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We prove the existence and uniqueness theorems for solutions of an initial-
boundary value problem to the system of equations, which describes dynam-
ics of viscoelastic continuous medium with a variable boundary and a memory
along the trajectories of particles in classes of summable functions.

1. Introduction and main results

Let Ωt ⊂ Rn, n≥ 2, be a family of the bounded domains with boundary Γt. We
consider the following initial-boundary value problem:

ρ(t,x)
(
Vt+

n∑
k=1

Vk
∂V

∂xk

)
−µ�̂V−DivG

(
B(V)

)
+gradΦ

(
ρ(t,x)

)=ρ(t,x)F(t,x);

ρt(t,x) + div
(
ρ(t,x)V(t,x)

)= 0, (t,x)∈Q = {(t,x) : 0≤ t ≤ t0, x ∈Ωt
}

;

V(0,x)=V 0(x), x ∈Ω0;

V(t,x)= Υ(t,x), (t,x)∈ Γ= {(t,x) : 0≤ t ≤ t0, x ∈ Γt
}
.

(1.1)

Here V(t,x) = (V1, . . . ,Vn), ρ(t,x) are a vector function and a scalar function
which denote the velocity and the density of the medium, G(Z) is an n×n ma-
trix function with the coefficients gi j = gi j(z11, . . . , znn) whose arguments are the
coefficients of an n× n matrix Z, Φ is a scalar function, G and Φ are supposed
to be smooth, µ > 0. Next, B(V) = zx(0, t,x), where z(τ, t,x) is a solution to the
Cauchy problem (in the integral form)

z(τ, t,x)= x+
∫ τ
t
V
(
s,z(s; t,x)

)
ds, (t,x)∈Q; (1.2)

�̂V = 1
2

Div
(
Vx +V∗

x

)
. (1.3)
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Here Vx is the Jacobi matrix of a vector function V(t,x), DivZ means the di-
vergence of a matrix function Z, that is, the vector whose coefficients are the
divergences of the rows of a matrix function Z, Z∗ is the adjoint matrix to Z.

Problem (1.1) describes the dynamics of a viscoelastic continuous medium
which occupies at the moment t the position Ωt. Particles y ∈Ω0 of the medium
move in the field of velocities V(t,x) along trajectories determined by the
function

x = z(t,0, y)≡ u(t, y), y ∈Ω0, (1.4)

with the velocity v(t, y) = ut(t, y). Thus, the field of velocities V(t,x) is associ-
ated with velocities of particles v(t, y) by the relations

v(t, y)=V(t,u(t, y)
)
, V(t,x)= v(t,U(t,x)

)
, U(t,x)= z(0, t,x). (1.5)

Recall that the variables x and y are called Euler and Lagrange coordinates, re-
spectively. It is supposed that the stress tensor Ts of the medium has the form

Ts = µTv + νTe + IΦ(ρ). (1.6)

Here Tv = (1/2)(Vx +V∗
x ) is the rate of strain tensor; the strain tensor has the

form (see [3, Chapter 1, page 78])

Te = �1I +�2UxU
∗
x +�3

(
UxU

∗
x

)2
, (1.7)

where the functions �i = �i(I1, I2, I3) are smooth functions of the principal in-
variants Ii of the matrix UxU∗

x , U(t,x) = z(0, t,x). We consider a more general
situation assuming that Te =G(UxU∗

x ).
The study of nonlinear viscous continuous mediums with a memory along

trajectories of particles was initiated in [6] for the stationary case. The dynamics
case was considered in [2, 15]. The viscoelastic problem (1.1) and its generaliza-
tion in the case of cylindrical domain was studied in [8, 9, 10, 11]. The existence
and uniqueness theorems and the stability of solutions in classes of summable
functions under necessary conditions on the data were established. Dynamics
problems in the case of a variable boundary for viscous medium (the case of
a noncylindrical domain) was studied in [7]. An important moment in these
works was proceeding from the Euler to Lagrange coordinates. This approach
allows to investigate viscoelastic mediums in the case of variable boundary as
well as free boundary problems (cf. [14]).
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Now we give the main results. It is convenient to exclude ρ(t,x) setting

ρ(t,x)= R(V), R(V)= ∣∣Ux(t,x)
∣∣= ∣∣zx(0, t,x)

∣∣, (1.8)

and consider the density as an operator R(V). Hereinafter |Z| denotes the deter-
minant of a matrix Z. Then the original problem takes the form

R(V)
(
Vt +

n∑
k=1

Vk
∂V

∂xk

)
−µ�̂V −DivG

(
B(V)

)

+ gradΦ
(
R(V)

)= R(V)F(t,x), (t,x)∈Q;

(1.9)

V(0,x)=V 0(x), x ∈Ω0; V(t,x)= Υ(t,x), (t,x)∈ Γ. (1.10)

Let the function υ(t,x) ∈W1,2
q (Q0), Q0 = {(t,x) : 0 ≤ t ≤ t0, x ∈Ω0}, Γ0 ∈ C2.

Then, the trace of the function υ(t,x) on S0 = [0, t0] × Γ0 belongs to

W
1−1/q,2−2/q
q (S0)≡W . We assume that the domains Ωt, 0≤ t ≤ t0, are defined as

Ωt =
{
x : x = u(t, y), y ∈Ω0

}
, (1.11)

where u(t, y) = y +
∫ t

0 υ(s, y)ds, y ∈ Ω0, Γt = {x : x = u(t, y), y ∈ Γ0}, respec-
tively.

The value Υ of the function V on Γ is defined as

Υ(t,x)= υ(t,U(t,x)
)
, (1.12)

where U(t,x) for each t is the inverse to u(t, y) map. The solution to problem
(1.9), (1.10) is called summable in Q with the power q function V(t,x), having
generalized derivatives Vt(t,x) and Vxi,xj (t,x) whose qth power are summable,
satisfying (1.9) and conditions (1.10). It follows necessarily from (1.10) that

V 0(y)= υ(0, y), (t, y)∈ Γ0. (1.13)

The basic result reads as follows.

Theorem 1.1. Let q ∈ (n,∞), F ∈ Lq(Q0), V 0 ∈W2−2/q
q (Ω0), υ ∈W1,2

q (Q0). Let
(1.12) and (1.13) hold. Then problem (1.9), (1.10) has a unique solution V(t,x), if
t0 is small enough.

It will be convenient to study problem (1.9), (1.10) by means of proceeding
to Lagrange coordinates. For this purpose we make the change of variable (1.4)
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in (1.9). Then problem (1.9), (1.10) takes the form

vt(t, y)− 1
2
µDiv

(∣∣∣∣I +
∫ t

0
vy(s, y)ds

∣∣∣∣
×
(
vy(s, y)

(
I +

∫ t
0
vy(s, y)ds

)−1

+
(
I +

∫ t
0
v∗y (s, y)ds

)−1

v∗y (t, y)

)(
I +

∫ t
0
v∗y (s, y)ds

)−1
)

−Div

(∣∣∣∣I +
∫ t

0
vy(s, y)ds

∣∣∣∣G
(
I +

∫ t
0
vy(s, y)ds

)

×
(
I +

∫ t
0
v∗y (s, y)ds

)−1
)

(1.14)

−
(
I +

∫ t
0
v∗y (s, y)ds

)−1

gradΦ

(∣∣∣∣I +
∫ t

0
vy(s, y)ds

∣∣∣∣
−1
)

= f (t, y), (t,x)∈Q0;

v(0, y)=V 0(y), y ∈Ω0; v(t, y)= υ(t, y), (t, y)∈ S0.

(1.15)

Here

f (t, y)= F
(
t, y +

∫ t
0
v(s, y)ds

)
. (1.16)

A function v(t, y)∈W1,2
q (Q0) is called a solution to problem (1.14), (1.15), and

(1.16) if it satisfies a.e. (1.14) and conditions (1.15).

Theorem 1.2. Let F ∈ Lq(Q0), V 0 ∈W
2−2/q
q (Ω0), υ ∈W1,2

q (Q0), q ∈ (n,∞).
Let (1.13) hold. Then problem (1.14), (1.15), and (1.16) has a unique solution
V(t,x), if t0 is small enough.

For the proof of Theorem 1.2, we consider the case when f ∈ Lq(Q0) in (1.14)
is an arbitrary function but not the function defined by (1.16).

Theorem 1.3. Let the conditions of Theorem 1.2 hold. Then for the sufficiently
small t0, problem (1.14), (1.15) has a unique solution.

Thus, having Theorems 1.2 and 1.3 proved, we get Theorem 1.1. The paper
is organized as follows: the proofs of Theorems 1.3, 1.2, and 1.1 are given in
Sections 2, 3, and 4, respectively. In Section 5, the necessity of conditions on the
data of the problems is discussed.

Below, ‖ · ‖k,m, ‖ · ‖0, | · |m, | · |0, and ] · [ stand for the norms in Wk,m
q (Q0),

Lq(Q0), Wm
q (Ω0), Lq(Ω0), and W , respectively, ‖ · ‖ denotes the norm in Rn.

The function in this paper are scalar, vector, or matrix-valued and we do not
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distinguish them in our notations; the situation is clear from the context. For
definitions and properties of Sobolev spaces W see [1, Chapter 3, page 123].

2. Proof of Theorem 1.3

We give a number of the known facts for linear problems. The linear problem

L(v)≡ vt −µ�̂ = φ(t, y), (t, y)∈Q0;

v(0, y)= 0, y ∈Ω0;

v(t, y)= 0, (t, y)∈ S0,

(2.1)

has a unique solution for every φ ∈ Lq(Q0) (see [12, 13]) and the estimate

‖v‖1,2 + sup
t

∣∣v(t, y)
∣∣

2−2/q ≤M‖φ‖0 (2.2)

holds. If φ =Divψ, where ψ is a matrix function, and ψ ∈W0,1
q (Q0), then (2.2)

implies ‖v(t, y)‖0,1 ≤M‖ψ‖0. Let v = Lφ be a solution to problem (2.1). Thus,
L is the inverse to L operator. Consider the problem

ṽt −µ�̂ṽ = 0, (t, y)∈Q0;

ṽ(0, y)=V 0(y), y ∈Ω0;

ṽ(t, y)= υ(t, y), (t, y)∈ S0.

(2.3)

Problem (2.3) has a unique solution (see [4, Chapter 4, page 388] and [12]), and
for it, the estimate

‖ṽ‖1,2 + sup
t

∣∣ṽ(t, y)
∣∣

2−2/q ≤M
(∣∣v0

∣∣
2−2/q+]υ[

)
(2.4)

holds. Set v = ṽ+w. Then w is a solution to the problem

L(w)≡wt −µ�̂w = φ̄+K(w);

w(0, y)= 0, y ∈Ω0;

w(t, y)= 0, (t, y)∈ S0.

(2.5)

Here

φ̄(t, y)= f (t, y)−µ�̂ṽ, K(w)= µK1(w) +K2(w) +K3(w), (2.6)

where by the notations

ŵ(t, y)=
∫ t

0
ṽy(s, y)ds+

∫ t
0
wy(s, y)ds,

w̃ = I + ŵ, w̃∗ = (w̃)∗, w̃−1
∗ = (w̃−1)∗,

(2.7)
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we set

K1(w)=Div
(|w̃|((ṽy +wy

)
w̃−1 + w̃−1

∗
(
ṽ∗y +w∗y

))
w̃−1
∗
)

−Div
(
wy +w∗y + ṽy + ṽ∗y

)
;

K2(w)=Div
(|w|G(w̃)w̃−1

∗
)
;

K3(w)= w̃−1
∗ gradΦ

(|I + w̃|−1).
(2.8)

Applying the operator L to both parts of (2.5), we have

w = K̃(w), K̃(w)= Lφ̄+LK(w). (2.9)

Let S(R) = {w : ‖w‖1,2 ≤ R}. Consider (2.9) as an operator equation and show
that on the ball S(R) it has a unique solution. For this purpose, we apply the
fixed point theorem for contraction. Note that it cannot be applied to S(R) en-
dowed with the ‖ · ‖1,2-metric. However, considering S(R) as the metric space
M endowed with the ‖ · ‖0,1-metrics, it is possible to apply it.

Lemma 2.1. The metric space M is complete.

Proof. Let a sequence wn, n = 1,2, . . ., be a Cauchy sequence in M. Since
‖wn‖1,2 ≤ R, then wn (or its subsequence) weakly converges in W1,2

q (Q0) to w̄ ∈
W1,2

q (Q0) and ‖w̄‖1,2 ≤ liminfn→∞‖wn‖1,2 ≤ R. Hence, w̄ ∈M. From the com-
pact embedding W1,2

q (Q0)⊂W0,1
q (Q0), it follows that wn converges strongly to w̄

in W0,1
q (Q0). Hence, wn converges to w̄ ∈M in M. �

Lemma 2.2. Let R be large enough and let t0 be small enough. Then the operator K̃
transforms M into itself.

Proof. Let w ∈M. It follows from (2.2) that

∥∥K̃(w)
∥∥

0,2 ≤
∥∥Lφ̄∥∥1,2 +

∥∥LK(w)
∥∥

1,2

≤M
(∥∥φ̄∥∥0 +

∥∥K(w)
∥∥

0

)

≤M
(∥∥φ̄∥∥0 +

3∑
i=1

∥∥Ki(w)
∥∥

0

)
.

(2.10)

We denote by M constants, which values are not important

∥∥Ki(w)
∥∥

0 ≤M(R)t
1−1/q
0 , i= 1,2,3. (2.11)

First, establish (2.11) for i= 1. Letting

A0 = w̃, A1 =
∣∣w̃∣∣I, A2 =wy +w∗y + ṽy + ṽ∗y , A3 = w̃−1,

A4 = w̃−1
∗ , A5 =

(
ṽ∗y +w∗y

)
ŵ+ ŵ∗

(
ṽy +wy

)
,

(2.12)
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rewrite K1(w) in the form

K1(w)=Div
(
A1A4A2A3

(
A4− I

))
+ Div

(
A1A4A2

(
A3− I

))
+ Div

((
A1− I

)
A4A2

)
+ Div

((
A4− I

)
A2
)

+ Div
(
A1A4A5A3A4

)

=
5∑
1

Si.

(2.13)

Here every term involves a small multiplier at small t0. We need the following
fact to estimate Si. Let ai be an arbitrary coefficient of a matrix Ai.

Proposition 2.3. If t0 = t0(R) is small enough, then the following inequalities
hold:

max
t,y

∣∣ai(t, y)
∣∣≤M(R), i= 0,1,2,3,4,5; (2.14)

max
t,y

∣∣ai(t, y)− 1
∣∣≤M(R)t

1−1/q
0 , i= 0,1,3,4; (2.15)

max
t

∣∣∣∣ ∂

∂yk
ai(t, y)

∣∣∣∣
0
≤M(R)t

1−1/q
0 , i �= 2, 1≤ k ≤ n. (2.16)

Proof. First, establish (2.14) for i= 0. Let ‖ṽ‖1,2 + ‖φ‖0 ≤ δ. Using the continu-
ous embedding

W1
q (Ω)⊂ C(Ω̄), q > n, (2.17)

and Hölder’s inequality, we have

∥∥ŵ∥∥C(Ω) ≤
∫ t

0

∥∥ṽy(s, y)
∥∥
C(Ω)ds+

∫ t
0

∥∥wy(s, y)
∥∥
C(Ω)ds

≤M
(∫ t0

0

∣∣ṽy(s, y)
∣∣

2ds+
∫ t0

0

∣∣wy(s, y)
∣∣

2ds

)

≤Mt
1−1/q
0

(‖ṽ‖1,2 +‖w‖0,2
)

≤Mt
1−1/q
0 (R+ δ).

(2.18)

Since w̃ = I + ŵ, estimate (2.14) for i = 0 follows from (2.18). It follows from
(2.7) that the matrix w̃ at small t0 = t0(R) has the inverse matrix w̃−1 = A3 and
for every coefficient a3 inequality (2.14) holds. Since the matrix A4 is adjoint
to A3, then estimate (2.14) for i= 4 follows from (2.14) for i= 3. Since nonzero
coefficient a1 of the matrixA1 is the determinant of the matrix w̃, estimate (2.14)
for i= 1 follows from (2.18) and (2.7). Estimates (2.14) are proved.
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Since A0 = I + ŵ, estimate (2.15) for i= 0 follows from (2.18). It follows from
(2.12) that A3 − I = −ŵ(t, y)w̃−1(t, y). Estimate (2.15) for i = 3 follows from
(2.14) and (2.15) for i = 0. Estimates (2.15) for i = 1,4 follows from estimate
(2.14) for i= 3. Estimates (2.15) are proved.

Taking an yk derivative, we have

∂

∂yk

(
w̃−1)=−w̃−1

(
∂

∂yk
w̃
)
w̃−1 =−w̃−1

(
∂

∂yk
ŵ
)
w̃−1. (2.19)

It is easy to see that

∣∣∣∣ ∂

∂yk
w̃
∣∣∣∣

0
=
∣∣∣∣ ∂

∂yk
ŵ
∣∣∣∣

0

≤M
(∫ t

0

∣∣ṽ(s, y)
∣∣

2ds+
∫ t

0

∣∣w(s, y)
∣∣

2ds
)

≤Mt
1−1/q
0

(‖ṽ‖0,2 +‖w‖0,2
)

≤Mt
1−1/q
0 (R+ δ).

(2.20)

Estimate (2.16) for i= 0 follows from the above relation. It follows from (2.20)
and inequality (2.14) for i = 3 that estimate (2.16) for a coefficient a3 of the
matrix A3 = w̃−1 holds. Estimate (2.16) for i= 4 is proved in a similar way.

Since nonzero coefficients of the matrix A1 are determinants of the matrix
A0, then in force of (2.7) and (2.20), we get

∣∣∣∣ ∂

∂yk
a1(t, y)

∣∣∣∣
0
≤Mmax

k

∣∣∣∣ ∂

∂yk
ŵ
∣∣∣∣

0
≤Mt

1−1/q
0 . (2.21)

Estimate (2.16) for i= 1 is established. This completes the proof of Proposition
2.3. �

Now estimate the terms Si from the right-hand side of (2.13). First, con-
sider S1. After differentiation, S1 has a form of a sum of vectors whose coefficients
look like

S11 =
(
∂

∂yk
a1

)
a4a2a3

(
a4− 1

)
, S12 = a1

(
∂

∂yk
a4

)
a2a3

(
a4− 1

)
,

S13 = a1a4

(
∂

∂yk
a2

)
a3
(
a4− 1

)
, S14 = a1a4a2

(
∂

∂yk
a3

)(
a4− 1

)
,

S15 = a1a4a2a3

(
∂

∂yk
a4

)
.

(2.22)
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Using a continuity on y of ai and the imbedding (2.17), we have

∣∣S13(t, y)
∣∣

0 ≤
∥∥a1

∥∥
C(Ω)

∥∥a4
∥∥
C(Ω)

∣∣∣∣ ∂

∂yk
a2

∣∣∣∣
0

∥∥a3
∥∥
C(Ω)

∥∥a4− 1
∥∥
C(Ω)

≤ ∥∥a1
∥∥
C(Ω)

∥∥a4
∥∥
C(Ω)

∣∣a2
∣∣

1

∥∥a3
∥∥
C(Ω)

∥∥a4− 1
∥∥
C(Ω).

(2.23)

It follows from estimates (2.14), (2.15), (2.16), and the form of a2 that
∣∣S13(t, y)

∣∣
0 ≤Mt

1−1/q
0

(|ṽ|2 + |w|2
)
. (2.24)

Integration over [0, t0] yields

∥∥S13
∥∥

0 ≤Mt
1−1/q
0

(‖ṽ‖0,2 +‖w‖0,2
)≤Mt

1−1/q
0 (R+ δ). (2.25)

In a similar way, we get

∣∣S15(t, y)
∣∣

0 ≤
∥∥a1

∥∥
C(Ω)

∥∥a4
∥∥
C(Ω)

∥∥a2
∥∥
C(Ω)

∥∥a3
∥∥
C(Ω)

∣∣∣∣ ∂

∂yk
a4

∣∣∣∣
0

≤Mt
1−1/q
0 (R+ δ).

(2.26)

It follows from here that ‖S15‖0 ≤Mt
1−1/q
0 (R+ δ). The similar estimates hold for

other S1i. It follows from the estimates of S1i that
∥∥S1

∥∥
0 ≤Mt

1−1/q
0 (R+ δ). (2.27)

The analogous estimates for S2, S3, S4, and S5 are established as in (2.27).
Inequality (2.11) for i= 1 follows from the estimates of Si.
Establish estimate (2.11) for i = 2. Let B1 = |w̃|I , B2 = G(w̃), and B3 = w̃−1.

Let bi denote an arbitrary coefficient of the matrix Bi. Differentiation of K2(w)
gives an expressions of the form Zi = bi(∂bj/∂yk)bl. First, establish the estimates

∣∣Bi(t, y)
∣∣≤M(R), (2.28)∣∣∣∣ ∂

∂yk
bi(t, y)

∣∣∣∣
0
≤M(R)t

1−1/q
0 . (2.29)

Since Ai = Bi for i = 2, estimates (2.28), (2.29) for i = 2 follow from estimates
(2.14), (2.15), and (2.16) for i = 2. Estimate (2.28) for i = 2 follows from the
boundedness of coefficients of the matrix w̃ and the continuity of G. Since
(∂/∂yk)w̃ = (∂/∂yk)ŵ, estimate (2.29) for i= 2 follows from a continuity of the
derivatives of G, boundedness of w̃ and estimate (2.18). Inequalities (2.28) and
(2.29) are established.

This implies that ‖zi‖0 ≤Mt
1−1/q
0 (R+ δ) whence (2.11) for i= 2 follows. Es-

timate (2.11) for i= 3 is handled similarly.
It follows from estimates (2.11) and relation (2.10) that if R is large enough

and t0 is small enough, then the operator K̃ transforms M into itself. This com-
pletes the proof of Lemma 2.2. �
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Lemma 2.4. If t0 is small enough, then there exists κ ∈ (0,1) such that for every
w1,w2 ∈M the following inequality holds:

∥∥K̃(w1)− K̃(w2)∥∥
0,1 ≤ κ

∥∥w1−w2
∥∥

0,1. (2.30)

Proof. It follows from (2.2) that

∥∥K̃(w1)− K̃(w2)∥∥
0,1 =

∥∥L(K(w1)−K(w2))∥∥
0,1

≤M
3∑
i=1

∥∥L(Ki(w1)−Ki(w2))∥∥
0,1

≡M
3∑
i=1

∥∥LDiv
(
Zi
(
w1,w2))∥∥

0,1

≤M
3∑
i=1

∥∥Zi(w1,w2)∥∥
0,1.

(2.31)

We show that

∥∥Zi(w1,w2)∥∥
0 ≤M(R)t

1−1/q
0

∥∥w1−w2
∥∥

0,1, i= 1,2,3. (2.32)

Denote by A1
i the matrices (2.12) for w =w1, the similar matrices for w =w2 are

denoted by A2
i . Elementary calculations yield

Z1
(
w1,w2)= A1

1A
1
4A

1
2A

1
3−A2

1A
2
4A

2
2A

2
3−

(
A1

2−A2
2

)
= A1

1A
1
4A

1
2

(
A1

3−A2
3

)
+A1

1

(
A1

4−A2
4

)
A1

2A
2
3 +
(
A1

1−A2
1

)
A2

4A
1
2A

2
3

+A2
1

(
A2

4− I
)(
A1

2−A2
2

)
A2

3 +
(
A2

1− I
)(
A1

2−A2
2

)
A2

3

+
(
A1

2−A2
2

)
A2

3 +A1
1A

1
4A

1
5

(
A1

3−A2
3

)
+A1

1

(
A1

4−A2
4

)
A1

5A
2
3

+
(
A1

1−A2
1

)
A2

4A
1
5A

2
3 +A2

1A
2
4

(
A1

5−A2
5

)
A2

3.
(2.33)

We need the following relations to estimate the norms of Z1(w1,w2):

∥∥A1
i −A2

i

∥∥
0 ≤M(R)t

1−1/q
0

∥∥w1−w2
∥∥

0,1, i �= 2, (2.34)∥∥Aki (t, y)− I∥∥≤M(R)t
1−1/q
0 , i �= 2. (2.35)

In fact,

∣∣ŵ1(t, y)− ŵ2(t, y)
∣∣

0 ≤
∫ t

0

∣∣w1
y(s, y)−w2

y(s, y)
∣∣

0ds

≤Mt
1−1/q
0

∥∥w1−w2
∥∥

0,1.

(2.36)
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It is easy to see that

A1
3−A2

3 =
(
w̃1)−1− (w̃2)−1

= (w̃1)−1(
w̃2− w̃1)(w̃1)−1

= (w̃1)−1(
ŵ2− ŵ1)(w̃1)−1

.

(2.37)

It follows from (2.14) and (2.36) that

∣∣A1
3−A2

3

∣∣
0 ≤max

(∥∥w̃1(t, y)
∥∥
C(Ω),

∥∥w̃2(t, y)
∥∥
C(Ω)

)∣∣ŵ2(t, y)− ŵ1(t, y)
∣∣

0

≤M(R+ δ)t
1−1/q
0

∥∥w1−w2
∥∥

0,1.
(2.38)

Integration over [0, t0] yields

∥∥A1
3(t, y)−A2

3(t, y)
∥∥

0 ≤M(R+ δ)t
1−1/q
0

∥∥w1−w2
∥∥

0,1. (2.39)

Estimate (2.34) for i= 3 is established.
Estimate (2.34) for i= 1,4,5 follows from estimate (2.34) for i= 3 in view of

the facts that A1
1 and A2

1 are products of the determinants of matrices (∂/∂y)w̃1

and (∂/∂y)w̃2, A1
4 and A2

4 are adjoint to A1
3 and A2

3, respectively, A1
5, A2

5 are inte-
grals of w1

y , w
2
y . Inequality (2.34) is established.

Inequality (2.35) follows from inequality (2.15) and the definition of matrices
A1
i and A2

i .
Applying inequalities (2.34) and (2.35) to the right-hand side of (2.33), we

get estimate (2.33) for i = 1. By this, the multipliers A1
i −A2

i are estimated in
Lq(Q)-norm while others in C(Ω)-norm.

For proving inequality (2.32) for Z2, note that it can be rewritten in the form
(2.33), where A1

i , A
2
i , i �= 2, are from (2.33) while A1

2 = G(w1), A2
2 = G(w2). It

follows from the Newton-Leibnitz formula that

A1
2−A2

2 =
∫ 1

0
Gz
(
ŵ1(t, y) + λ

(
ŵ2(t, y)− ŵ1(t, y)

))(
ŵ2(t, y)− ŵ1(t, y)

)
dλ.

(2.40)
Then, the boundedness of ‖ŵi(t, y)‖ and continuity of Gz(Z) imply that

∥∥A1
2−A2

2

∥∥≤M(R)
∥∥w1−w2

∥∥. (2.41)

Bearing this in mind, inequality (2.32) for i= 2 as well as for i= 3 is proved in a
similar way to the case where i= 1.

It follows from inequality (2.32) that

∥∥K̃(w1)− K̃(w2)∥∥
0,1 ≤M(R)t

1−1/q
0

∥∥w1−w2
∥∥

0,1, (2.42)

whence at small t0 Lemma 2.4 follows.
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It follows from Lemmas 2.1, 2.2, and 2.4 that at small t0, the operator K̃ satis-
fies on M the conditions of the fixed point theorem for contractions. This com-
pletes the proof of Theorem 1.3. �

Remark 2.5. It follows from the proof of Theorem 1.3 that if

f (t, y)∈ S0
(
R0
)= {φ : φ∈ Lq(Q), ‖φ‖0 ≤ R0

}
, (2.43)

then at sufficiently small t0, depending only on R0, problem (1.14), (1.15) has a
unique solution v. Moreover, we may assume that v ∈M and ‖v‖1,2 ≤ R, if R is
large enough and t0 is small enough.

If t0 is those, then for each f (t, y) ∈ S0(R0), problem (1.14), (1.15) has a
unique solution. Denote by N the operator assigning in accordance to function
F ∈ S0(R0) the solution v to problem (1.14), (1.15) so that

v =N( f ). (2.44)

3. Proof of Theorem 1.2

3.1. Proof of existence. Denoting w = F(t, y +
∫ t

0 v(s, y)ds) and supposing w is
known, we obtain (by the assumption w ∈ S0(R0)) that v =N(w). Substituting
v =N(w) by w, we get

w = F
(
t, y +

∫ t
0
N(w)ds

)
≡S(w). (3.1)

Thus, problem (1.14), (1.15) is reduced to the operator (3.7) in Lq(Q0).

Lemma 3.1. Let R0 be large enough and let t0 be small enough. Then the operator
S transforms S0(R0) into itself and is compact on S0(R0).

Proof. First, we show that operator S transforms S0(R0) into itself. Let w ∈
S0(R0) and let v =N(w) be a solution to problem (1.14), (1.15), v ∈M. Con-
sider the map of Ω0 onto Ωt

x = u(t, y)= x+
∫ t

0
v(s, y)ds. (3.2)

It is easy to see that

∥∥I +uy(t, y)
∥∥
C(Ω0) ≤

∫ t
0

∥∥vy(s, y)
∥∥
C(Ω0)ds≤M1t

1−1/q
0 ‖v‖1,2 ≤M1Rt

1−1/q
0 . (3.3)

Assuming that t0 is small, we have the inequalities

1
2
≤ ∥∥uy(t, y)

∥∥
C(Ω0),

∥∥Ux(t,x)
∥∥
C(Ωt)

≤ 2. (3.4)
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Making the change of variable (3.2), we get

∥∥S(w)
∥∥q

0 =
∫ t0

0

∫
Ω0

∥∥∥∥F
(
t, y +

∫ t
0
v(s, y)ds

)∥∥∥∥
q

dy dt

=
∫ t0

0

∫
Ωt

∥∥F(t,x)
∥∥q∣∣Ux(t,x)

∣∣dxdt
≤ 2‖F‖q0.

(3.5)

Supposing that R0 ≥ 2‖F‖0, we obtain that ‖S(w)‖0 ≤ R0.
Establish now a compactness of S(w). Specify a sequence of smooth finite

functions Fn(t,x) in Q such that ‖F − Fn‖0 → 0 at n→∞. Without loss of gen-
erality, we may assume that ‖Fn‖0 ≤ 2‖F‖0 for all n. Therefore, operators Sn,
which for every Fn put in correspondence the solutions to problem (1.14), (1.15),
transform S0(R0) into itself. Note that the existence of such sequence Fn(t,x)
follows from the fact that the map (t,x)→ (t,U(t,x)) is a homeomorphism of
Q onto Q0 with the lateral surface S0 = [0, t0]× Γ0, Γ0 ∈ C2. Arranging a se-
quence of smooth finite functions Fn(t, y), convergent in Lq(Q0) to fn(t, y) =
Fn(t, ζ(t,0y)), we obtain the desired sequence Fn(t,x)= fn(t, ζ(0, t, y)).

We show that the operator Sn is compact on S0(R0). Let w ∈ S0(R0) and v =
N(w). Then the function u(t, y)= y +

∫ t
0 v(s, y)ds is continuously differentiable

with respect to every variable and uniformly bounded together with its deriva-
tives since ‖v‖1,2 ≤ R. From this and the smoothness of Fn, there follow uniform
boundedness and equicontinuity of the set of functions Fn(t, y +

∫ t
0 v(s, y)ds) (or

Sn(S0(R0))). This implies the compactness of Sn in Lq(Q0).
Now we show that Sn uniformly on S0(R0) converges to S. In fact, mak-

ing use of the change (3.2) by v =N(w), w ∈ S0(R0) and estimate (3.12), we
have

∥∥Sn(w)−S(w)
∥∥

0 =
∥∥∥∥Fn

(
t, y +

∫ t
0
v(s, y)ds

)
−F

(
t, y +

∫ t
0
v(s, y)ds

)∥∥∥∥
0

≤ 21/q
∥∥Fn(t,x)−F(t,x)

∥∥
0.

(3.6)

The uniform convergence of Sn follows from the convergence of Fn to F. The
compactness of S on S0(R0) follows from the compactness of Sn and uniform
convergence of Sn to S on S0(R0). This completes the proof of Lemma 3.1.

�

Finally, the existence of a fixed point for S follows from the Schauder fixed
point theorem.

3.2. Proof of uniqueness. The proof of the uniqueness is accomplished by a se-
ries of auxiliary propositions for solutions to the Cauchy problem in noncylin-
drical domain.
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Proposition 3.2. Let V,V 1,V 2 ∈ W1,2
q (Q), ‖V 1‖W1,2

q (Q), ‖V 2‖W1,2
q (Q), and

‖V‖W1,2
q (Q) ≤ R. Let zi(τ, t,x), i = 1,2 and let z(τ, t,x) be solutions to the Cauchy

problem

zi(τ, t,x)= x+
∫ τ
t
V i
(
s,z(s; t,x)

)
ds (3.7)

and (1.2), respectively. Then at τ, t ∈ [0, t0] the following inequalities hold:

∥∥zx(τ, t,x)
∥∥≤M;

∥∥zx(τ, t,x)− I∥∥C(Ωt)
≤
∣∣∣∣
∫ τ
t

∥∥Vx(s,x)
∥∥
C(Ωs)

ds
∣∣∣∣;

∥∥zxx(τ, t,x)
∥∥
Lq(Ωt)

≤M
∣∣∣∣
∫ τ
t

∥∥V(s,x)
∥∥
W2

q (Ωs)
ds
∣∣∣∣;

0≤ ∣∣zx(τ, t,x)
∣∣≤

∣∣∣∣
∫ τ
t

∥∥SpurVx(s,x)
∥∥
C(Ωs)ds

∣∣∣∣;

∥∥z1
x(τ, t,x)− z2

x(τ, t,x)
∥∥
Lr (Ωt)

≤M
∣∣∣∣
∫ τ
t

∥∥V 1(s,x)−V 2(s,x)
∥∥
Lr (Ωt)

ds
∣∣∣∣,

1≤ r ≤ q;

∥∥z1
x(τ, t,x)− z2

x(τ, t,x)
∥∥
W1

r (Ωt)
≤M

∣∣∣∣
∫ τ
t

∥∥V 1(s,x)−V 2(s,x)
∥∥
W1

r (Ωs)
ds
∣∣∣∣,

1≤ r ≤ q.

(3.8)

For the case of cylindrical domain Q=Q0 and V(t,x)=0 on Γ0, Proposition
3.2 is proved in [10]. The proof in the general case is reduced to the case of
cylindrical domain Q = Q0 in the following way. In what follows u(t, y) = x +∫ t

0 υ(s, y)ds, where υ(t,x) satisfies the conditions of Theorem 1.1. The function
u(t, y) defines, at fixed t ∈ [0, t0] and small t0, the homeomorphism x = u(t, y) of
domain Ω0 onto Ωt and we may assume that for u(t, y) and for inverse to it map
y = U(t,x), estimates (3.4) hold. Let z(τ, t,x) be a solution to Cauchy problem
(1.2). Then the function

z̄(τ, t, y)=U(τ,z(τ, t,u(t, y)
))

(3.9)

is the solution to Cauchy problem

z̄(τ, t, y)= y +
∫ τ
t
V̄
(
s, z̄(s, t, y)

)
ds, (3.10)

where

V̄(t, y)=−Ux
(
t,u(t, y)

)
υ(t, y) +Ux

(
t,u(t, y)

)
V
(
t,u(t, y)

)
. (3.11)

Thus, the study of z(τ, t,x) in the case of noncylindrical domain Q is reduced
to the study of a solution z̄(τ, t, y) to Cauchy problem in the cylindrical do-
main Q = Q0. Note that V̄(t, y) = 0 on S0. The statement of Proposition 3.2
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for z(τ, t, y) follows from the statement of Proposition 3.2 for z̄(τ, t,x) due to
inequalities (3.2) and the relation z(τ, t,x)= u(τ, z̄(τ, t,U(t,x))).

Proposition 3.3. For each Θ(x)∈W1
q (Ωt),

∥∥Θ(x)
∥∥
C(Ωt)

≤M∥∥Θ(x)
∥∥
W1

q (Ωt)
, M �=M(t). (3.12)

Proof. Let θ(y) = Θ(u(t, y)). Due to the change of variable x = u(t, y) and the
continuity of the imbedding (2.17) and (3.2) we have

∥∥Θ(x)
∥∥
C(Ωt)

= ∥∥θ(y)
∥∥
C(Ω0) ≤M

∥∥θ(y)
∥∥
W1

q (Ω0) ≤M
∥∥Θ(x)

∥∥
W1

q (Ωt)
, M �=M(t).

(3.13)
�

In what follows, we denote by | · |1 the norm in W1
2 (Ωt). This norm depends

on t; however, the situation is clear from the context. The norm in the dual to
o

W1
2 (Ωt) space W−1

2 (Ωt) will be denoted by | · |−1.

Proposition 3.4. Let a∈W1
q (Ωt), u∈W1

q (Ωt). Then, at every fixed t,

|au|−1 ≤ K|a|0|u|1, K �= K(t); (3.14)

|au|−1 ≤ K|a|1|u|−1, K �= K(t). (3.15)

If a∈W1
q (Ωt), u∈W2

q (Ωt), then

∣∣auxx∣∣−1 ≤ K|a|0|u|2, K �= K(t). (3.16)

Proof. Given v ∈W1
2 (Ωt), using the definition of | · |−1-norm and (2.17) we get

|au|−1 = sup
v

(au,v)
|v|1 ≤ sup

v

(u,av)
|av|0 sup

v

|av|0
|v|1 ≤M|a|0|u|1. (3.17)

Here we have used the inequality |av|0 ≤M|a|0|v|1. Inequality (3.14) is proved.
Making use of the inequality |av|1 ≤M|a|1|v|1, we have

|au|−1 = sup
v

(au,v)
|v|1 ≤ sup

v

(u,av)
|av|1 sup

v

|av|1
|v|1 ≤M|a|1|u|−1. (3.18)

Inequality (3.15) is proved. Using (3.12), (3.14), (3.15), and the inclusion u ∈
W2

2 (Ωt), we get

∣∣auxx∣∣−1 ≤
∣∣(aux)x∣∣−1 +

∣∣axux∣∣−1

≤ ∣∣aux∣∣−1 +
∣∣ax∣∣−1

∣∣ux∣∣1 ≤ |a|0
∣∣ux∣∣2.

(3.19)

Inequality (3.16) is proved. �
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Proposition 3.5. The following inequalities hold:

∥∥R(Vi
)∥∥,∥∥R−1(Vi

)∥∥≤M, (t,x)∈Q, i= 1,2; (3.20)∣∣R(Vi
)∣∣

1 ≤Mt1/20 , i= 1,2; (3.21)∥∥R(Vi
)− I∥∥C(Ωt)

≤Mt
1−1/q
0 ; (3.22)∣∣R(V 1)−R(V 2)∣∣

0 ≤Mt1/20

∥∥V 1−V 2
∥∥

0,1; (3.23)∣∣B(V 1)−B(V 2)∣∣
0 ≤Mt1/20

∥∥V 1−V 2
∥∥

0,1. (3.24)

The above proposition follows from Proposition 3.2 and (1.8).
Consider now the linear problem

Vt −�̂V = Ξ(t, y), (t, y)∈Q;

V(0, y)= 0, y ∈Ω0;

V(t, y)= 0, (t, y)∈ Γ.

(3.25)

In what follows, ‖ · ‖0,−1 stands for the norm in L2(0, t0 :W−1
2 (Ωt)).

Lemma 3.6. Let V ∈W1,2
q (Q), q ∈ (0,+∞), and V satisfy (3.25). Then

‖V‖0,1 ≤M‖Ξ‖0,−1, (3.26)

sup
t

∣∣V(t, y)
∣∣

0 ≤M‖Ξ‖0. (3.27)

Proof. Multiplying (3.25) in L2(Ωt) by V(t,x), we get

(
Vt,V

)
+
(�̂V,V)= (Ξ,V). (3.28)

Hereinafter, (·,·) denotes the scalar product in L2(Ωt) while (·) denotes the
scalar product in Rn. It is easy to see that

(
Vt,V

)= 1
2

∫
Ωt

d

dt
(V ·V)dx = 1

2

∫
Ωt

Ψt(t,x)dx, Ψ(t,x)= (V ·V). (3.29)

Let V 1 ∈W1,2
q (Q) be a solution to problem (1.9), (1.10). Making use of the

change of variable

x =U(t, y), u(t, y)= y +
∫ t

0
V 1(s,us, y)ds, (3.30)
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and differentiating the integral by parameter, we have∫
Ωt

Ψt(t,x)dx =
∫
Ω0

Ψt
(
t,u(t, y)

)
I(t, y)dy

= d

dt

∫
Ω0

Ψ
(
t,u(t, y)

)
I(t, y)dy

−
∫
Ω0

(∇xΨ
(
t,u(t, y)

))
v1(t, y)I(t, y)dy

−
∫
Ω0

Ψ
(
t,u(t, y)

) d
dt
I(t, y)dy.

(3.31)

Here v1(t, y)=V 1(t,u(t, y)), I(t, y)=|uy(t, y)|. It follows from the Ostrogradskii-

Liouville formula I(t, y)= exp(
∫ t

0 divV 1(s,u(s, y))ds) that

d

dt
I(t, y)= I(t, y)

d

dt
lnI(t, y)= divV 1(t,u(t, y)

)
I(t, y). (3.32)

Making use of the inverse to (3.30) change of variable, using (3.32) and integrat-
ing in the second integral in parts, we obtain∫

Ωt

Ψt(t,x)dx = d

dt

∫
Ωt

Ψ(t,x)dx−
∫
Ωt

(∇xΨ(t,x)
)
V 1(t,x)dx

−
∫
Ωt

Ψ(t,x)divV 1(t,x)dx

= d

dt

∫
Ωt

Ψ(t,x)dx

= d

dt

∣∣V(t,x)
∣∣2

0.

(3.33)

Consider the second term in (3.28). Integrating by parts, we have

−(�̂V,V)= 1
2

(∇V + (∇V)∗,∇V)
= 1

4

(∇V + (∇V)∗,∇V + (∇V)∗
)

= 1
4

∣∣∇V + (∇V)∗
∣∣2

0.

(3.34)

It follows from the Corn inequality [5, Theorem 2.2, page 30] that

m1|V |1 ≤
∣∣∇V + (∇V)∗

∣∣
0 ≤m2|V |1. (3.35)

Thus,

M1|V |21 ≤−
(�̂V,V)≤M2|V |21. (3.36)

Next, using, for small ε > 0, the inequality

(Ξ,V)≤ |Ξ|−1|V |1 ≤ C(ε)|Ξ|2−1 + ε|V |21 (3.37)



492 On dynamics of viscoelastic multidimensional medium

and relations (3.28), (3.33), (3.36), and (3.37), we have

d

dt

∣∣V(t,x)
∣∣2

0 + |V |21 ≤M|Ξ|2−1. (3.38)

Integrating the last inequality over [0, t0], we obtain inequality (3.26). Making
use of the inequality (Ξ,V) ≤ |Ξ|0|V |0 and relations (3.28), (3.37), and (3.33),
we get (d/dt)|V(t,x)|0 ≤ |Ξ|0. Integrating the last inequality on t on interval
[0, t0], we obtain inequality (3.27). Thus, Lemma 3.6 is proved. �

Now we proceed directly to the proof of the uniqueness. Arguing by contra-
diction, suppose that there are two solutions V 1 and V 2 of (1.9), (1.10). Then,
for V =V 1−V 2, we have

Vt −�̂V =−
n∑
i

Vi
∂V 1

∂xi
−

n∑
i

V 2
i
∂V

∂xi
+
(
1−R−1(V 1))�̂V

+R−1(V 1)R−1(V 2)(R−1(V 1)−R−1(V 2))�̂V 2

+R−1(V 1)R−1(V 2)(R−1(V 1)−R−1(V 2))DivB
(
V 1)

+R−1(V 2)DivB
(
V 1)−DivB

(
V 2)

≡
6∑
1

Zi.

(3.39)

Without loss of generality, we set above that G(Z) ≡ Z. Using Lemma 3.6, we
obtain

‖V‖0,1 ≤M
6∑
1

∥∥Zi∥∥0,−1. (3.40)

Estimate ‖Zi‖0,−1. Using (3.14), we have

∣∣Z1
∣∣−1 ≤M|V |0

∣∣V 1
x

∣∣
1 ≤ |V |0

∣∣V 1
∣∣

2. (3.41)

Since it follows from the Newton-Leibnitz formula that

∣∣V(t,x)
∣∣

0 ≤
∫ t0

0

∣∣Vt(s,x)
∣∣

0ds≤Mt0
1/2‖V‖1,2, (3.42)

then we have

∥∥Z1
∥∥

0,−1 ≤M
(∫ t0

0
|V |20

∣∣V 1
x

∣∣2
1ds

)1/2

≤ sup
t

∣∣V(t,x)
∣∣2/q

0

(∫ t0
0

∣∣V(s,x)
∣∣2(q−2)/q

0

∣∣V 1(s,x)
∣∣2

2ds
)1/2

.

(3.43)
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Making use of the Hölder inequality, we get

∥∥Z1
∥∥

0,−1 ≤Mt
1/2q
0

(∫ t0
0

∣∣Vt(s,x)
∣∣2

0ds
)(q−2)/2q(∫ t0

0

∣∣V 1(s,x)
∣∣2

0ds
)1/2q

≤Mt0
1/2q‖V‖(q−2)/q

0,1

∥∥V 1
∥∥q/2
W1,2

q (Q)
.

(3.44)

Similarly the term Z2 is handled. For other Zi, the following inequalities hold:

∥∥Zi∥∥0,−1 ≤Mt0
1/2‖V‖0,1, i= 3, . . . ,6. (3.45)

Prove (3.45) for I = 3. Using (3.16) and (3.20), we get

∣∣Z3
∣∣−1 ≤M

∣∣R−1(V 1)R−1(V 2)(R−1(V 1)−R−1(V 2))∣∣
0

∣∣V 2
∣∣

2

≤M∣∣R−1(V 1)−R−1(V 2)∣∣
0

∣∣V 2
∣∣

2.
(3.46)

Due to (3.23), it follows from here that

∥∥Z3
∥∥

0,−1 ≤M sup
t

∣∣R−1(V 1)−R−1(V 2)∣∣
0

∥∥V 2
∥∥

0,2 ≤Mt0
1/2‖V‖0,1. (3.47)

Making use of (3.15), (3.20), (3.21), and (3.24), we obtain

∥∥Z6
∥∥

0,−1 ≤M
(∫ t0

0

∣∣R−1(V 2)∣∣2
1

∣∣Div
(
B
(
V 2)−B(V 2))∣∣2

−1ds
)1/2

≤M
(∫ t0

0

∣∣R(V 2)∣∣2
1

∣∣Div
(
B
(
V 2)−B(V 2))∣∣2

0ds
)1/2

≤Mt0
1/2‖V‖0,1.

(3.48)

It follows from (3.40), (3.44), and (3.45) that

‖V‖0,1 ≤Mt0
1/2q‖V‖(q−2)/q

0,1 +Mt0
1/2‖V‖0,1. (3.49)

Choosing t0 sufficiently small, we have that ‖V‖0,1 ≤ 0. Hence, V = 0. The
uniqueness of the solution is established. This completes the proof of Theorem
1.2.

4. Proof of Theorem 1.3

The proof of Theorem 1.3 follows from the proof of Theorem 1.2. We should
make the change of variable x = z(t,0, y)—z(τ, t,x) is a solution to Cauchy prob-
lem (1.2), whereV is a solutions to problem (1.14), (1.15), and (1.16)—and then
make use of uniform boundedness from above and from below of the Jacobian
of z(τ, t,x) which implies an isomorphism of Sobolev spaces on Q onto Sobolev
spaces on Q10.
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5. Remarks

It follows from the definition of the solution and the form of the left-hand side
of (1.14) that necessarily f ∈ Lq(Q0). Rewrite problem (1.14), (1.15), and (1.16)
in the form

vt −µ�̂v =w;

v(0, y)=V 0(y), y ∈ Ω̄,

v(t, y)= Υ1(t, y), (t, y)∈ S,
(5.1)

where w is defined as in the proof of Theorem 1.3. It follows from (1.14) and
the definition of the solution that necessarily w ∈ Lq(Q0). From the properties
of the solutions of the linear problem (5.1) and from [4, Chapter 4, page 388],

we get that necessarily V 0 ∈W
2−2/q
q,0 (Ω0), Υ ∈W . Note also that the proofs of

Theorems 1.2 and 1.3 are carried out without an assumption about any smooth-
ness of F (cf. [14]).
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