a
point p= (a,b, f (a,b)).

Assume that fx(a,b) = fy(a,b) = 0. A parametrization of the surface � is
given by the vector-valued function r(x, y) = (x, y, f (x, y)). The coefficients of
the first fundamental form are given by

E = 〈rx,rx
〉= g11 + 2g13 fx + g33 f

2
x ,

F = 〈rx,ry
〉= g12 + g23 fx + g13 fy + g33 fx fy,

G= 〈ry,ry
〉= g22 + 2g23 fy + g33 f

2
y ,

(3.1)

where

g11 = 1/κ+ y2 + z2

κ
(
1/κ+ x2 + y2 + z2

)2 , g22 = 1/κ+ x2 + z2

κ
(
1/κ+ x2 + y2 + z2

)2 ,

g33 = 1/κ+ x2 + y2

κ
(
1/κ+ x2 + y2 + z2

)2 , g12 = g21 = −xy
κ
(
1/κ+ x2 + y2 + z2

)2 ,

g13 = g31 = −xz
κ
(
1/κ+ x2 + y2 + z2

)2 , g23 = g32 = −yz
κ
(
1/κ+ x2 + y2 + z2

)2 .

(3.2)
The Gaussian curvature can be expressed only in terms of E, F, G. A straightfor-
ward calculation implies that the hyperbolic Gaussian curvature κH3

κ
(x, y,

f (x, y)) of the surface � at the point (x, y, f (x, y)), in the case when fx = fy = 0,
is equal to

(
1 + κx2 + κy2 + κ f 2

)2(
fxx fyy − f 2

xy

)
+ κ
(
1 + κ f 2

)2

(
1 + κ f 2

)2 . (3.3)

Therefore,

κH3
κ

(
a,b, f (a,b)

)=
(
1 + κa2 + κb2 + κ f 2(a,b)

)2

(
1 + κ f 2(a,b)

)2 κE3

(
a,b, f (a,b)

)
+ κ. (3.4)

Let fx(a,b) �= 0 or fy(a,b) �= 0, then consider the 3× 3 matrix Q defined by

Q =


q11 0 q13

q21 q22 q23

q31 q32 q33


 , (3.5)

where q11=1/
√

1 + f 2
x , q13= fx/

√
1 + f 2

x , q21 =− fx fy/
√

1 + 2 f 2
x + f 2

y + f 4
x + f 2

x f 2
y ,
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q22 = (1 + f 2
x )/
√

1 + 2 f 2
x + f 2

y + f 4
x + f 2

x f 2
y , q23 = fy/

√
1 + 2 f 2

x + f 2
y + f 4

x + f 2
x f 2

y ,

q31 = − fx/
√

1 + f 2
x + f 2

y , q32 = − fy/
√

1 + f 2
x + f 2

y , and q33 = 1/
√

1 + f 2
x + f 2

y ,

where all partial derivatives are evaluated at the point (a,b). The matrix Q de-
fines an orthogonal transformation by means of multiplication by column vec-
tors, which transforms the normal vector n = α(− fx(a,b),− fy(a,b),1), where
α= (1 + f 2

x (a,b) + f 2
y (a,b))−1/2, of the surface � at the point p= (a,b, f (a,b)) to

the vector (0,0,1). Let �′ be the image of the surface � under the action of Q,
and p′ the image of the point p= (a,b, f (a,b)). Since Q preserves the inner prod-
uct, the image of n (i.e., the vector (0,0,1)) is a normal vector to the surface �′ at
the point p′. This yields that in a neighborhood of p′, the surface �′ can be rep-
resented as the graph of a new function z = F(x, y). Hence, p′ = (a′,b′,F(a′,b′))
and (−Fx(a′,b′),−Fy(a′,b′),1)= β(0,0,1), where β=

√
1 +F2

x (a′,b′) +F2
y(a′,b′).

Therefore, Fx(a′,b′)= Fy(a′,b′)= 0 and hence, by (3.4),

κH3
κ

(
a′,b′,F(a′,b′)

)=
(
1 + κa′2 + κb′2 + κF2(a′,b′)

)2

(
1 + κF2(a′,b′)

)2 κE3

(
a′,b′,F(a′,b′)

)
+ κ.

(3.6)
Being an orthogonal transformation, Q is both a Euclidean and a Beltrami-
Klein isometry. By the theorema egregium, both the Euclidean and hyperbolic
Gaussian curvatures of �′ at p′ are the same as the Euclidean and hyperbolic
Gaussian curvatures of � at p, respectively. Thus, for any a,b there are a′, b′

such that

κH3
κ

(
a,b, f (a,b)

)=
(
1 + κa′2 + κb′2 + κF2(a′,b′)

)2

(1 + κF2(a′,b′)
)2 κE3

(
a,b, f (a,b)

)
+ κ. (3.7)

Therefore, the hyperbolic curvature of a regular surface in H3
κ is not greater than

κ if and only if its Euclidean curvature is nonpositive, or equivalently, if and only
if the surface is a saddle surface in E3. Corollary 2.3(i) completes the proof of
Theorem 1.1 in the hyperbolic case.

The spherical space. Let � be a regular surface in S3
+(κ−1/2) represented by an

equation of the form (1.3) in a neighborhood of a point r(a,b). The coeffi-
cients of the first fundamental form are given by E = 〈rx,rx〉, F =

〈
rx,ry〉, G =〈

ry,ry〉, where 〈· ,·〉 denotes the Euclidean inner product of E4. The Gaussian
curvature can be expressed only in terms of E, F, G. Straightforward calcula-
tions yield that the Gaussian curvature of the surface � at the point r(x, y), in
the case when fx = fy = 0, is equal to ((1 + κx2 + κy2 + κ f 2)2( fxx fyy − f 2

xy) +
κ(1 + κ f 2)2)/(1 + κ f 2)2. Therefore,

κS
3
+(κ−1/2)

(
r(a,b)

)=
(
1 + κa2 + κb2 + κ f 2(a,b)

)2

(
1 + κ f 2(a,b)

)2 κE3

(
a,b, f (a,b)

)
+ κ. (3.8)
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If fx(a,b) �= 0 or fy(a,b) �= 0, then we apply to the surface � an orthogonal trans-
formation of the formQ4×4 =

(A3×3 0
0 1

)
, whereA3×3 is an orthogonal 3× 3 matrix,

which transforms the surface z = f (x, y) onto another surface z = F(x, y) with
horizontal tangent plane. The matricesQ andA represent isometries in S3

+(κ−1/2)
and E3, respectively. Since the Gaussian curvature is invariant under isometries
there are a′,b′ such that

κS
3
+(κ−1/2)

(
r(a,b)

)=
(
1 + κa′2 + κb′2 + κF2(a′,b′)

)2

(
1 + κF2(a′,b′)

)2 κE3

(
a,b, f (a,b)

)
+ κ. (3.9)

Therefore, the curvature of a regular surface in S3
+(κ−1/2) is not greater than κ

if and only if the Euclidean curvature of the regular surface in E3, represented
by

R(x, y)= (x, y, f (x, y)
)
, (3.10)

is nonpositive, or equivalently, if and only if R(x, y) is a saddle surface in E3. But,
R(x, y) is the image of r(x, y) under the central projection ϕ. Hence, Corollary
2.3(ii) completes the proof of Theorem 1.1.

4. A nonregular nonsaddle surface of nonpositive curvature

The condition of regularity is necessary for the characterization of saddle sur-
faces, by means of the intrinsic curvature, to be valid. We present an example
of a polyhedral surface in E3 of nonpositive intrinsic curvature, which is not a
saddle surface. Applying the inverse of the geodesic mappings id : H3

κ → E3 and
ϕ : S3

+(κ−1/2) → E3, we get the corresponding examples in the hyperbolic and
spherical space.

Consider the polyhedron P defined by the points A1(0,0,0), A2(1,0, ε),
A3(0,0,1), A4(0,1, ε), A5(−1,0, ε), A6(0,−1, ε), where ε is any sufficiently small
positive number. The bounding curve of P is the polygonal line A2A3A4A5A6A2

and the only vertex is the point A1. If θ(ε) is the total angle of P at the vertex
A1, then limε→0 θ(ε) = 5π/2 > 2π. The intrinsic curvature of P is, by definition,
zero everywhere except at the vertex A1 where it is equal to 2π− θ(ε). Therefore,
for sufficiently small ε > 0, the intrinsic curvature of the polyhedron P is non-
positive. But, on the other hand, for any such ε the polyhedron P is not a sad-
dle, since we can cut off a crust about the vertex A1 by the plane with equation
z = ε/2.
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