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This paper is concerned with the matrix generalization of ultradiscrete systems. Specif-
ically, we establish a matrix generalization of the ultradiscrete fourth Painlevé equation
(ud-PIV). Well-defined multicomponent systems that permit ultradiscretization are ob-
tained using an approach that relies on a group defined by constraints imposed by the
requirement of a consistent evolution of the systems. The ultradiscrete limit of these sys-
tems yields coupled multicomponent ultradiscrete systems that generalize ud-PIV. The
dynamics, irreducibility, and integrability of the matrix-valued ultradiscrete systems are
studied.
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1. Introduction

Discrete Painlevé equations are difference equation analogs of classical Painlevé equa-
tions [1] and have been extensively studied recently (see the review article [2]). The ul-
tradiscrete Painlevé equations are discrete equations considered to be extended cellular
automata (they may also be considered as piecewise linear systems) that are derived by
applying the ultradiscretization process [3] to discrete Painlevé equations. This process
has been accepted as one that preserves integrability [4]. Particular indicators of inte-
grability in the ultradiscrete setting include the existence of a Lax pair [5], an analog of
singularity confinement [6], and special solutions [7].

All of the preceding examples arising from ultradiscretization are one-component (i.e.,
scalar) systems. Generalizations of integrable systems to associative algebras have been
considered for many years (see [8] and referencestherein). However, the general methods
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and results previously obtained are inapplicable in the ultradiscrete setting, due to the
requirement of a subtraction free setting. We present for the first time a matrix general-
ization of an ultradiscrete system. Without wishing to labour the point, let us stress again
that, the issue of matrix generalizations of ultradiscrete systems is a separate, more technical
issue, than that of the matrix generalization of the original discrete systems. This is the issue
which we are concerned with here.

The constraints related to the subtraction free setting and consistent evolution are
studied in a group theoretic approach, in which one may also describe the nature of the
irreducible subsystems. As an application of this method, we introduce a matrix version
of the ud-PIV of [9] which is derived by applying the ultradiscretization procedure to
q-PIV:

f0(qt)= a0a1 f1(t)
1 + a2 f2(t) + a2a0 f2(t) f0(t)
1 + a0 f0(t) + a0a1 f0(t) f1(t)

,

f1(qt)= a1a2 f2(t)
1 + a0 f0(t) + a0a1 f0(t) f1(t)
1 + a1 f1(t) + a1a2 f1(t) f2(t)

,

f2(qt)= a1a2 f0(t)
1 + a1 f1(t) + a1a2 f1(t) f2(t)
1 + a2 f2(t) + a0a2 f0(t) f2(t)

.

(1.1)

With the explicit form of the matrices derived, the new systems can be considered as
coupled multicomponent generalizations. It should be stressed that the approach of this
paper gives all possible ultradiscretizable matrix-valued versions of (1.1).

The reason for choosing q-PIV is that it has already been thoroughly and expertly in-
vestigated in the scalar case (i.e., when fi and ai are scalar) [9]. In [9], q-PIV was shown

to admit the action of the affine Weyl group of type A(1)
2 as a group of Bäcklund transfor-

mations, to have classical solutions expressible in terms of q-Hermite-Weber functions,
to have rational solutions, and its connection with the classification of Sakai [10] was also
investigated. Furthermore, the ultradiscrete limit was taken in [9], and was shown to also
admit affine Weyl group representations. As q-PIV is such a rich system, and has already
been well studied, this makes it a perfect system for the application of our approach of
ultradiscrete matrix generalization.

Before turning to the derivation of matrix ud-PIV, ultradiscretization should be intro-
duced in more detail, so that the reason for certain constraints given later will be clear.

The process is a way of bringing a rational expression, f , in variables (or parameters)
a1, . . . ,an to a new expression, F, in new ultradiscrete variables A1, . . . ,An, that are related
to the old variables via the relation ai = eAi/ε and limiting process

F
(
A1, . . . ,An

)= lim
ε→0
ε log f

(
a1, . . . ,an

)
. (1.2)

In general it is sufficient to make the following correspondences between binary opera-
tions

a+ b −→max(A,B),

ab −→ A+B,

a/b −→ A−B.

(1.3)
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This process is a way in which we may take an integrable mapping over the positive real
numbersR+ to an integrable mapping over the max-plus semiring [11]. The requirement
that the pre-ultradiscrete equations are subtraction free expressions of a definite sign is a
more stringent restraint in the matrix setting than the one-component setting, and it is
this requirement which motivates the particular form of our matrix system.

The outline of this paper is as follows. In Section 2, a q-PIV is derived in the noncom-
mutative setting, where the dependent variables take their values in an associative algebra.
In Section 3 conditions on the matrix forms of the dependent variables and parameters
of q-PIV are derived such that it has a well-defined evolution and is ultradiscretizable.
The group theoretic approach is adopted to describe the constraints on the system. In
Section 4 the ultradiscrete version of this system is derived, and some of the rich phe-
nomenology of the derived matrix-valued ultradiscrete PIV is displayed and analyzed in
Section 5.

2. Symmetric q-PIV on an associative algebra

In this section it is shown that the symmetric q-PIV of [9] can be derived from a Lax
formalism in the noncommutative setting, where the dependent variables { fi} take values
in an a priori arbitrary associative algebra, �, with unit I over a field K (when we turn
to ultradiscretization, the requirement of a field will be modified, but not in such a way
as to affect the derivation from a Lax pair). This puts the present work in the context
of other recent works on integrable systems such as [8, 12] where the structure of inte-
grable ODEs and PDEs (resp.) was extended to the domain of associative algebras, and
[13] where Painlevé equations were defined on an associative algebra (see also [8]). This
trend has also been present in works on discrete integrable systems such as [14] where
the higher dimensional consistency (consistency around a cube) property was investi-
gated for integrable partial difference equations defined on an associative algebra, and
[15] where an initial value problem on the lattice KdV with dependent variables taking
values in an associative algebra was studied, leading to exact solutions.

The auxiliary (spectral) parameter x, time variable t, and constant q belong to the field
K. The dependent variables { fi} ∈�, system parameters {bi} ∈� (i∈ {0,1,2}), and we
define

Γi := I + b3
i fi + b3

i b
3
i+1 fi fi+1 (2.1)

up to an arbitrary ordering of the b3
j and f j factors. (It will be shown that the ordering

of these factors within Γi is of no consequence for either the integrability of the system
or the existence of a well-defined evolution in the ultradiscrete limit.) The invertibility of
these expressions is assumed, that is Γ−1

i ∈�.
We derive the system from a linear problem to settle other ordering issues in the non-

commutative setting. The q-type Lax formalism is given by

φ(qx, t)= L(x, t)φ(x, t), φ(x,qt)=M(x, t)φ(x, t), (2.2)
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where

L(x, t)=

⎛

⎜
⎜
⎝

(
1 + x2

)
I b0 f0t−2/3 0

0
(
1 + x2

)
I b1 f1t−2/3

b2 f2t−2/3 0
(
1 + x2

)
I

⎞

⎟
⎟
⎠ ,

M(x, t)=

⎛

⎜
⎜
⎝

0 b−2
2 Γ2 0

0 0 b−2
0 Γ0

b−2
1 Γ1 0 0

⎞

⎟
⎟
⎠ .

(2.3)

The ultradiscrete version of this linear problem (for the usual commutative case) origi-
nally appeared in [16].

The compatibility condition for this linear problem reads

M(qx, t)L(x, t)= L(x,qt)M(x, t), (2.4)

and leads to

b0 f 0 = q2/3b−2
2 Γ2b1 f1Γ

−1
0 b2

0,

b1 f 1 = q2/3b−2
0 Γ0b2 f2Γ

−1
1 b2

1,

b2 f 2 = q2/3b−2
1 Γ1b0 f0Γ

−1
2 b2

2,

(2.5)

where the overline denotes a time update and bi = bi.
Following [9], we show that a product of the dependent variables can be regarded as

the independent variable. With { f −1
i } ∈�, {b−1

i } ∈� (i.e., we are working with a skew
field) and specifying that the product b0 f0b1 f1b2 f2 is proportional to I , it is seen that
b0 f0b1 f1b2 f2 = qc2I where c ∈K and c = qc. Without loss of generality we set c = t. From
now on

b0 f0b1 f1b2 f2 = qt2I (2.6)

will be imposed (so the algebra generated by all three { fi} and I is not free). The in-
vertibility of the algebra elements { fi} and {bi} is a consequence of the explicit matrix
representation of these objects for the well-defined matrix systems studied in the next
sections.

With the restriction

b3
0b

3
1b

3
2 = qI (2.7)

imposed, the map (2.5) is a noncommuting generalization of q-PIV. If we specify that bi
and fi be matrix valued, the only requirement for a consistent evolution is that the Γi are
invertible. This system however is too general to be ultradiscretized, since in general we
require the inverse to be subtraction free.

If all variables commute, then after the change of variables ai := b3
i the map reduces to

q-PIV, (1.1), as presented in [9].
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3. Ultradiscretizable matrix structure

The conditions (2.6) and (2.7) can be used in conjunction with (2.5) to define constraints
that lead to a consistent evolution on � as a free algebra with two-constant (say b1 and
b2) and two-variable (say f1 and f2) generators. Regarding these as n×n (or even infinite
dimensional) matrices leads to multicomponent systems. However, the aim of the present
work is to derive matrix (or multicomponent) ultradiscrete systems, and hence, as we
require the expressions to be subtraction free, we have considerably less freedom than
this general setting.

Due to this restriction, we restrict � to be the group of invertible nonnegative matri-
ces, that is, we set

�= Sn �Kn, (3.1)

where Sn is the symmetric group andKwill further be restricted to beR+ in models where
we wish to perform ultradiscretization. For our purposes Sn is realized as n×n matrices
of the form δiσ( j) for σ ∈ Sn. (This group decomposition result can been seen in [17].) We
define the homomorphism π : �→�/Kn = Sn to be the homomorphism obtained as a
result of the above semidirect product. This allows us to more easily deduce the form of
the matrices { fi}, {bi}, that give a well-defined evolution.

Since � is a semidirect product, the elements bi and fi can be uniquely written in the
form

bi = βisi ,

fi(t)=�i(t)zi,
(3.2)

where π(bi)= si ∈ Sn, π( fi(t))= zi ∈ Sn, and βi and �i(t) are diagonal matrices contain-
ing the n components of bi and fi(t), respectively (we leave the matrix representation
implicit).

We now derive further restrictions on {si} and {zi} such that the evolution is consis-
tent, and all terms in the map (such as the Γi) remain in �, (3.1).

Consider the following form of Γi

Γi := I + b3
i fi + b3

i b
3
i+1 fi+1 fi. (3.3)

As π(I)= I , π(Γi)= I and this implies

s3
i zi = I i∈ {0,1,2}. (3.4)

This is the only condition that arises from the requirement that Γi ∈�, where � is given
by (3.1). It is immediately seen that condition (3.4) is independent of the ordering of
the b3

i fi term in Γi. There are 24 possible orderings of b3
i b

3
i+1 fi+1 fi (we do not consider

the possibility of splitting up the bi factors, as b3
i =: ai is the parameter in the commu-

tative case [9]). Of these 24 possibilities, 8 also require the commutativity of s3
i and s3

j

(equivalently zi and zi+1). It is shown in the appendix that these additional commutativ-
ity relations do not change the restrictions on {si} and {zi}. (That is, commutativity of s3

i

and s3
j is a consequence of the full set of relations.)
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Requiring the preservation of (3.2) as the variables evolve, the projection of (2.5) onto
Sn, with (3.4), gives

s4
i = s2

i+1s
2
i−1 i∈ {0,1,2}. (3.5)

The projection of the constraints (2.6) and (2.7) onto Sn, with (3.4), gives

s2
2s

2
1s

2
0 = I , (3.6)

s3
0s

3
1s

3
2 = I , (3.7)

respectively.
Therefore, to give a consistent evolution that permits ultradiscretization, {si} are ho-

momorphic images of the group generators of

G= 〈g0,g1,g2 | g4
0 = g2

1g
2
2 , g4

1 = g2
2g

2
0 , g4

2 = g2
0g

2
1 , g2

2g
2
1g

2
0 = 1, g3

0g
3
1g

3
2 = 1

〉
(3.8)

in Sn; {zi} are given by (3.4). The group G has order 108. The order of the generators of
G is shown to be 18 in the appendix.

4. Ultradiscretization

We now consider the ultradiscretization of the matrix-valued systems derived in the pre-
vious section. The components of the ultradiscretized systems belong to the max-plus
semiring, S, which is the setR∪{−∞} adjoined with the binary operations of max and +
(often called tropical addition and tropical multiplication). To map the pre-ultradiscrete
expression to the max-plus semiring, we may simply make the correspondences (1.3) on
the level of the components. (So −∞ becomes the additive identity and 0 becomes the
multiplicative identity.) By ultradiscretizing matrix operations, we arrive at the following
definitions of matrix operations over S. If A= (ai j) and B = (bi j), then following [5], we
define tropical matrix addition and multiplication, ⊕ and ⊗, by the equations

(A⊕B)i j :=max
(
ai j ,bi j

)
,

(A⊗B)i j :=max
k

(
aik + bk j

)
,

(4.1)

along with a scalar operation given by

(λ⊗A)i j := (λ+ ai j
)

(4.2)

for all λ ∈ S. In the ultradiscrete limit 0 is mapped to −∞, and 1 is mapped to 0; hence
the identity matrix, I , is the matrix with zeros along the diagonal and −∞ in every other
entry. In the same way it is clear what happens to matrix realizations of members of Sn in
the ultradiscrete limit.

An ultradiscretized member of the group �, (3.1), has a decomposition of the form

D = Δ⊗T (4.3)
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(cf. (3.1)) where Δ has −∞ for all off-diagonal entries and T is an ultradiscretization of
an element of Sn. Its inverse is given by

D−1 = T−1⊗Δ−1, (4.4)

where (Δ−1)ii ≡−(Δ)ii and all off-diagonal entries are −∞.
As well as the matrix map, the correspondence also allows us to easily write the Lax

pair over the semialgebra

�(X ,T)=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

max(0,2X)⊗ I B0⊗F0⊗−2T
3

−∞
−∞ max(0,2X)⊗ I B1⊗F1⊗−2T

3
B2⊗F2⊗−2T

3
−∞ max(0,2X)⊗ I

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

�(X ,T)=
⎛

⎜
⎝

−∞ B−2
2 ⊗Γ2 −∞

−∞ −∞ B−2
0 ⊗Γ0

B−2
1 ⊗Γ1 −∞ −∞

⎞

⎟
⎠ ,

(4.5)

where the ultradiscretization of Γi, as given in (2.1), is the matrix

Γi = I ⊕ (B3
i ⊗F3

i

)⊕ (B3
i ⊗B3

i+1⊗Fi⊗Fi+1
)
. (4.6)

The compatibility condition reads

�(X +Q,T)⊗�(X ,T)=�(X ,T +Q)⊗�(X ,T) (4.7)

and gives the ultradiscrete equation over an associative S-algebra

B0⊗F0 = 2
3
Q⊗B−2

2 ⊗Γ2⊗B1⊗F1⊗Γ−1
0 ⊗B2

0,

B1⊗F1 = 2
3
Q⊗B−2

0 ⊗Γ0⊗B2⊗F2⊗Γ−1
1 ⊗B2

1,

B2⊗F2 = 2
3
Q⊗B−2

1 ⊗Γ1⊗B0⊗F0⊗Γ−1
2 ⊗B2

2 .

(4.8)

The ultradiscrete versions of the restrictions (2.6) and (2.7) are

B0⊗F0⊗B1⊗F1⊗B2⊗F2 = (Q+ 2T)⊗ I ,

B3
0 ⊗B3

1 ⊗B3
2 =Q⊗ I.

(4.9)

(Of course, it would have been equally legitimate to apply the correspondence on the level
of the map (2.5) without starting from a derivation from the ultradiscretized Lax pair.)

It is easily seen that if 2Q/3, the parameter T , and all components of the map belong
to Z then at all time steps all components (not formally equal to −∞) belong to Z. It is
this property which motivates the term “extended cellular automata.”
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5. Phenomenology

As mentioned in the above discussion, we are required to find homomorphic images of
the group G in Sn. To do this, we use the computer algebra package Magma. The homo-
morphic images of G in Sn give rise to reducible and irreducible subgroups, which in turn
translate to reducible and irreducible matrix-valued systems. By definition, the reducible
systems are decomposable into irreducible systems, and hence we restrict our attention
to the irreducible cases.

We may use any homomorphism to induce a group action of G onto a set of n objects.
In this manner, we may state by the orbit stabilizer theorem that the size of any orbit
of G must divide the order of the group. Since the group has order 108, this implies the
irreducible images of G to be of sizes that divide 108. In terms of matrix-valued systems,
the implication is that any irreducible matrix-valued systems are of sizes that divide 108.

The lowest-rank cases of the homomorphic images of the generators of G in Sn are
given in Table 5.1 using the standard cycle notation for the symmetric group. The rank 1
case is well understood [9]; hence we turn to the rank 2 case. For the examples presented
here, we restrict our attention to the ordering within the {Γi}, (4.6).

Typical behavior of the rank 2 map is shown in Figure 5.1. The initial conditions and
parameter values in this case are

B0 =
(
−∞ 0

0 −∞
)

, B1 =
⎛

⎝
−∞ 0

4
5

−∞

⎞

⎠ ,

F0 =
(−∞ 0

0 −∞
)

, F1 =
(−∞ 0

0 −∞
)

,

(5.1)

where B2 and F2 are determined by the constraints, and Q = 1. For most initial conditions
and parameter values, the behavior has a similar level of visual complexity.

It is a hallmark of the integrability of Painlevé systems that they possess special solu-
tions such as rational and hypergeometric functions [18]. A remarkable discovery of our
numerical investigations is that (4.8) displays special solution type behavior. These solu-
tions only occur for specific parameter values and initial conditions. One example of this
comes at a surprisingly close set of parameters and initial conditions to those displayed
in Figure 5.1. By setting the parameters to be

B0 =
(−∞ 0

0 −∞
)

, B1 =
⎛

⎝
−∞ 0

3
5

−∞

⎞

⎠ , (5.2)

with the same set of initial conditions, the behavior coalesces down to the much simpler
form shown in Figure 5.2.

The graphs of the single components in Figure 5.2 strongly resemble the recently dis-
covered ultradiscrete hypergeometric functions of [7]. This implies that the special solu-
tion behavior shown here may be parameterized by a higher-dimensional generalization
of the ultradiscrete hypergeometric functions of [7]. We discuss this possibility further in
Section 6. Behavior resembling rational solutions has also been observed in our compu-
tational investigations.
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Table 5.1. Lowest-rank cases of homomorphic images of the generators of G in Sn written in cycle
notation.

Rank g0 g1 g2

1 1 1 1

2 (1,2) (1,2) 1

3
(1,2,3) (1,2,3) (1,2,3)

(1,2,3) (1,3,2) 1

4 (1,2)(3,4) (1,3)(2,4) (1,4)(2,3)

6

(1,2,3,4,5,6) (1,6,5,4,3,2) 1

(1,2)(3,4)(5,6) (1,3,6)(2,4,5) (1,5,3,2,6,4)

(1,2,3)(4,5,6) (1,4,3,6,2,5) (1,4,3,6,2,5)

The typical behavior of the rank-3 map is shown in Figure 5.3. The initial conditions
and parameter values are

B0 =

⎛

⎜
⎜
⎜
⎜
⎝

−∞ 1
5

−∞
−∞ −∞ 1

4
−3 −∞ −∞

⎞

⎟
⎟
⎟
⎟
⎠

, B1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−∞ −∞ 1
7

3
5

−∞ −∞
−∞ −1

2
−∞

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

F0 =

⎛

⎜
⎜
⎝

−2 −∞ −∞
−∞ 1 −∞
−∞ −∞ 3

⎞

⎟
⎟
⎠ , F1 =

⎛

⎜
⎜
⎜
⎝

−1
4

−∞ −∞
−∞ −5 −∞
−∞ −∞ 1

⎞

⎟
⎟
⎟
⎠

,

(5.3)

where the coupling comes from the forms of the parameters.
We also find behavior which we conjecture to be parameterized by higher-dimensional

ultradiscrete hypergeometric functions. For initial conditions and parameters

B0 =

⎛

⎜
⎜
⎝

−∞ 0 −∞
−∞ −∞ 0

0 −∞ −∞

⎞

⎟
⎟
⎠ , B1 =

⎛

⎜
⎜
⎜
⎝

−∞ −∞ 0
3
5

−∞ −∞
−∞ 0 −∞

⎞

⎟
⎟
⎟
⎠

,

F0 =

⎛

⎜
⎜
⎝

0 −∞ −∞
−∞ 0 −∞
−∞ −∞ 0

⎞

⎟
⎟
⎠ , F1 =

⎛

⎜
⎜
⎝

0 −∞ −∞
−∞ 0 −∞
−∞ −∞ 0

⎞

⎟
⎟
⎠

(5.4)

we obtain the behavior exhibited in Figure 5.4.

6. Conclusions and discussion

We have presented a noncommutative generalization of q-PIV. Conditions were derived
such that the matrix-valued systems could be ultradiscretized. In Section 4, the matrix
generalization of ultradiscrete PIV was presented. In Section 5, a small snapshot of the
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Figure 5.1. Generic behavior of the rank-2 case. Component values are plotted against time step
values.
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Figure 5.2. Some special behavior of the rank-2 case.
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Figure 5.3. Generic behavior of the rank-3 case.
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Figure 5.4. Some special behavior of the rank-3 case.
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rich phenomenology was presented. Due to space restrictions, only certain aspects of this
phenomenology was presented, yet our preliminary findings suggest many avenues for
future research, including the generalization of the results in [7] to higher-dimensional
ultradiscrete hypergeometric functions.

In [19] Grammaticos et al. explicitly related two different forms of a q-discrete analog
of PV, and clarified the relationship from the point of view of affine Weyl group theory. It
would be illuminating to see how the construction of this paper is modified when applied
to different equations that are in fact the same system.

It is worth noting that a different generalization of q-PIV has been studied by Kajiwara
et al. [20, 21]. It would be interesting to know how both generalizations can be combined.

Appendix

Miscellaneous properties of the group G

By deducing properties of the group G presented in (3.8), we may deduce properties of
our elements {si} and {zi} since the {si}must be homomorphic images of the generators
of G, while the {zi} are determined by the {si} via (3.4).

Proposition A.1.

g6
0 = g6

1 = g6
2 . (A.1)

Proof. Constraint (3.5) implies

g2
2 = g−2

1 g4
0 = g4

1g
−2
0 . (A.2)

Therefore g6
0 = g6

1 , and similarly we have the full proof. �

(Note that this implies [gi,g6
j ]= 0.)

Proposition A.2. Group elements {gi} have order 18.

Proof. As g6
1 = g6

0 it follows from constraints (3.5) and (3.6) that

g8
0 = g2

2g
2
0g
−2
2 . (A.3)

Hence

g24
0 = g2

2g
6
0g
−2
2 = g6

0 , (A.4)

and therefore

g18
0 = I. (A.5)

The proofs of

g18
1 = I , g18

2 = I (A.6)

proceed in the same manner. �
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Proposition A.3.

[
g3
i ,g3

j

]= 0. (A.7)

Proof. Using (A.1), (3.7) shows us that

g6
0 = g−3

1 g−3
0 g−3

1 g−3
0 , (A.8)

further application of (A.1) reveals that

g9
0 = g−6

0 g3
1g
−3
0 g−3

1 , (A.9)

hence, using (A.5),

g−3
0 g3

1 = g3
1g
−3
0 . (A.10)

Therefore we have the commutativity of g3
0 and g3

1 , and similarly we obtain (A.7). �
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