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LetΩ be aC2+γ domain in RN ,N ≥ 2, 0 < γ < 1. LetT>0 and let L be a uniformly
parabolic operator Lu= ∂u/∂t−∑i, j(∂/∂xi)(ai j(∂u/∂xj)) +

∑
j b j(∂u/∂xi) + a0u,

a0 ≥ 0, whose coefficients, depending on (x, t)∈Ω×R, are T periodic in t and
satisfy some regularity assumptions. Let A be the N ×N matrix whose i, j entry
is ai j and let ν be the unit exterior normal to ∂Ω. Let m be a T-periodic function
(that may change sign) defined on ∂Ω whose restriction to ∂Ω×R belongs to

W
2−1/q,1−1/2q
q (∂Ω× (0,T)) for some large enough q. In this paper, we give nec-

essary and sufficient conditions on m for the existence of principal eigenvalues
for the periodic parabolic Steklov problem Lu = 0 on Ω×R, 〈A∇u,ν〉 = λmu
on ∂Ω×R, u(x, t) = u(x, t +T), u > 0 on Ω×R. Uniqueness and simplicity of
the positive principal eigenvalue is proved and a related maximum principle is
given.

1. Introduction

Let Ω be a C2+γ and bounded domain in RN , N ≥ 2, 0 < γ < 1, let T > 0, let
{ai j}1≤i, j≤N , {bj}1≤ j≤N be two families of real functions defined on Ω×R sat-
isfying ai j ∈ Cγ,γ/2(Ω×R), bj ∈ C1(Ω×R), ai j = aj,i, and ∂ai j /∂xi ∈ C(Ω×R)
for 1≤ i, j ≤N. Assume also that

∑
i, j

ai j(x, t)ξiξ j ≥ α0|ξ|2 (1.1)

for some positive constant α0 and all (x, t) ∈ Ω×R, ξ = (ξ1, . . . , ξN ) ∈ RN and
that each ai j(x, t),b j(x, t) is T periodic in t. Let A be the N ×N matrix whose i, j
entry is ai j , let b = (b1, . . . ,bN ), let a0 be a nonnegative and T periodic function
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belonging to Cγ,γ/2(Ω×R) and let L be the parabolic operator given by

Lu= ut −div(A∇u) + 〈b,∇u〉+ a0u, (1.2)

where 〈 ,〉 denotes the standard inner product on RN .
For q ≥ 1, τ > 0, let W2,1

q (Ω× (0,τ)) be the Sobolev space of the functions u∈
Lq(Ω × (0,τ)), u = u(x, t), x = (x1, . . . ,xN ) such that ∂u/∂t, ∂u/∂xj , and
∂2u/∂xi∂xj belong to Lq(Ω× (0,τ)) for 1 ≤ i, j ≤ N . We are interested in the
periodic parabolic Steklov eigenvalue problem

Lu= 0 in Ω×R,

〈A∇u,ν〉 = λmu on ∂Ω×R,

u(x, t) T periodic in t,

(1.3)

where ν denotes the unit exterior normal to ∂Ω and the solution u is taken such
that u |Ω×(0,T)∈W2,1

q (Ω× (0,T)) for a fixed and large enough q. The weight

function m is assumed T periodic such that m |∂Ω×(0,T)∈W
2−1/q,1−1/2q
q (∂Ω×

(0,T)) (the fractional Sobolev space defined, for example, as in [7, Chapter 2,
paragraph 3]).

Steklov introduced this eigenvalue problem in the elliptic case in connection
with the study of the map, nowadays called Dirichlet to Neumann map (cf. [3,
Part B, Chapter VI, pages 395–404]) which is also of interest in the inverse prob-
lem of reconstructing the coefficients of L from this map.

We say that λ∗ ∈ R is a principal eigenvalue for the weight m if (1.3) has a
positive (i.e., a nonnegative and nontrivial) solution.

In this paper, we give necessary and sufficient conditions, on a weight m as
above, for existence of a positive principal eigenvalue. Uniqueness and simplicity
of this positive principal eigenvalue is proved and a related form of the maxi-
mum principle is given.

We remark that this weighted eigenvalue problem includes the corresponding
elliptic case where the coefficients are time independent.

In Section 2, for given T periodic functions f and Φ defined on Ω×R and
∂Ω × R, respectively, and satisfying f |∂Ω×(0,T)∈ Lq(Ω × (0,T)), Φ |∂Ω×(0,T)∈
W

2−1/q,1−1/2q
q (∂Ω× (0,T)), we study existence of T periodic solutions u : Ω×

R→R, such that u |∂Ω×(0,T)∈W2,1
q (Ω×R) for the problem

Lu= f on Ω×R,

b0u+ 〈A∇u,ν〉 =Φ on ∂Ω×R,

u(x, t) T periodic in t.

(1.4)

We prove that, under suitable hypothesis on a0 and b0, this problem has a unique
solution, and we state the boundedness (with respect to the natural topologies
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involved) of the corresponding solution operator u = Sb0 ( f ,Φ) (see Theorem
2.5). We also prove the compactness and the strong positivity of the operator
Φ→ Sb0 (0,Φ) (see Theorem 2.6).

In Section 3, we study the following one-parameter family of principal eigen-
value problems: given λ∈R, we prove that there exists a unique principal eigen-
value µ= µm(λ) for the problem

Lu= 0 on Ω×R,

〈A∇u,ν〉− λmu= µu on ∂Ω×R,

u(x, t) T periodic in t,

u > 0 on Ω×R,

(1.5)

we show that µm(λ) is concave and real analytic in λ and its behavior at zero and
at infinity is studied.

In Section 4, using the properties of the function µm, we prove that, for the

case a0 > 0, the condition P(m) := ∫ T0 maxx∈Ωm(x, t)dt > 0 is a necessary and
sufficient condition for the existence of a positive principal eigenvalue for the
weighted problem (1.3) and that, for the case a0 = 0, there exists a positive prin-
cipal eigenvalue for (1.3) if and only if P(m) > 0 and

∫
Ω×(0,T)Ψm< 0 where Ψ is a

positive (unique up to a multiplicative constant and belonging to C2+γ,1+γ/2(Ω×
R)) for the T periodic problem

∂Ψ

∂t
+ div(A∇Ψ) + 〈b,∇Ψ〉+ div(b)Ψ= 0 on Ω×R,

〈A∇Ψ,ν〉+ 〈b,ν〉Ψ= 0 on ∂Ω×R,

Ψ(x, t) T periodic in t.

(1.6)

2. Preliminaries

We recall the following well-known facts concerning Sobolev spaces (see, e.g.,
[7, Lemma 3.3, page 80 and Lemma 3.4, page 82]).

(i) If u∈W2,1
q (Ω× (0,τ)), q ≥ 1, τ > 0, then

u |∂Ω×(0,τ)∈W
2−1/q,1−1/2q
q

(
∂Ω× (0,τ)

)
(2.1)

and the restriction map (understood in the trace sense) is continuous.
(ii) For τ > 0 and q large enough, it holds that

W2,1
q

(
Ω× (0,τ)

)⊂ C1+γ,(1+γ)/2(Ω× [0,τ]
)

(2.2)

with continuous inclusion.
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(iii) For τ > 0 and q large enough, it holds that

W
2−1/q,1−1/2q
q

(
∂Ω× (0,τ)

)⊂ C1+γ,(1+γ)/2(∂Ω× [0,τ]
)

(2.3)

with continuous inclusion.
From now on, we fix, τ > T and a large enough q such that (ii) and (iii) hold.
We recall also the following lemma.

Lemma 2.1. Let b0 ∈W
2−1/q,1−1/2q
q (∂Ω× (0,τ)), b0 ≥ 0. Suppose also that f ∈

Lq(Ω× (0,τ)), ϕ∈W
2−2/q
q (Ω), and Φ∈W

2−1/q,1−1/2q
q (∂Ω× (0,τ)), and that the

compatibility condition

b0(·,0)ϕ+ 〈A∇ϕ,ν〉 =Φ(·,0) on ∂Ω (2.4)

is fulfilled, then the problem

Lu= f on Ω× (0,τ),

b0u+ 〈A∇u,ν〉 =Φ on ∂Ω× (0,τ),

u(·,0)= ϕ on Ω,

(2.5)

has a unique solution u ∈W2,1
q (Ω× (0,τ)). Moreover, there exists a positive con-

stant c independent of f , ϕ, and Φ, such that

‖u‖W2,1
q (Ω×(0,T)) ≤ c

(
‖ f ‖Lq(Ω×(0,T)) +‖Φ‖W2−1/q,1−1/2q

q (∂Ω×(0,T)) +‖ϕ‖W2−2/q
q (Ω)

)
.

(2.6)

For a proof of Lemma 2.1, see [7, Theorem 9.1, page 341] concerning to
the Dirichlet problem and its extension, to our boundary conditions, indicated
there, at the end of Chapter 4, paragraph 9, page 351.

For regular data, the following result holds (see, e.g., [7, Theorem 5.3, page
320]).

Lemma 2.2. Suppose that b0 ∈ C1+γ((1+γ)/2)(∂Ω× [0,τ]), b0 ≥ 0. Suppose also that
f ∈ Cγ,γ/2(Ω× [0,τ]), ϕ ∈ C2+γ(Ω), Φ ∈ C1+γ((1+γ)/2)(∂Ω× [0,τ]) and that the
compatibility condition (2.4) is fulfilled, then problem (2.5) has a unique solution
u∈ C2+γ,1+γ/2(Ω× [0,τ]). Moreover, there exists a positive constant c independent
of f , ϕ, and Φ such that

‖u‖C2+γ,1+γ/2(Ω×[0,τ]) ≤ c
(
‖ f ‖Cγ,γ/2(Ω×[0,τ]) +‖Φ‖C1+γ((1+γ)/2)(∂Ω×[0,τ]) +‖ϕ‖C2+γ(Ω)

)
.

(2.7)

Remark 2.3. If, in addition to the hypothesis of Lemma 2.1, we have that f ∈
Cγ,γ/2(Ω× [0,τ]), then the solution u of (2.5) satisfies

u∈ C2+γ,1+γ/2(Ω× [δ,τ]) (2.8)
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for all δ > 0. Moreover, for such a δ, there exists a positive constant cδ indepen-
dent of f and Φ such that

‖u‖C2+γ,1+γ/2(Ω×[δ,τ])≤cδ
(
‖ f ‖Cγ,γ/2(Ω×[0,τ]) +‖Φ‖W2−1/q,1−1/2q

q (∂Ω×(0,τ)) +‖ϕ‖W2−2/q
q (Ω)

)
.

(2.9)
Indeed, let h ∈ C∞(R) such that 0 ≤ h ≤ 1, h(t) = 0 for t < δ/4, h(t) = 1 for
t ≥ 3δ/4, let ũ(x, t) = u(x, t)h(t), let f̃ (x, t) = u(x, t)h′(t) + f (x, t)h(t), and let
Φ̃(x, t)=Φ(x, t)h(t). Then,

Lũ= f̃ on Ω× (0,τ),

b0ũ+ 〈A∇ũ,ν〉 = Φ̃ on ∂Ω× (0,τ),

ũ(·,0)= 0 on Ω.

(2.10)

By Lemma 2.1, this problem has a unique solution in W2,1
q (Ω× (0,τ)). Since

f ∈ Cγ,γ/2(Ω× [0,τ]) and Φ̃ ∈ C1+γ,(1+γ)/2(∂Ω× [0,τ]), Lemma 2.2 says that it
has also a unique solution ũ ∈ C2+γ,(1+γ)/2(Ω× [0,τ]), and so, since h ≡ 1 on
[δ,τ], we obtain (2.8).

Also, ∥∥Φ̃∥∥C1+γ,(1+γ)/2(∂Ω×[0,T]) ≤ c′δ‖Φ‖W2−1/q,1−1/2q
q (∂Ω×(0,τ)) (2.11)

for some constant c′δ independent of Φ, and so, using (2.6) and the definition of

f̃ , we get

‖ f̃ ‖Cγ,γ/2(Ω×[0,τ]) ≤ c′′δ
(
‖ f ‖Cγ,γ/2(Ω×[0,τ]) +‖Φ‖W2−1/q,1−1/2q

q (∂Ω×(0,τ)) +‖ϕ‖W2−2/q
q (Ω)

)
(2.12)

for some positive constant c′′δ independent of f , Φ. Then (2.7), applied to prob-
lem (2.10), gives (2.9).

Let b0 ∈W
2−1/q,1−1/2q
q (∂Ω× (0,τ)), b0 ≥ 0. For s > 1 + 1/q, let Ws

q,B0
(Ω) be the

Banach space of the functions ϕ∈Ws
q(Ω) satisfying b0(·,0)ϕ+ 〈A(·,0)∇ϕ,ν〉 =

0 on ∂Ω.
W

2−2/q
q,B0

(Ω) and W
2−1/q,1−1/2q
q (∂Ω× (0,τ)) provided with their natural orders

are ordered Banach spaces. Enlarging q, if necessary, we can assume (from now
on) that in both spaces the respective positive cones have nonempty interior.

As usual, for f : Ω×R→R (resp., f : ∂Ω×R→R, f : Ω→R) we write f > 0
to mean f (x, t)≥ 0 and f nonidentically zero.

Let U : W
2−2/q
q,B0

(Ω) →W
2−2/q
q,B0

(Ω) be defined by Uϕ = u(·,T), where u ∈
W2,1

q (Ω× (0,τ)) is the solution (given by Lemma 2.1) of

Lu= 0 on Ω× (0,τ),

b0u+ 〈A∇u,ν〉 = 0 on ∂Ω× (0,τ),

u(·,0)= ϕ on Ω.

(2.13)
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We have the following lemma.

Lemma 2.4. Suppose that b0 ∈W
2−1/q,1−1/2q
q (∂Ω× (0,τ)), b0 ≥ 0. Then U is a

compact operator. Moreover, if either a0 > 0 or b0 > 0 in their respective domains,
then U is a strongly positive operator with positive spectral radius ρ < 1.

Proof. From Lemma 2.1, the solution u of (2.13) satisfies

‖u‖W2,1
q (Ω×(0,T)) ≤ c‖ϕ‖W2−2/q

q (Ω). (2.14)

Let h, ũ, f̃ , and Φ̃ be as in Remark 2.3, taking there f = 0,Φ= 0. From (2.14) and

(2.2), we have ‖ f̃ ‖Cγ,γ/2(Ω×[0,T]) ≤ c‖ϕ‖W2−2/q
q (Ω), and so, (2.9) applied to (2.13)

implies ∥∥u(·,T)
∥∥
C2+γ(Ω) ≤ c‖ϕ‖W2−2/q

q (Ω) (2.15)

for some positive constant c independent of ϕ. Now, (2.15) implies the compact-
ness assertion of the lemma.

Suppose now that for some ϕ > 0 in W
2−2/q
q,B0

(Ω), the minimum of Uϕ =
u(·,T) is nonpositive. Then the minimum of u on Ω× (0,T) is nonpositive and
it is achieved at some (x0, t0) ∈ Ω× (0,T]. If x0 ∈ Ω, the parabolic maximum
principle (as stated, e.g., in [6, Proposition 13.3, page 33]) implies that u is a
constant on Ω× [δ,T] for all δ > 0, so ϕ is a nonpositive constant which is a
contradiction. If x0 ∈ ∂Ω, the same principle states that 〈A∇u,ν〉 < 0 at (x0, t0)
contradicting b0(x0, t0)u(x0, t0) + 〈A∇u,ν〉(x0, t0) = 0. So, U is a strongly posi-

tive operator on W
2−2/q
q (Ω). Now, Krein-Rutman theorem (as stated, e.g., in [1,

Theorem 3.1]) gives that its spectral radius ρ is a positive eigenvalue with positive

eigenfunctions. Let ϕρ ∈W
2−2/q
q (Ω) be such an eigenfunction. To see that ρ < 1,

we proceed by contradiction. Suppose ρ≥ 1. Then U(ϕρ)= ρϕρ ≥ ϕρ, that is, the
solution of (2.13) (assuming by taking ϕ= ϕρ) would satisfy u(·,T)≥ ϕρ, but the
maximum principle states that u is a constant or maxΩ×[δ,T]u(x, t) is attained at
some (x0, t0)∈ ∂Ω× [0,T] and so a0 = 0 or b0(x0, t0) < 0, respectively. �

Let W2,1
q,T(Ω×R) (resp., W

2−1/q,1−1/2q
q,T (∂Ω×R)) the Banach space of the T

periodic functions v : Ω×R→ R such that v |Ω×(0,T)∈W2,1
q (Ω× (0,T)) (resp.,

v |∂Ω×(0,T)∈W
2−1/q,1−1/2q
q (∂Ω× (0,T))), equipped with the norm ‖v‖W2,1

q (Ω×(0,T))

(resp., ‖v‖W2,1
q (∂Ω×(0,T))).

Theorem 2.5. Let b0,Φ∈W
2−1/q,1−1/2q
q,T (∂Ω×R), b0 ≥ 0. If a0 > 0 or b0 > 0 and

if f : Ω×R→ R is T periodic and satisfies f |Ω×(0,T)∈ Lq(Ω× (0,T)), then the
problem

Lu= f on Ω×R,

b0u+ 〈A∇u,ν〉 =Φ on ∂Ω×R,

u(x, t) T periodic in t,

(2.16)
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has a unique solution u∈W2,1
q,T(Ω×R). Moreover, there exists a positive constant

c independent of f and Φ such that

‖u‖W2,1
q (Ω×(0,T)) ≤ c

(
‖Φ‖W2−1/q,1−1/2q

q (∂Ω×(0,T)) +‖ f ‖Lq(Ω×(0,T))

)
. (2.17)

If in addition to the above hypothesis, f ∈ Cγ,γ/2(Ω×R), then u∈ C2+γ,1+γ/2(Ω×
R) and

‖u‖C2+γ,1+γ/2(Ω×R) ≤ c
(
‖Φ‖W2−1/q,1−1/2q

q (∂Ω×(0,T)) +‖ f ‖Cγ,γ/2(Ω×R)

)
(2.18)

for some constant c independent of f and Φ.

Proof. We start constructing a function ϕ1 ∈W2−2/q(Ω) satisfying

b0(·,0)ϕ1 +
〈
A(·,0)∇ϕ1,ν

〉=Φ(·,0) (2.19)

and such that ∥∥ϕ1
∥∥
W2−2/q(Ω) ≤ c‖Φ‖W2−1/q,1−1/2q

q (∂Ω×(0,T)) (2.20)

for some constant c independent ofΦ. To do so, consider F(x,s)=x−sA(x,0)ν(x)
on ∂Ω× (−ε,ε). Since x(x) = x for x ∈ ∂Ω and A(x,0)ν(x) is nontangential to
∂Ω at x ∈ ∂Ω, F defines a diffeomorphism onto a neighborhood V of ∂Ω in RN

for some ε > 0. So we have F−1(x)= (x(x), s(x)) for x ∈V .
Then we solve the (noncharacteristic) Cauchy problem

b0
(
x(x),0

)
w+

〈
A
(
x(x),0

)∇w,ν(x(x)
)〉=Φ

(
x(x),0

)
, x ∈V,

w = 0 on ∂Ω,
(2.21)

the solution is, for x = x− sA(x,0)ν(x),

w(x)=Φ(x,0)
∫ s

0
eb0(x,0)(η−s)dη, x ∈V. (2.22)

Thanks to a cut-off function h associated to V, we can extend w to Ω by ϕ1 =
hw which satisfies (2.19) and (2.20).

Let u1 ∈W2,1(Ω× (0,τ)) be the solution, given by Lemma 2.1, of the problem

Lu1 = f on Ω× (0,τ),

b0u1 +
〈
A∇u1,ν

〉=Φ on ∂Ω× (0,τ),

u1(·,0)= ϕ1 on Ω.

(2.23)

Thus, taking into account (2.20) and the estimate given by Lemma 2.1, we obtain

∥∥u1
∥∥
W2,1

q (Ω×(0,T)) ≤ c
(
‖Φ‖W2−1/q,1−1/2q

q (∂Ω×(0,T)) +‖ f ‖Lq(Ω×(0,T))

)
. (2.24)
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Since b0 is T periodic, u1(·,T)− u1(·,0) ∈W
2−2/q
q,B0

(Ω). Let ϕ2 ∈W
2−2/q
q,B0

(Ω) be
defined by

ϕ2 = (I −U)−1(u1(·,T)−u1(·,0)
)
. (2.25)

From (2.24), we get

∥∥ϕ2
∥∥
W

2−2/q
q (Ω) ≤ c

(
‖Φ‖W2−1/q,1−1/2q

q (∂Ω×(0,T)) +‖ f ‖Lq(Ω×(0,T))

)
(2.26)

with the constant c independent of Φ and f . Let u2 ∈W2,1
q (Ω× (0,T)) be the

solution of the problem

Lu2 = 0 on Ω× (0,τ),

b0u2 +
〈
A∇u2,ν

〉= 0 on ∂Ω× (0,τ),

u(·,0)= ϕ2 on Ω,

(2.27)

taking into account (2.26), Lemma 2.1 gives

∥∥u2
∥∥
W2,1

q (Ω×(0,T)) ≤ c
(
‖Φ‖W2−1/q,1−1/2q

q (∂Ω×(0,T)) +‖ f ‖Lq(Ω×(0,T))

)
. (2.28)

Thus, u := u1 + u2 solves (2.16) on Ω× (0,τ). From (2.25), u satisfies u(·,0) =
u(·,T). Also, (2.24) and (2.28) give (2.18). Moreover, it is easy to see that u(x, t)−
u(x, t +T) is identically zero for 0 ≤ t ≤ τ −T . So, the T periodic extension of
u (still denoted by u) solves (2.16) on Ω×R. The uniqueness assertion of the
lemma follows easily from the maximum principle.

Observe also that if f ∈ Cγ,γ/2(Ω×R), then, taking into account Remark 2.3,
the periodicity of u implies that u∈ C2+γ,1+γ/2(Ω×R). From (2.17), we have

∥∥u(·,0)
∥∥
W

2−1/q
q (Ω) ≤ c

(
‖Φ‖W2−1/q,1−1/2q

q (∂Ω×(0,T)) +‖ f ‖Cγ,γ/2(Ω×R)

)
, (2.29)

and so, Remark 2.3, applied to (2.16), gives

∥∥u(·,T)
∥∥
C2+γ(Ω) ≤ c

(
‖Φ‖W2−1/q,1−1/2q

q (∂Ω×(0,T)) +‖ f ‖Cγ,γ/2(Ω×R)

)
. (2.30)

So, by the periodicity of u, the same estimate holds for u(·,0). Then, (2.18) fol-
lows from the estimate given in Lemma 2.2. �

Theorem 2.6. Let a0,b0, and Φ be as in Theorem 2.5 and let

Sb0 : W
2−1/q,1−1/2q
q,T (∂Ω×R)−→W

2−1/q,1−1/2q
q,T (∂Ω×R) (2.31)
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be the operator defined by Sb0Φ= u |∂Ω×R, where u is the T periodic solution of

Lu= 0 on Ω×R,

b0u+ 〈A∇u,ν〉 =Φ on ∂Ω×R,

u(x, t) T periodic in t,

(2.32)

given by Theorem 2.5. Then Sb0 is a compact strongly positive operator.

Proof. Theorem 2.5 gives

‖u‖C2+γ,1+γ/2(Ω×[0,T]) ≤ c‖Φ‖W2−1/q,1−1/2q
q (∂Ω×(0,T)). (2.33)

From this estimate, the compactness of Sb0 follows and, taking into account the
regularity of the solution of (2.32), the assertion about the strong positivity of
Sb0 follows easily from the stated hypothesis on a0 and b0 and the maximum
principle. �

Corollary 2.7. Let a0,b0,Sb0 be as in Theorem 2.6 and let ρ be the spectral radius
of Sb0 . Then, ρ is positive and it is an algebraically simple eigenvalue of Sb0 with
positive associated eigenfunctions. Moreover, no other eigenvalue of Sb0 has positive
eigenfunctions associated.

Proof. The proof follows from Theorem 2.6 and the Krein-Rutman theorem.
�

3. A one-parameter eigenvalue problem

Let m ∈W
2−1/q,1−1/2q
q,T (∂Ω×R) be fixed from now on. In order to study princi-

pal eigenvalues for the weighted problem (1.3), we can assume, without loss of
generality, that ‖m‖∞ ≤ 1/2.

For ε positive and small enough (i.e., such that 1− ε(1− ‖m‖∞) > 0) and
λ >−ε, let

Sλ,m : W
2−1/q,1−1/2q
q,T (∂Ω×R)−→W

2−1/q,1−1/2q
q,T (∂Ω×R) (3.1)

be the operator defined by Sλ,mΦ= u |∂Ω×R, where u∈W2,1
q,T(Ω×R) is the solu-

tion of the problem

Lu= 0 on Ω×R,

u+ λ(1−m)u+ 〈A∇u,ν〉 =Φ on ∂Ω×R,

u(x, t) T periodic in t,

(3.2)

and let µm(λ) be defined by

1
1 + λ+µm(λ)

= ρλ,m, (3.3)

where ρλ,m is the spectral radius of Sλ,m.
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Remark 3.1. From Corollary 2.7, it follows that µm(λ) can be characterized as
the unique real number µ, such that problem

Luλ = 0 on Ω×R,〈
A∇uλ,ν

〉= λmuλ +µuλ on ∂Ω×R,

uλ(x, t) T periodic in t,

(3.4)

has a positive solution uλ ∈W2,1
q,T(Ω× R). Since λm = (−λ)(−m), the above

characterization of µm(λ) implies that µm(−λ) = µ−m(λ) for λ ∈ (−ε,ε). We ex-
tend µm to the whole real line setting µm(−λ) = µ−m(λ) and so the above char-
acterization of µm(λ) holds for all λ ∈ R. In particular, this fact implies that
µm+k(λ)= µm(λ)− kλ for all λ,k ∈R.

Note also that, for fixed λ∈R, the solution space in W2,1
q,T(Ω×R) of the prob-

lem

Lu= 0 on Ω×R,

〈A∇u,ν〉 = λmu+µm(λ)u on ∂Ω×R,

u(x, t) T periodic in t,

(3.5)

is one dimensional and is contained inC2+γ,1+γ/2(Ω×R). Moreover, by Corollary
2.7, positive solutions have a positive minimum on Ω×R.

From the above characterization of µm(λ), our problem (1.3) on principal
eigenvalues is equivalent to find the zeroes of the function µm.

Lemma 3.2. Suppose that v ∈ C2+γ,1+γ/2(Ω×R), such that

Lv ≥ 0 on Ω×R,

〈A∇v,ν〉 ≥ λmv+µv on ∂Ω×R,

v > 0 on Ω×R,

v(x, t) T periodic in t,

(3.6)

for some λ,µ ∈ R. Then µm(λ) ≥ µ. If in addition either Lv > 0 or 〈A∇v,ν〉 >
λmv+µv, then µm(λ) > µ.

Proof. We proceed by contradiction. Suppose that µm(λ) < µ. From (3.6), we
have, for r large enough,

Lv ≥ 0 on Ω×R,(
r + λ(1−m)

)
v+ 〈A∇v,ν〉 > (r + λ+µm(λ)

)
v > 0 on ∂Ω×R,

v(x, t) T periodic in t.

(3.7)

Then, the maximum principle implies that v is bounded from below for some
positive constant. Let uλ be a positive solution of (3.5). It follows that there exists
a positive constant c, such that uλ ≤ cv on Ω×R. Take c minimal with respect to
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this property and let w = cv− uλ. Then Lw ≥ 0, (r + λ(1−m))w + 〈A∇w,ν〉 >
0 on ∂Ω×R. Now, the maximum principle implies that minΩ×[0,T]w > 0 and
this leads to a contradiction with the choice of c. Finally, note that the above
argument gives also the last assertion of the lemma. �

Lemma 3.3. The function µm is a concave function.

Proof. Let λ0,λ1 ∈ R and let uλ0 ,uλ1 be positive solutions of (3.5) for λ= λ0,λ1,
respectively. For θ ∈ (0,1), let uθ = uθλ0

u1−θ
λ1

, so uθ ∈ C2+γ,1+γ/2(Ω×R), uθ is T
periodic and uθ(x, t) > 0 for all (x, t)∈Ω×R. For w ∈RN and (x, t)∈Ω×R, let
‖w‖2

A(x,t) = 〈A(x, t)w,w〉. We recall that for regular u,v ∈ C2,1(Ω×R)→R, such
that u(x, t) > 0 and v(x, t) > 0 for all (x, t) ∈Ω×R and for β ∈ R it holds that
L(uβ) = βuβ−1Lu− β(β − 1)|∇u|2uβ−2 and L(uv) = uLv + vLu− 2〈A∇u,∇v〉.
Using these formulas and the definition of ‖ · ‖A(x,t), a direct computation shows
that

(
Luθ

)
(x, t)= θ(1− θ)

∥∥∥∥∥
[(

uλ1

uλ0

)(1−θ)/2∇uλ0

u1/2
λ0

−
(
uλ0

uλ1

)θ/2∇uλ1

u1/2
λ1

]
(x, t)

∥∥∥∥∥
2

A(x,t)
(3.8)

for (x, t)∈ Ω×R, and so, Luθ ≥ 0 on Ω×R. Another computation shows that〈
A∇uθ,ν

〉= (θλ0 + (1− θ)λ1
)
muθ +

(
θµm

(
λ0
)

+ (1− θ)µm
(
λ1
))
uθ (3.9)

on ∂Ω×R. Then, this lemma follows from Lemma 3.2. �

Remark 3.4. Lemma 3.3 implies that µm is continuous. Moreover, taking into
account Corollary 2.7, we can apply [4, Lemma 1.3] (proceeding, e.g., as in [5,
Remark 3.9 and Lemma 3.10]) to obtain that µm(λ) is real analytic in λ for λ >
−ε for some small enough positive ε, and since µm(−λ) = µ−m(λ) we get that
µm is real analytic on the whole real line. Moreover, a positive solution uλ for
(3.5) can be chosen such that λ→ uλ|∂Ω×(0,T) is a real analytic map from R into

W
2−1/q,1−1/2q
q,T (∂Ω×R).
Note also that if a0 = 0, then µm(0)= 0 and that, in this case, the eigenfunc-

tions associated for (3.5) are the constant functions. Finally, for the case a0 > 0,
applying Lemma 3.2 with v = 1, λ= 0 and µ= 0, we obtain that µm(0) > 0.

Lemma 3.5. Let m1,m2 ∈W
2−1/q,1−1/2q
q,T (∂Ω×R). Suppose that m1 < m2. Then,

µm1 (λ) > µm2 (λ) for all λ > 0.

Proof. Since for c ∈R−{0} µcmj (λ)= µmj (λ/c), j = 1,2, we can assume, without
loss of generality, that ‖mj‖∞ < 1/2, j = 1,2. For λ > 0, let Sλ,mj be defined as

before at the beginning of this section. Let Φ∈W
2−1/q,1−1/2q
q,T (∂Ω×R) such that

Φ > 0, let uj = Sλ,mjΦ, j = 1,2 and let v = u1− u2. A computation shows that v
satisfies Lv = 0 on Ω×R and 〈A∇v,ν〉+ λ(1−m1)v = λ(m1−m2)v on ∂Ω×R;
thus, Theorem 2.6 implies v < 0. Then, Sλ,m1 < Sλ,m2 , this gives ρλ,m1 < ρλ,m2 , and
so, µm1 (λ) > µm2 (λ). �
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In order to make explicit the dependence on L, we denote by SL,λ,m the op-
erator Sλ,m as defined at the beginning of this section. We also denote by µm,L

the function µm. Let L0 be the operator defined by L0u = ∂u/∂t− div(A∇u) +
〈b,∇u〉. We have the following lemma.

Lemma 3.6. Suppose that a0 �= 0. Then µm,L(λ) > µm,L0 (λ) for all λ∈R.

Proof. Suppose that λ ≥ 0. Let Φ ∈W
2−1/q,1−1/2q
q,T (∂Ω×R), with Φ > 0, let k >

‖m‖∞, let u= SL,λ,mΦ, let u0 = SL0,λ,mΦ and let v = u−u0. Then L0v =−a0u < 0
on Ω×R, (λ(k−m) + 1)v + 〈A∇v,ν〉 = 0 on ∂Ω× (0,T), and v(x, t) T periodic
in t. Thus the maximum principle gives v ≤ 0. So SL,λ,m < SL0,λ,m. This implies
that µm,L(λ) > µm,L0 (λ). Since µm,L(λ)= µ−m,L(−λ) (and similarly for L0), the case
λ < 0 reduces to the previous one. �

Remark 3.7. Suppose that a0 = 0. Let k ∈R, k >
∑

1≤ j≤N ‖bj‖∞, let

Sk : W
2−1/q,1−1/2q
q,T (∂Ω×R)−→W

2−1/q,1−1/2q
q,T (∂Ω×R) (3.10)

be defined by (2.17) and (2.18) taking b0 = k and let ρk be its spectral radius.
Since Φ = 1 is a positive eigenfunction associated to the eigenvalue 1/k, the
Krein-Rutman theorem asserts that ρk = 1/k. Thus, also by Krein-Rutman the-
orem, there exists a positive eigenvector Ψ for the adjoint operator S∗k satisfying
S∗k Ψ=Ψ. Moreover, such a Ψ is unique up to a multiplicative constant.

Lemma 3.8. Suppose that a0 = 0 and let Sk,Ψ be as in Remark 3.7. Then µ′m(0)=
−〈Ψ,m〉/〈Ψ,1〉.
Proof. For λ ∈ R, let uλ be a solution of (3.5) such that λ→ uλ is real analytic
and such that u0 = 1

Luλ = 0 on Ω×R,

kuλ +
〈
A∇uλ,ν

〉= (λm+µm(λ) + k
)
uλ on ∂Ω×R,

uλ(x, t) T periodic in t,

(3.11)

we get uλ = λSk(muλ) + (µm(λ) + k)Skuλ and so

λ
〈
Ψ,muλ

〉
+µm(λ)

〈
Ψ,uλ

〉= 0. (3.12)

Taking the derivative with respect to λ at λ= 0 and using that µm(0)= 0 and that
u0 = 1, the lemma follows. �

For Φ, f ∈ W
2−1/q,1−1/2q
q,T (∂Ω × R), let 〈i(Φ), f 〉 = ∫

∂Ω×(0,T)Φ f . So i(Φ) ∈
(W

2−1/q,1−1/2q
q,T (∂Ω×R))′. We have the following lemma.
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Lemma 3.9. Suppose that a0 = 0 and let k,Sk,Ψ be as in Remark 3.7. Then,

(i) for f ∈W
2−1/q,1−1/2q
q,T (∂Ω×R), we have S∗k f = i(v |∂Ω×R), where v is the T

periodic solution of the problem

∂v

∂t
+ div(A∇v) + 〈b,∇v〉+ div(b)v = 0 on Ω×R,

〈A∇v,ν〉+
(
k+ 〈b,ν〉)v = f on ∂Ω×R,

v(x, t) T periodic in t;

(3.13)

(ii) Ψ ∈ C2+γ,1+γ/2(Ω×R) and minΩ×RΨ > 0. Moreover, Ψ can be character-
ized as the (unique up to a multiplicative constant) solution of the T peri-
odic problem

∂Ψ

∂t
+ div(A∇Ψ) + 〈b,∇Ψ〉+ div(b)Ψ= 0 on Ω×R,

〈A∇Ψ,ν〉+ 〈b,ν〉Ψ= 0 on ∂Ω×R,

Ψ(x, t) T periodic in t.

(3.14)

Proof. Note that, for f ∈W
2−1/q,1−1/2q
q,T (∂Ω×R), (3.13) has a unique T periodic

solution v ∈ C2+γ,1+γ/2(Ω×R). Indeed, the change of variable t = T − τ reduces
(3.13) to the situation studied in Theorem 2.5. In order to prove part (i) of the
lemma, we must show that 〈i(v),Φ〉 = ∫∂Ω×(0,T) S(Φ) f , that is,∫

∂Ω×(0,T)
vΦ=

∫
∂Ω×(0,T)

f u, (3.15)

where u is the T periodic solution of the problem

∂u

∂t
−div(A∇u) + 〈b,∇u〉 = 0 on Ω×R,

ku+ 〈A∇u,ν〉 =Φ on ∂Ω×R,

u(x, t) T periodic in t.

(3.16)

Multiplying (3.13) by u, (3.16) by v, adding, and integrating on Ω× (0,T), we
get

0=
∫
Ω×(0,T)

∂(uv)
∂t

+
∫
Ω×(0,T)

[
div(uA∇v)−div(vA∇u)

+ v〈b,∇u〉+u〈b,∇v〉+uvdiv(b)
]
.

(3.17)

The first integral vanishes by the periodicity. Taking into account the boundary
conditions of (3.13) and (3.16), an application of the divergence theorem gives
(3.15). To prove (ii), consider the operator

S̃ : W
2−1/q,1−1/2q
q,T (∂Ω×R)−→W

2−1/q,1−1/2q
q,T (∂Ω×R), (3.18)
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defined by S̃ f = v |∂Ω×R, where v is the solution of (3.13). Note that, via the
change of variable t = T − τ, Theorem 2.6 gives that S̃ is a compact and strongly
positive operator. Thus, S̃ has a positive spectral radius which is an eigenvalue
with an associated positive T periodic eigenfunction h, that, by Theorem 2.5, be-
longs to C2+γ,1+γ/2(Ω×R). Moreover, minΩ×Rh > 0. Let Ψ be as in Remark 3.7.
By Lemma 3.9, h is a positive eigenvector for S∗ and so, by Krein-Rutman theo-
rem, we get Ψ= ch for some positive constant c > 0. Thus (ii) holds. �

We set

P(m)=
∫ T

0
max
x∈∂Ω

m(x, t)dt, (3.19)

N(m)=
∫ T

0
min
x∈∂Ω

m(x, t)dt. (3.20)

Proceeding as in [2], it can be shown that if P(m) > 0, then there exists a T
periodic curve Γ∈ C2(R,∂Ω), such that

∫ T

0
m
(
Γ(t), t

)
dt > 0 (3.21)

we fix, from now on, such a Γ.
For p ∈ ∂Ω, let Tp(∂Ω) denotes the tangent space to ∂Ω at p and let expp :

Tp(∂Ω)→Tp(∂Ω) be the geodesic exponential map defined by expp(X)=σp,X(1),
where σp,X is the geodesic in ∂Ω (respect to the natural Riemannian structure on
∂Ω inherit from RN ) satisfying σp,X(0) = p, (d/ds)(σp,X(s)) = X . Since ∂Ω is of
class C2+γ, expp is a well-defined map.

Lemma 3.10. For δ positive and small enough, there exists

Λ∈ C1((−δ,δ)N ×R,RN+1), (3.22)

such that Λ is a diffeomorphism from (−δ,δ)N ×R onto an open neighborhood
Wδ ⊂RN ×R of the set {(T(t), t) : t ∈R} satisfying

(1) Λ((−δ,δ)N−1× (0,δ)×R)=Wδ ∩ (Ω×R),
(2) Λ((−δ,δ)N−1×{0}×R)=Wδ ∩ (∂Ω×R),
(3) Λ(0, t)= (Γ(t), t),
(4) Λ(·, t) is T periodic in t.

Moreover, Λ : (−δ,δ)N ×R→Wδ and its inverse Θ : Wδ → (−δ,δ)N ×R are of
class C2,1 on their respective domains.

Proof. The map t→ ν(Γ(t)) is T periodic and belongs to the class C1+γ(R,RN ).
Then, there exists a C1+γ and T periodic map t→ A(t) from R into SO(N) such
that A(t)ν(Γ(0)) = ν(Γ(t)), t ∈ R. Let {X1,0, . . . ,XN−1,0} be a basis of TΓ(0)(∂Ω)
and let Xj(t) = A(t)Xj,0, j = 1,2, . . . ,N − 1. Thus, each Xj is a T periodic map,
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Xj ∈ C1+γ(R,RN ) and for each t, {X1(t), . . . ,XN−1(t)} is a basis of TΓ(t)(∂Ω). For
δ positive and small enough, and for (s, t)∈ (−δ,δ)N ×R, let

x(s, t)= expΓ(t)

( ∑
1≤ j≤N−1

s jXj(t)

)
− sNν

(
expΓ(t)

( ∑
1≤ j≤N−1

s jXj(t)

))
, (3.23)

and let

Λ(s, t)= (x(s, t), t
)
. (3.24)

From the well-known properties of the exponential map, it follows easily that,
for δ small enough, (s, t) → Λ(s, t) is a C2,1 map which satisfies the properties
required by the lemma. �

Let δ,Λ,Θ,Wδ be as in Lemma 3.10, Θ(x, t) = (Θ1(x, t), . . . ,ΘN+1(x, t)). Note
that, since ΘN vanishes identically on Wδ ∩ (∂Ω×R), we have

∇ΘN =−gν on Wδ ∩ (∂Ω×R) (3.25)

for some g ∈ C1(Wδ ∩ (∂Ω×R)) satisfying g(x, t) �= 0 for all (x, t)∈Wδ ∩ (∂Ω×
R). Moreover,

Θ′
(
Γ(t), t

)
Λ′(0, t)= Id, (3.26)

(where Λ′ and Θ′ denote the respective (N + 1)× (N + 1) Jacobian matrix of Λ
and Θ, respectively). Thus, considering the (N,N) entries in this equality and
using (3.25) and that (∂ΛN )/(∂sN |(0,t))=−ν(Γ(t)), we get

g
(
Γ(t), t

)= 1, ∀t ∈R. (3.27)

Lemma 3.11. Suppose that P(m) > 0, then limλ→∞µm(λ)=−∞.

Proof. Let δ,Λ,Θ,Wδ be as in Lemma 3.10. Let QT,δ = (−δ,δ)N−1 × [0,δ) ×
(0,T) and let DT,δ = Λ(QT,δ) ⊂Ω× (0,T). If f : Dδ → R (resp., f : Dδ ∩ (∂Ω×
R)→ R) let f # : QT,δ → R (resp., f # : (−δ,δ)N−1×{0}× (0,T)→ R) be defined
by f # = f ◦Λ.

For λ > 0, let uλ ∈ C2+γ,1+γ/2(Ω×R) be a positive T periodic solution of (3.5),
since uλ = u#

λ ◦Θ on Dδ , the equation Luλ = 0 on Dδ gives

∂u#
λ

∂t
−div

(
A#∇u#

λ

)
+
〈
b#,∇u#

λ

〉
+ a#

0u
#
λ = 0 on QT,δ, (3.28)

where A# is the N ×N symmetric and positive matrix whose (i, j) entry is

a#
i j(s, t)=

∑
1≤l,r≤N

alr
(
Λ(s, t)

)∂Θi

∂xl

(
Λ(s, t)

)∂Θ j

∂xr

(
Λ(s, t)

)
(3.29)
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and where b# = (b#
1, . . . ,b

#
N ) with each b#

j belonging to C(QT,δ,R) and indepen-
dent of λ.

If ν(x, t)= (ν1(x, t), . . . ,νN (x, t)), the boundary condition

〈
A∇uλ,ν

〉= λmuλ +µm(λ)uλ on
(
∂Ω× (0,T)

)∩Dδ (3.30)

transforms into

∑
1≤i, j, l≤N

ai j
(
Λ(s, t)

)∂u#
λ

∂sl
(s, t)

∂Θl

∂xj

(
Λ(s, t)

)
νi
(
Λ(s, t)

)
= λm#(s, t)u#

λ(s, t) +µm(λ)u#
λ(s, t)

(3.31)

for all (s, t)∈ (−δ,δ)N−1×{0}× (0,T).
Let g be given by (3.25). Taking into account (3.29) and (3.25) from (3.31),

we get

〈
A#∇u#

λ,eN
〉=−λm#g#u#

λ−µm(λ)g#u#
λ on (−δ,δ)N−1×{0}× (0,T), (3.32)

where∇ denotes the gradient in the variables s1, . . . , sN and eN = (0, . . . ,0,1).
Note that

∫ T
0 m#(0, t)dt = ∫ T0 m(Λ(0, t))dt = ∫ T0 m(Γ(t), t)dt > 0 and thus, by

(3.28), g#(0, t)= 1. Since m# and g# are continuous on (−δ,δ)N−1×{0}×R, we
have, for η small enough

∫ T

0

∫
{σ∈RN−1:|σ|<η}

(
m#g#)(σ,0, t)dσ dt > 0, (3.33)∫ T

0

∫
{σ∈RN−1:|σ|<η}

g#(σ,0, t)dσ dt > 0. (3.34)

Let β ∈ (0,η), let h∈ C∞(R), such that 0≤ h≤ 1, h(ζ)= 1 for ζ < η−β, h(ζ)= 0
for ζ ≥ η and let G : RN+1 →R be defined by G(s, t)=h(|s|); thus, G∈C∞(RN+1).
From (3.33) and (3.34), it is easy to see that we can pick β small enough such that

∫ T

0

∫
{σ∈RN−1:|σ|<η}

(
G2m#g#)(σ,0, t)dσ dt > 0, (3.35)∫ T

0

∫
{σ∈RN−1:|σ|<η}

(
G2g#)(σ,0, t)dσ dt > 0. (3.36)

Let Bη,T = {(s, t) ∈ RN × (0,T) : |s| < η, sN ≥ 0}. We multiply (3.28) by G2/u#
λ

and then, integrating on Bη,T and taking into account that u#
λ(·,0) = u#

λ(·,T)
and that G does not depend on t, we get

∫
Bη,T

[
− G2

u#
λ

div
(
A#∇u#

λ

)
+
G2

u#
λ

〈
b#,∇u#

λ

〉
+ a#

0G
2
]
= 0. (3.37)
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Let v#
λ =− logu#

λ. Thus v#
λ ∈ C2,1(Bη,T). A computation gives that

−G2

u#
λ

div
(
A#∇u#

λ

)= div
(
G2A#∇v#

λ

)− 2
〈
A#G∇v#

λ,∇G
〉

− 〈A#G∇v#
λ,G∇v#

λ

〉
on Bη,T .

(3.38)

Also,

G2

u#
λ

〈
b#,∇u#

λ

〉=−2
〈
GA#∇v#

λ,
1
2
G
(
A#)−1

b#
�

on Bη,T , (3.39)

so, from (3.40) the divergence theorem gives∫ T

0

∫
{σ∈RN−1:|σ|<η}

G2〈A#∇v#
λ,ν
〉=−2

∫
Bη,T

〈
GA#∇v#

λ,∇G+
1
2
G
(
A#)−1

b#
�

+
∫
Bη,T

〈
A#G∇v#

λ,G∇v#
λ

〉
+
∫
Bη,T

a#
0G

2.

(3.40)

For w ∈ RN and (s, t) ∈ Bη,T , let ‖w‖A#(s,t) = 〈A#(s, t)w,w〉. Taking into ac-
count the boundary condition (3.33) and that G(s)= 0 for |s| = η from (3.40),
we get

µm(λ)
∫ T

0

∫
{σ∈RN−1:|σ|<η}

(
G2g#)(σ,0, t)dσ dt

=−λ
∫ T

0

∫
{σ∈RN−1:|σ|<η}

(
G2g#m#)(σ,0, t)dσ dt

−
∫
Bη,T

∥∥∥∥(G∇v#
λ +∇G+

1
2
G
(
A#)−1

b#
)

(s, t)
∥∥∥∥2

A#(s,t)
dsdt

+
∫
Bη,T

∥∥∥∥(∇G+
1
2
A#Gb#

)
(s, t)

∥∥∥∥2

A#(s,t)
dsdt+

∫
Bη,T

a#
0G

2

≤−λ
∫ T

0

∫
{σ∈RN−1:|σ|<η}

(
G2g#m#)(σ,0, t)dσ dt

+
∫
Bη,T

∥∥∥∥(∇G+
1
2
A#Gb#

)
(s, t)

∥∥∥∥2

A#(s,t)
dsdt+

∫
Bη,T

a#
0G

2.

(3.41)

From this inequality, (3.35), and (3.36), the lemma follows. �

4. Principal eigenvalues for periodic parabolic Steklov problems

Let P(m) and N(m) be defined by (3.19) and (3.20), respectively. We have the
following theorem.

Theorem 4.1. Suppose either a0 > 0 and P(m) > 0 (resp., a0 > 0 and N(m) < 0) or
a0 = 0, P(m) > 0, and 〈Ψ,m〉 < 0 (resp., a0 = 0, N(m) < 0, and 〈Ψ,m〉 > 0) with
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Ψ defined as in Remark 3.7. Then, there exists a unique positive (resp., negative)
principal eigenvalue for (1.3) and the associated eigenspace is one dimensional.

Proof. Suppose a0 = 0 and P(m) > 0, 〈Ψ,m〉 < 0. Since µm(0)= 0 and, by Lemma
3.8, µ′m(0) > 0 the existence of a positive principal eigenvalue λ= λ1(m) for (1.3)
follows from Lemma 3.11. Since µm does not vanish identically, the concavity of
µm gives the uniqueness of the positive principal eigenvalue.

Moreover, if u,v are solutions in C2+γ,1+γ/2(Ω×R) for (1.3), then, by the facts
stated in Remark 3.1, u= cv on ∂Ω×R for some constant c. Since L(u− cv)= 0
on Ω×R, u− cv = 0 on ∂Ω×R, and u− cv is T periodic, it follows easily from
the maximum principle that u= cv on Ω×R.

If a0 > 0, then (by Remark 3.4) µm(0) > 0; thus, the existence follows from
Lemma 3.11. The other assertions of the theorem follows as in the case a0 =
0. Taking into account that µm(−λ) = µ−m(λ) and that N(m) = −P(−m), the
assertions about negative principal eigenvalues follow from the previous cases.

�

Lemma 4.2. Suppose that a0 = 0. Then for all λ > 0,

µm(λ)≥−P(m)
T

λ−‖b‖∞ − |Ω|
|∂Ω|

∥∥div(b)
∥∥∞. (4.1)

Proof. We consider first the case m≥ 0. Let λ > 0 and let uλ be a positive solution
of (3.5) normalized by ‖uλ‖∞ = 1. From

∂uλ
∂t
−div

(
A∇uλ

)
+
〈
b,∇uλ

〉= 0 on Ω× (0,T),〈
A∇uλ,ν

〉= λmuλ +µm(λ)uλ on ∂Ω× (0,T),

uλ(·,0)= uλ(·,T),

(4.2)

and since 〈b,∇uλ〉 = div(uλb)− uλ div(b), integrating (4.2) on Ω× (0,T) and
taking into account the periodicity of uλ and the boundary conditions, the di-
vergence theorem gives

µm(λ)
∫
∂Ω×(0,T)

uλ =−λ
∫
∂Ω×(0,T)

muλ +
∫
∂Ω×(0,T)

uλ〈b,ν〉−
∫
Ω×(0,T)

uλ div(b).

(4.3)
Since m ≥ 0 and |uλ| ≤ 1, we have

∫
∂Ω×(0,T)muλ ≤ P(m)|∂Ω|, also |uλ div(b)| ≤

‖div(b)‖∞ and |uλ〈b,ν〉| ≤ ‖b‖∞. Thus

T|∂Ω|µm(λ)≥ µm(λ)
∫
∂Ω×(0,T)

uλ

≥−λP(m)|∂Ω|−T|∂Ω|‖b‖∞ −
∥∥div(b)

∥∥∞|Ω|T, (4.4)

so the lemma holds for m ≥ 0. For the general case, pick k ∈ R, k > ‖m‖∞ tak-
ing into account that P(m+ k)= P(m) + kT and that µm+k(λ)= µm(λ)− kλ the
lemma follows from the previous case applied to m+ k instead of m. �
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Corollary 4.3. Suppose that a0 = 0. Then, limλ→∞µ′m(λ)≥−P(m)/T .

Proof. Suppose that P(m) �=0, then Lemmas 3.11 and 4.2 imply that limλ→∞µm(λ)
=±∞. Also, µm is concave; thus, there exists limλ→∞µ′m(λ). Then, the L’Hopital
rule gives limλ→∞µ′m(λ) = limλ→∞µm(λ)/λ ≥ −P(m)/T , the last inequality by
Lemma 4.2. If P(m) = 0 and if µm(λ) < 0 for some λ > 0 then, since µm(0) = 0,
the concavity of µm implies that limλ→∞µm(λ) = −∞ and the above argument
applies. If µm(λ) ≥ 0 for all λ > 0, the concavity implies that µ′m(λ) ≥ 0 for all
λ > 0 and so the corollary is also true in this case. �

Lemma 4.4. Suppose that a0 = 0 and let Ψ be as in Remark 3.7. Then, P(m) < 0
implies that 〈Ψ,m〉 < 0.

Proof. Suppose P(m) < 0. By Corollary 4.3, we have limλ→∞µ′m(λ) > 0. Then,
since µm is concave, we have µ′m(0) > 0 and so 〈Ψ,m〉 < 0. �

Lemma 4.5. Suppose that a0 = 0. Then, µm vanishes identically if and only if
P(m)= 〈Ψ,m〉 = 0.

Proof. Suppose that µn vanishes identically. Lemma 3.8 gives that 〈Ψ,m〉 = 0.
Also, by Lemma 3.11, we have P(m)≤ 0. Suppose that P(m) < 0 and let m̃(t)=
maxx∈∂Ωm(x, t). Since m ∈ C(∂Ω×R), it follows easily that m̃ ∈ C[0,T]. Take
ε such that 0 < εT < −P(m) and take a T periodic function m∗ ∈ C1(R) such
that m̃(t) < m∗(t) < m̃(t) + ε, t ∈ [0,T]. Thus, −εT > P(m) = P(m̃) > P(m∗)−
εT . Thus, P(m∗) < 0 and so, by Lemma 2.4, 〈Ψ,m∗〉 < 0. Thus µ′m∗(0) > 0 and
then, since m<m∗, for λ positive and small enough, we have µm(λ)≥ µm∗(λ) > 0
contradicting our original assumption.

Suppose now that P(m)= 〈Ψ,m〉 = 0. Then µ′m(0)= 0 and also, by Corollary
4.3, limλ→∞µ′m(λ)≥ 0. Then, the concavity of µm implies that µ′m vanishes iden-
tically on the positive axis, and so, since µm(0) = 0 the same is true for µm and
since µm is analytic, vanishes on the whole line. �

Theorem 4.6. Suppose that a0 = 0 and that µm does not vanish identically. Then,
the conditions P(m) > 0 and 〈Ψ,m〉 < 0 (resp., N(m) < 0 and 〈Ψ,m〉 > 0) are nec-
essary for the existence of a positive (resp., negative) principal eigenvalue for (1.3).

Proof. Suppose that µm(λ1)= 0 for some λ1 > 0. Since µm(0)= 0 and µm is con-
cave, we must have µ′m(0) > 0, and so, 〈Ψ,m〉 < 0. To see that P(m) > 0, we
proceed by contradiction. Suppose that P(m) ≤ 0. Corollary 4.3 implies that
limλ→∞µ′m(λ) ≥ 0 and so, since µm is concave, we have µ′m(λ) ≥ 0 for all λ > 0,
and then, since µ′m(0) > 0, µm cannot vanish on the positive axis. �

Theorem 4.7. Suppose that a0 > 0. Then, the condition P(m) > 0 (resp., N(m) <
0) is necessary for the existence of a positive (resp., negative) principal eigenvalue
for (1.3).

Proof. For λ > 0, by Lemmas 3.5 and 3.6, we have µm,L(λ) ≥ µm̃,L(λ) ≥ µm̃,L0 (λ).
Suppose that P(m) ≤ 0. Corollary 4.3 gives limλ→∞µ′m̃,L0

(λ) ≥ 0, and so,
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µm̃,L0 (λ) ≥ 0 for all λ > 0. Since µm(0) > 0, the concavity of µm implies that µm
cannot vanish on the positive axis. �

Theorem 4.8. Let λ∈R such that µm(λ) > 0. Then, for all h∈W
2−1/q,1−1/2q
q,T (∂Ω×

R), the problem

Lu= 0 in Ω×R,

〈A∇u,ν〉 = λmu+h on ∂Ω×R,

u(x, t) T periodic in t,

(4.5)

has a unique solution. Moreover, h > 0 implies that minΩ×(0,T)u > 0.

Proof. Let k, Sλ,k,m, and ρλ,k,m be as in Remark 3.1. Since µm(λ) > 0, we have
ρλ,k,m < 1/(λk+1), and so, since Sλ,k,m is a strongly positive operator, ((1/(λk+1))I
− Sλ,k,m)−1 is a well-defined and positive operator. Equation (4.5) is equivalent
to u= (λk+ 1)Sλ,k,mu+ Sλ,k,mh, that is, to

u= 1
λk+ 1

Sλ,k,m

(
1

λk+ 1
I − Sλ,k,m

)−1

h. (4.6)

So the theorem follows. �

Let λ1(m) (resp., λ−1(m)) be the positive (resp., negative) principal eigenvalue
for the weight m with the convention that λ1(m)= +∞ (resp., λ−1(m)=−∞) if
there does not exist such a principal eigenvalue. From the properties of µm we
obtain the following corollary as an immediate consequence of Theorem 4.8.

Corollary 4.9. Assume that a0 > 0. Then, the interval (λ−1(m),λ1(m)) does not
contain eigenvalues for problem (1.3). If a0 = 0, the same is true for the intervals
(λ−1(m),0) and (0,λ1(m)).
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Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba,
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