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1. Introduction

Let R+ = (0,∞) and let Z denote the set of all integers. If a, b ∈ Z, a < b, then T[a, b] denotes the
discrete interval {a, a+1, . . . , b}. LetΔu(k) = u(k+1)−u(k) be the forward difference operator.

Let T,N ∈ Z, T < N, and let X stand for the space of functions u : T[T − 1,N + 1] → R

equipped with the norm ‖u‖ = max{|u(k)| : k ∈ T[T − 1,N + 1]}. Clearly, X is an (N − T + 3)-
dimensional Banach space.

Denote byA the set of continuous maps γ : X → R. We say that α, β ∈ A are compatible if
for each μ ∈ [0, 1] the problem

Δ(φ(Δu(k − 1))) = 0, k ∈ T[T,N], (1.1)

α(u) − μα(−u) = 0, β(u) − μβ(−u) = 0 (1.2)

has a solution; that is, there exists a function u : T[T − 1,N + 1] → R such that equality (1.1)
holds for k ∈ T[T,N] and u satisfies (1.2). Here φ fulfils the following condition:

(H1) φ ∈ C(R) is increasing such that φ(0) = 0, φ(R) = R.
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Remark 1.1. It is easy to see that u : T[T − 1,N + 1] → R is a solution of (1.1) if and only if
Δu(k) = B for k ∈ T[T − 1,N], where B ∈ R. Hence u is a solution of (1.1) if and only if
u(k) = A + Bk for k ∈ T[T − 1,N − 1], where A,B ∈ R. Consequently, problem (1.1)-(1.2) has a
solution if and only if the system

α(A + Bk) − μα(−A − Bk) = 0,
β(A + Bk) − μβ(−A − Bk) = 0

(1.3)

has a solution (A,B) ∈ R
2. If α, β ∈ A are linear, then system (1.3) has the form

Aα(1) + Bα(k) = 0,
Aβ(1) + Bβ(k) = 0

(1.4)

for each μ ∈ [0, 1].

Remark 1.2. Due to Remark 1.1, α, β ∈ A are compatible if system (1.3) has a solution (A,B) ∈
R

2 for each μ ∈ [0, 1]. If α, β are linear, then they are compatible. Indeed, system (1.3) has the
form of (1.4) for each μ ∈ R and is always solvable in R

2 because (A,B) = (0, 0) is its solution.

Let φ satisfy (H1) and let h ∈ C(T[T,N]×R
2). We discuss the nonlocal difference problem

Δ(φ(Δu(k − 1))) = h(k, u(k),Δu(k)), k ∈ T[T,N], (1.5)

α(u) = 0, β(u) = 0, α, β ∈ A, (1.6)

where α, β are compatible. We say that u : T[T −1,N +1] → R is a solution of problem (1.5)-(1.6)
if u fulfils (1.6) and equality (1.5) holds for k ∈ T[T,N].

The first aim of this paper is to present an existence principle for solving problem (1.5)-
(1.6) and the second aim is to give applications of this principle to singular problems with the
φ-Laplacian, which include as special cases the Dirichlet problem and the mixed problem.

Singular discrete Dirichlet problems of the type

−Δ(φp(Δu(k − 1))
)
= f(k, u(k)), k ∈ T[1, T],

u(0) = 0, u(T + 1) = 0
(1.7)

were studied with p = 2 in [1] and [2–4], where φp(x) = |x|p−2x (p > 1) is the p-Laplacian,
f ∈ C(T[1, T]×(0,∞)), and f(k, x)may be singular at x = 0. The existence of positive solutions
is proved by variational methods [2] and by a combination of the lower and upper solutions
methodwith a nonlinear alternative of Leray-Schauder type [1, 4] and an inequality theory [3].
In [1], the function f is nonnegative, while in [2–4] it may change sign. The paper [2] discusses
alsomultiple positive solutions. The existence ofmultiple positive solutions is investigated also
in [5, 6].

The paper [7] deals with the singular mixed problem

Δ
(
φp(Δu(k − 1))

)
+ f(k, u(k),Δu(k − 1)) = 0, k ∈ T[1, T + 1],
Δu(0) = 0, u(T + 2) = 0,

(1.8)

where f ∈ C(T[1, T + 1] × (0,∞) × R) and f(k, x, y) may be singular at x = 0. The existence of
a positive solution is proved by a combination of the lower and upper functions method with
the Brouwer fixed-point theorem.
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The rest of the paper is organized as follows. In Section 2, we present an existence prin-
ciple for solving the discrete problem (1.5)-(1.6) (see Theorem 2.1). This principle is proved
using the Brouwer degree and the Borsuk antipodal theorem (see, e.g., [8]). Notice that an
analogous principle for continuous regular nonlocal problems with the φ-Laplacian was pre-
sented in [9, Theorem 2.1]. Section 3 is devoted to applications of the existence principle. We
discuss the existence of positive solutions of the difference equation with the φ-Laplacian

Δ(φ(Δu(k − 1))) = f(k, u(k),Δu(k)) (1.9)

satisfying two types of nonlocal boundary conditions which include as special cases the Dirich-
let problem and the mixed problem. Here f is continuous and f(k, x, y) may be singular at
y = 0. The existence of positive solutions is proved by a combination of regularization and se-
quential techniques with our existence principle. The results are demonstrated with examples.

2. Existence principle

The following theorem is an existence principle for problem (1.5)-(1.6).

Theorem 2.1. Let (H1) hold. Let h ∈ C(T[T,N] × R
2) and let α, β ∈ A be compatible. Suppose that

there exists a positive constant S independent of λ such that

‖u‖ < S (2.1)

for any solution u of the problem

Δ(φ(Δu(k − 1))) = λh(k, u(k),Δu(k)), λ ∈ [0, 1],
α(u) = 0, β(u) = 0.

(2.2)

Also assume that there exists a positive constant Λ such that

max{|A|, |B|} < Λ (2.3)

for all solutions (A,B) ∈ R
2 of system (1.3) for each μ ∈ [0, 1].

Then problem (1.5)-(1.6) has a solution.

Proof. Put L = (1 +max{|T − 1|, |N + 1|}Λ and

Ω = {u ∈ X : ‖u‖ < max{S, L}}. (2.4)

Then Ω is an open, bounded, and symmetric subset of the Banach space X with respect to
0 ∈ X. Define an operator P : [0, 1] ×Ω → X by the formula

P(λ, u)(k) =
k∑

j=T

φ−1
(
φ(Δu(T − 1) + β(u)) + λ

j−1∑

s=T

h(s, u(s),Δu(s))
)
+ u(T − 1) + α(u) (2.5)

for k ∈ T[T,N], where
∑T−1

i=T = 0. It follows from the continuity of the functions φ, φ−1, f and
the maps α, β thatP is a continuous operator. Suppose that u is a fixed point ofP(λ, ·) for some
λ ∈ [0, 1]. Then

u(k) =
k∑

j=T

φ−1
(

φ(Δu(T − 1) + β(u)) + λ
j−1∑

s=T

h(s, u(s),Δu(s))

)

+ u(T − 1) + α(u) (2.6)
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for k ∈ T[T,N]. We set k = T − 1 and k = T in (2.6), and have u(T − 1) = u(T − 1) + α(u) and
u(T) = Δu(T − 1) + β(u) + u(T − 1) + α(u). Hence α(u) = 0 and β(u) = 0, which means that u
satisfies the boundary conditions (1.6). In addition,

Δu(k) = u(k + 1) − u(k) = φ−1
(

φ(Δu(T − 1) + β(u)) + λ
k∑

s=T

h(s, u(s),Δu(s))

)

, (2.7)

and consequently

Δ(φ(Δu(k − 1))) = φ(Δu(k)) − φ(Δu(k − 1)) = λh(k, u(k),Δu(k)) (2.8)

for k ∈ T[T,N]. Hence u is a solution of the equation in (2.2). We have proved that for each
λ ∈ [0, 1] any fixed point of the operator P(λ, ·) is a solution of problem (2.2). In particular,
any fixed point of P(1, ·) is a solution of problem (1.5)-(1.6). In order to prove the solvability
of problem (1.5)-(1.6), it suffices to show, by the Brouwer degree theory, that

d(I − P(1, ·),Ω, 0)/= 0, (2.9)

where “d” stands for the Brouwer degree and I is the identical operator on X. We know that
P is a continuous operator and, by the assumptions of our theorem, for each λ ∈ [0, 1] and
any fixed point u of P(λ, ·) the estimate (2.1) is true with a positive constant S. Hence for each
λ ∈ [0, 1], the operator P(λ, ·) is fixed point free on the boundary ∂Ω of Ω. Consequently, by
the homotopy property,

d(I − P(1, ·),Ω, 0) = d(I − P(0, ·),Ω, 0). (2.10)

We now define an operator L : [0, 1] ×Ω → X by the formula

L(μ, u)(k) =

⎧
⎪⎪⎨

⎪⎪⎩

u(T − 1) + α(u) − μα(−u)
+(k + 1 − T)[Δu(T − 1) + β(u) − μ(β(−u))]

for k ∈ T[T − 1,N + 1].

(2.11)

The operator L is continuous because of the continuity of α, β. In addition, L(0, ·) = P(0, ·)
and L(1, ·) is an odd operator, that is, L(1,−u) = −L(1, u) for u ∈ Ω. Suppose that u0 is a fixed
point of L(μ, ·) for some μ ∈ [0, 1]. Then

u0(k) =

⎧
⎪⎪⎨

⎪⎪⎩

u0(T − 1) + α
(
u0
) − μα

( − u0
)

+(k + 1 − T)
[
Δu0(T − 1) + β

(
u0
) − μ

(
β
( − u0

)]

for k ∈ T[T − 1,N + 1].

(2.12)

Therefore

u0(T − 1) = u0(T − 1) + α(u0) − μα(−u0), (2.13)

u0(T) = u0(T − 1) + α
(
u0
) − μα

( − u0
)
+ Δu0(T − 1) + β

(
u0
) − μβ

( − u0
)
, (2.14)

u0(k + 1) − u0(k) = Δu0(T − 1) + β
(
u0
) − μβ

( − u0
)
, k ∈ T[T,N]. (2.15)
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Then, by (2.13) and (2.14),

α
(
u0
) − μα

( − u0
)
= 0, β

(
u0
) − μβ

( − u0
)
= 0, (2.16)

which combined with (2.15) yield Δu0(k) = Δu0(T − 1) for k ∈ T[T,N]. Hence

u0(k) = A + kB for k ∈ T[T − 1,N + 1], (2.17)

where A = u0(T − 1) + (1 − T)Δu0(T − 1) and B = Δu0(T − 1). It follows from (2.16) and (2.17)
that (A,B) is a solution of system (1.3) and therefore max{|A|, |B|} < Λ by the assumptions of
our theorem. From this we conclude that ‖u0‖ < (1 + max{|T − 1|, |N + 1|}Λ. As a result for
each μ ∈ [0, 1] and any fixed point u ofL(μ, ·), we have u/∈ ∂Ω. Hence, by the Borsuk antipodal
theorem and the homotopy property,

d(I − L(1, ·),Ω, 0)/= 0, d(I − L(0, ·),Ω, 0) = d(I − L(1, ·),Ω, 0). (2.18)

Relation (2.9) follows from L(0, ·) = P(0, ·) and from (2.10) and (2.18).

3. Applications of the existence principle

Theorem 2.1 presents an existence principle which can be used for a large class of nonlocal
boundary value problems. In this section, we apply Theorem 2.1 to prove the existence of pos-
itive solutions of a generalized singular Dirichlet problem and a generalized singular mixed
problem. Both of these problems are called “generalized” since by the special choice of their
boundary conditions we obtain the Dirichlet conditions u(−N − 1) = C, u(N + 1) = C and the
mixed conditions Δu(0) = 0, u(N + 1) = C.

3.1. Generalized singular Dirichlet problem

Denote by C1 the set of functions q ∈ C(R2) such that

(i) q(x, y) is increasing in x and nondecreasing in y,

(ii) q(x, y) = −q(−x,−y) for (x, y) ∈ R
2,

(iii) limx→∞q(x, 0) = ∞.

It is obvious that for each q ∈ C1 we have q(0, 0) = 0 and q(x, y) > 0 for (x, y) ∈ R
2
+.

Let N ≥ 1 be a positive integer. We discuss the singular boundary value problem

Δ(φ(Δu(k − 1))) = f(k, u(k),Δu(k)), k ∈ T[−N,N], (3.1)

q(u(−N − 1),−Δu(−N − 1)) = C,
q(u(N + 1),Δu(N)) = C, q ∈ C1, C > 0,

(3.2)

where φ satisfies (H1) and f satisfies the condition

(H2) f ∈ C(T[−N,N] × D), D = [0,∞) × (R \ {0}), f(k, x, y) > 0 for k ∈ T[−N,N], (x, y) ∈
R+ × (R\{0}), f(k, 0, y) = 0 for k ∈ T[−N,N], y ∈ R\{0}, and for each k ∈ T[−N,N],
limy→0f(k, x, y) = ∞ locally uniformly on R+.



6 Advances in Difference Equations

We say that u ∈ T[−N−1,N+1] → R is a solution of problem (3.1)-(3.2) if u satisfies the boundary
conditions (3.2) and fulfils equality (3.1) for k ∈ T[−N,N].

Notice that a special case of the boundary conditions (3.2) is the Dirichlet conditions
u(−N − 1) = C, u(N + 1) = C which we get by setting q(x, y) = x.

We apply sequential and regularization methods to show the existence of a solution of
problem (3.1)-(3.2). To this end, for each n ∈ N define fn ∈ C(T[−N,N] × R

2) by the formula

fn(k, x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f∗(k, x, y) for k ∈ T[−N,N], (x, y) ∈ R ×
(

R \
[
− 1
n
,
1
n

])
,

n

2

[
f∗

(
k, x,

1
n

)(
y +

1
n

)
− f∗

(
k, x,− 1

n

)(
y − 1

n

)]

for k ∈ T[−N,N], (x, y) ∈ R ×
[
− 1
n
,
1
n

]
,

(3.3)

where

f∗(k, x, y) =

{
f(k, x, y) for k ∈ T[−N,N], (x, y) ∈ D,

0 for k ∈ T[−N,N], (x, y) ∈ (−∞, 0) × (R \ {0}). (3.4)

If condition (H2) holds, then

fn(k, x, y) > 0 for k ∈ T[−N,N], (x, y) ∈ R+ × R, (3.5)

fn(k, x, y) = 0 for k ∈ T[−N,N], (x, y) ∈ (−∞, 0] × R, (3.6)

lim
n→∞

fn(k, x, y) = f(k, x, y) for k ∈ T[−N,N], (x, y) ∈ [0,∞) × (R \ {0}). (3.7)

Throughout this section,X denotes the Banach space of functions u : T[−N −1,N +1] →
R with the norm ‖u‖ = max{|u(k)| : k ∈ T[−N − 1,N + 1]}.

Keeping in mind the boundary conditions (3.2), put

α(u) = q(u(−N − 1),−Δu(−N − 1)) − C,
β(u) = q(u(N + 1),Δu(N)) − C, q ∈ C1, C > 0,

(3.8)

for u ∈ X. Then α, β ∈ A and we can write the boundary conditions (3.2) in the form of (1.6).

Lemma 3.1. Let α, β ∈ A be defined in (3.8). Then for each μ ∈ [0, 1] system (1.3) has a unique
solution (A,B) ∈ R

2 and there exists a positive constant Λ independent of μ such that

max{|A|, |B|} < Λ. (3.9)

Proof. Using property (ii) of q ∈ C1 we can write system (1.3) in the form

q(A − (N + 1)B,−B) = (1 − μ)C
1 + μ

,

q(A + (N + 1)B, B) =
(1 − μ)C
1 + μ

.
(3.10)
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Suppose that some (A,B) ∈ R
2 is a solution of (3.10). If B /= 0, then q(A− (N + 1)B,−B)/= q(A+

(N+1)B, B) due to property (i) of functions belonging to the set C1, which is impossible. Hence
B = 0 and q(A, 0) = (1 − μ)C/(1 + μ). Put

p(x) = q(x, 0) for x ∈ R. (3.11)

Then p ∈ C(R) is increasing and odd on R and limx→∞p(x) = ∞. Therefore A = p−1((1 −
μ)C/(1+μ)) is the unique solution of the equation q(A, 0) = (1−μ)C/(1+μ). It is easy to check
that (A,B) = (p−1((1 − μ)C/(1 + μ)), 0) is a solution of system (1.3) for each μ ∈ [0, 1]. This
proves that system (1.3) has the unique solution (A,B) = (p−1((1 − μ)C/(1 + μ)), 0) for each
μ ∈ [0, 1]. It follows from the inequality 0 ≤ p−1((1 − μ)C/(1 + μ)) ≤ P−1(C) that (A,B) fulfils
the estimate (3.9)with Λ = p−1(C) + 1.

Remark 3.2. Due to Lemma 3.1 and Remark 1.2 the boundary conditions (3.2) are compatible.

The following result gives the properties of solutions to a regular problem depending on
a parameter λ.

Lemma 3.3. Let (H1) and (H2) hold. Let u be a solution of the equation

Δ(φ(Δu(k − 1))) = λfn(k, u(k),Δu(k)), k ∈ T[−N,N], λ ∈ (0, 1], (3.12)

fulfilling the boundary conditions (3.2). Then there exists a positive constant S independent of n and λ
such that

0 < u(k) < S for k ∈ T[−N − 1,N + 1], (3.13)

Δu(k − 1) < Δu(k) for k ∈ T[−N,N], (3.14)

Δu(−N − 1) < 0, Δu(N) > 0. (3.15)

Proof. Suppose that u(N +1) ≤ 0. IfΔu(N) ≤ 0, then q(u(N +1),Δu(N)) ≤ q(0, 0) = 0, contrary
to q(u(N + 1),Δu(N)) = C > 0. Hence Δu(N) > 0 and therefore u(N) < u(N + 1) ≤ 0,
which gives Δ(φ(Δu(N − 1))) = 0 because fn(N,u(N),Δu(N)) = 0 by (3.6). It follows from
Δ(φ(Δu(N − 1))) = 0, Δu(N) > 0, and from condition (H1) that Δu(N − 1) = Δu(N) > 0,
and consequently u(N − 1) < u(N) < 0. Applying the above arguments repeatedly, we get
Δu(j) = Δu(N) for j ∈ T[−N − 1,N]. Then Δu(−N − 1) > 0 and u(−N − 1) < u(N) < 0,
which yields q(u(−N − 1),−Δu(−N − 1)) < 0, contrary to q(u(−N − 1),−Δu(−N − 1)) = C > 0
by (3.2). Hence u(N + 1) > 0. Suppose that there exists j ∈ T[−N − 1,N] such that u(j) ≤ 0
and u(j + 1) > 0. If j > −N − 1, then Δ(φ(Δu(j − 1))) = λfn(j, u(j),Δu(j)) = 0 and therefore
Δu(j−1) = Δu(j), which gives u(j−1) < u(j) becauseΔu(j) > 0. Essentially, the same reasoning
as in the above part of the proof yields Δu(k) = Δu(j) > 0 for k ∈ T[−N − 1, j]. In particular,
u(−N − 1) < u(j) ≤ 0 and Δu(−N − 1) > 0. Consequently, q(u(−N − 1),−Δu(−N − 1)) < 0,
which is impossible by (3.2). If j = −N − 1, then u(−N − 1) ≤ 0 and Δ(−N − 1) > 0, which gives
q(u(−N − 1),−Δu(−N − 1)) ≤ 0, contrary to (3.2). We have

u(k) > 0 for k ∈ T[−N − 1,N + 1]. (3.16)

Then fn(k, u(k),Δu(k)) > 0 for k ∈ T[−N,N] by (3.5) and so Δ(φ(Δu(k − 1))) > 0 for these k,
which means that inequality (3.14) is true.
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We now prove that inequality (3.15) holds. Suppose that Δu(−N − 1) ≥ 0. Then Δu(k) >
Δu(−N − 1) ≥ 0 for k ∈ T[−N,N] by (3.14) and u(N + 1) − u(−N − 1) =

∑N
k=−N Δu(k) > 0. In

particular, Δu(N) > 0 and

u(N + 1) > u(−N − 1). (3.17)

Hence C = q(u(−N − 1),−Δu(−N − 1)) ≤ q(u(−N − 1), 0), C = q(u(N + 1),Δu(N)) ≥ q(u(N +
1), 0). Therefore q(u(−N−1), 0) ≥ q(u(N+1), 0), which contradicts (3.17), because the function
q(·, 0) is increasing on R. We have shown that the first inequality in (3.15) holds. In order to
prove that the second inequality in (3.15) is true we assume, on the contrary, that Δu(N) ≤ 0.
By (3.14), Δu(k) < Δu(N) ≤ 0 for k ∈ T[−N − 1,N − 1] and so u(N + 1) − u(−N − 1) =∑N

k=−NΔu(k) < 0. It follows from C = q(u(−N − 1),−Δu(−N − 1)) ≥ q(u(−N − 1), 0) and
C = q(u(N+1),Δu(N)) ≤ q(u(N+1), 0) that q(u(−N−1), 0) ≤ q(u(N+1), 0), which contradicts
u(N + 1) < u(−N − 1), because q(·, 0) is increasing on R.

It remains to prove that u(k) < S for k ∈ T[−N − 1,N + 1],where S is a positive constant
independent of n and λ. We see from (3.14) and (3.15) that there exists j ∈ T[−N,N − 1] such
that

Δu(k) < 0 for k ∈ T[−N − 1, j − 1], Δu(k) > 0 for k ∈ T[j + 1,N]. (3.18)

Hence u(k) ≤ max{u(−N − 1), u(N + 1)} for k ∈ T[−N − 1,N + 1]. We conclude from C =
q(u(−N − 1),−Δu(−N − 1)) ≥ q(u(−N − 1), 0), C = q(u(N + 1),Δu(N)) ≥ q(u(N + 1), 0) that
q(u(−N − 1), 0) ≤ C, q(u(N + 1), 0) ≤ C, and consequently max{u(−N − 1), u(N + 1)} ≤ p−1(C),
where p−1 is the inverse function to p given in (3.11). Therefore estimate (3.13) holds with
S = p−1(C) + 1.

Remark 3.4. Problem (3.12)–(3.2) with λ = 0 has the unique solution u, u(k) = p−1(C), for
k ∈ T[−N − 1,N + 1], where p is given in (3.11). This fact follows from Remark 1.1 and from
the proof of Lemma 3.1 with μ = 0.

The next lemma gives an existence result for problem (3.19)–(3.2), where

Δ(φ(Δu(k − 1))) = fn(k, u(k),Δu(k)), k ∈ T[−N,N]. (3.19)

Lemma 3.5. Let (H1) and (H2) hold. Then for each n ∈ N there exists a solution of problem (3.19)–(3.2)
and any of its solutions un fulfils the inequalities

0 < un(k) < S for k ∈ T[−N − 1, N + 1], (3.20)

where S is a positive constant independent of n, and

Δun(k − 1) < Δun(k) for k ∈ T[−N,N], (3.21)

Δun(−N − 1) < 0, Δun(N) > 0. (3.22)

Proof. Let us choose n ∈ N. Put h(k, x, y) = fn(k, x, y) for k ∈ T[−N,N], (x, y) ∈ R
2 and let

α, β ∈ A be given in (3.8). By Remark 3.2, the boundary conditions (3.2) are compatible. Due to
Lemma 3.3 and Remark 3.4 there exists a positive constant S such that ‖u‖ < S for all solutions
u of problem (2.2). By Lemma 3.1, there exists a positive constant Λ such that estimate (3.9) is
true for any solutions (A,B) ∈ R

2 of problem (1.3) for each μ ∈ [0, 1]. Hence the conditions of
Theorem 2.1 are satisfied and therefore problem (3.19)–(3.2) has a solution. In addition, any of
its solutions un fulfils inequalities (3.20)–(3.22) by Lemma 3.3.
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The main existence result for problem (3.1)-(3.2) is given in the following theorem.

Theorem 3.6. Let (H1) and (H2) hold. The problem (3.1)-(3.2) has a solution u and u(k) > 0 for
k ∈ T[−N − 1,N + 1].

Proof. By Lemma 3.5, for each n ∈ N there exists a solution un of problem (3.19)–(3.2) satisfying
inequalities (3.20)–(3.22). As a result, the sequence {un(k)} is bounded for k ∈ T[−N−1,N+1],
and therefore by the Bolzano-Weierstrass compactness theorem, there exist a subsequence {	n}
of {n} and some u ∈ X such that limn→∞ u	n = u. Letting n → ∞ in (3.20)–(3.22) (with 	n
instead of n) and in the boundary conditions q(u	n(−N − 1),−Δu	n(−N − 1)) = C, q(u	n(N +
1),−Δu	n(N1)) = C, we obtain

0 ≤ u(k) ≤ S for k ∈ T[−N − 1,N + 1], (3.23)

Δu(k − 1) ≤ Δu(k) for k ∈ T[−N,N], (3.24)

Δu(−N − 1) ≤ 0, Δu(N) ≥ 0, (3.25)

and u satisfies the boundary conditions (3.2).
If u(N + 1) = 0, then u(N) = −Δu(N), and since u(N) ≥ 0 by (3.23) and Δu(N) ≥ 0 by

(3.25), we have Δu(N) = 0. Hence q(u(N + 1),Δu(N)) = q(0, 0) = 0, contrary to (3.2). We have
u(N + 1) > 0. In order to prove that u(k) > 0 for k ∈ T[−N − 1,N] we first assume that there
exists j ∈ T[−N,N] such that u(j) = 0 and u(k) > 0 for k ∈ T[j + 1,N + 1]. Then Δu(j) > 0 and
therefore

lim
n→∞

Δ
(
φ
(
Δu	n(j − 1)

))
= lim

n→∞
f	n
(
j, u	n(j),Δu	n(j)

)
= f(j, 0,Δu(j)) = 0, (3.26)

by (3.7) and (H2). Since limn→∞Δ(φ(Δu	n(j−1))) = Δ(φ(Δu(j−1))),we haveΔ(φ(Δu(j−1))) =
0. Consequently, Δu(j − 1) = Δu(j) > 0, which contradicts u(j − 1) = −Δu(j − 1) < 0 and (3.23).
We have proved that u(k) > 0 for k ∈ T[−N,N + 1]. If u(−N − 1) = 0, then it follows from
u(−N) ≥ 0, and Δu(−N − 1) ≤ 0 by (3.23) and (3.25) that u(−N) = 0, Δu(−N − 1) = 0, and
consequently q(u(−N − 1),Δu(−N − 1)) = q(0, 0) = 0, contrary to (3.2). Hence u(−N − 1) > 0.
To summarize, we have

u(k) > 0 for k ∈ [−N − 1, N + 1]. (3.27)

We now prove that

Δu(k)/= 0 for k ∈ [−N,N]. (3.28)

On the contrary, suppose that Δu(j) = 0 for some j ∈ T[−N,N]. Then limn→∞f	n(j, u	n(j),
Δu	n(j)) = ∞ by (H2) since limn→∞u	n(j) = u(j) > 0 and (	n/2)max{Δu	n(j) + 1/	n,−Δu	n(j) +
1/	n} ≥ 1/2 for each n such that |Δu	n(j)| ≤ 1/	n. Therefore limn→∞Δ(φ(Δu	n(j − 1))) =
limn→∞f	n(j, u	n(j),Δu	n(j)) = ∞, which contradicts limn→∞Δ(φ(Δu	n(j − 1))) = Δ(φ(Δu(j −
1))) ∈ R.

Keeping in mind (3.27) and (3.28), we have

Δ(φ(Δu(k − 1))) = lim
n→∞

Δ
(
φ
(
Δu	n(k − 1)

))

= lim
n→∞

f	n
(
k, u	n(k),Δu	n(k)

)

= f(k, u(k),Δu(k))

(3.29)

for k ∈ T[−N,N], which means that u is a solution of (3.1). Hence u is a positive solution of
problem (3.1)-(3.2).
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Example 3.7. Let a, b, c ∈ R+, μ ≥ 0, and n ∈ N. Then f(k, x, y) = ek arctanx + xa + xb/|y|c,
k ∈ T[−N,N], (x, y) ∈ [0,∞)×(R\{0}), satisfies condition (H2) and q(x, y) = x2n−1+μ(ey−e−y),
(x, y) ∈ R

2, belongs to the set C1. If φ fulfils (H1) then, by Theorem 3.6, the singular equation

Δ(φ(Δu(k − 1))) = ek arctan(u(k)) + (u(k))a +
(u(k))b

|Δu(k)|c , k ∈ T[−N,N], (3.30)

has a positive solution fulfilling the boundary conditions

(u(−N − 1))2n−1 + μ
(
e−Δu(−N−1) − eΔu(−N−1)) = C,

(u(N + 1))2n−1 + μ
(
eΔu(N) − e−Δu(N)) = C, C > 0.

(3.31)

3.2. Generalized singular mixed problem

In this section, N ∈ N, N > 1. Denote by C2 the set of functions Q ∈ C(RN+1) such that

(i) Q(x1, . . . , xN+1) is nondecreasing in its arguments x1, . . . , xN and increasing in xN+1,

(ii) Q(x1, . . . , xN+1) = −Q(−x1, . . . ,−xN+1) for (x1, . . . , xN+1) ∈ R
N+1,

(iii) limxN+1→∞Q(0, . . . , 0, xN+1) = ∞.

It is clear that for each Q ∈ C2 we have Q(0, . . . , 0) = 0 and Q(x1, . . . , xN+1) > 0 for (x1, . . . ,
xN+1) ∈ R

N+1
+ .

Consider the nonlocal singular boundary value problem

Δ(φ(Δ(u(k − 1))) = f(k, u(k),Δu(k)), k ∈ T[1,N], (3.32)

Δu(0) = 0, Q(u(1), . . . , u(N + 1)) = C, Q ∈ C2, C > 0, (3.33)

where φ satisfies (H1) and f fulfils the condition

(H3) f ∈ C(T[1,N] × D), D = [0,∞) × R+, f(k, x, y) > 0 for k ∈ T[1,N], (x, y) ∈ R
2
+,

f(k, 0, y) = 0 for k ∈ T[1,N], y ∈ R+, and limy→0+f(1, x, y) = ∞ locally uniformly on
R+.

We say that u ∈ T[0,N + 1] → R is a solution of problem (3.32)-(3.33) if u satisfies (3.33)
and fulfils equality (3.32) for k ∈ T[1,N].

Notice that a special case of the boundary conditions (3.33) is the mixed conditions
Δu(0) = 0, u(N + 1) = C which we get by setting Q(x1, . . . , xN+1) = xN+1.

The existence of a solution to problem (3.32)-(3.33) is proved by regularization and se-
quential techniques. To this end, for each n ∈ N define fn ∈ C(T[1,N] × R

2) by the formula

fn(k, x, y) = f∗
(
k, x,max

{
1
n
, y

})
, k ∈ T[1,N], (x, y) ∈ R

2, (3.34)

where

f∗(k, x, y) =

{
f(k, x, y) for k ∈ T[1,N], (x, y) ∈ [0,∞) × R+,

0 for k ∈ T[1,N], (x, y) ∈ (−∞, 0) × R+.
(3.35)
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Under condition (H3), we have

fn(k, x, y) > 0 for k ∈ T[1,N], (x, y) ∈ (0,∞) × R, (3.36)

fn(k, x, y) = 0 for k ∈ T[1,N], (x, y) ∈ (−∞, 0] × R, (3.37)

lim
n→∞

fn(k, x, y) = f(k, x, y) for k ∈ T[1,N], (x, y) ∈ [0,∞) × R+. (3.38)

Throughout this section,X denotes the Banach space of functions u : T[0,N+1] → R equipped
with the norm ‖u‖ = max{|u(k)| : k ∈ T[0,N + 1]}.

Finally, let α, β ∈ A be defined on X by

α(u) = Δu(0), β(u) = Q(u(1), . . . , u(N + 1)) − C, Q ∈ C2, C > 0. (3.39)

Then we can write the boundary conditions (3.33) in the form of (1.6).

Lemma 3.8. Let α, β ∈ A be defined in (3.39). Then for each μ ∈ [0, 1] system (1.3) has a unique
solution (A,B) ∈ R

2 and there exists a positive constant Λ independent of μ such that

max{|A|, |B|} < Λ. (3.40)

Proof. Since α is a linear map and Q is an odd function, we can write system (1.3) in the form

(1 + μ)B = 0,
(1 + μ)Q(A + B, . . . , A + (N + 1)B) = (1 − μ)C.

(3.41)

In particular, B = 0 and A is a solution of the equation

Q(A, . . . , A) =
(1 − μ)C
1 + μ

. (3.42)

Put p(x) = Q(x, . . . , x) for x ∈ R. Then p ∈ C(R) is increasing on R, p(0) = 0 and limx→∞p(x) =
∞. Hence A = p−1((1 − μ)C/(1 + μ)) is the unique solution of (3.42), and for each μ ∈ [0, 1]
we have 0 < A ≤ p−1(C). To summarize, for each μ ∈ [0, 1] system (1.3) has a unique solution
(A,B) = (p−1((1 − μ)C/(1 + μ)), 0) and the estimate (3.40) is true with Λ = p−1(C) + 1.

Remark 3.9. By Lemma 3.8 and Remark 1.2, the boundary conditions (3.33) are compatible.

Lemma 3.10. Let (H1) and (H3) hold. Let u : T[1,N] → R be a solution of the equation

Δ(φ(Δu(k − 1))) = λfn(k, u(k),Δu(k)), k ∈ T[1,N], λ ∈ (0, 1], (3.43)

fulfilling the boundary conditions (3.33). Then there exists a positive constant S independent of n and
λ such that

0 < u(k) < S for k ∈ T[0,N + 1], (3.44)

Δu(k − 1) < Δu(k) for k ∈ T[1,N]. (3.45)
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Proof. Suppose that u(0) ≤ 0. Then u(1) = u(0) ≤ 0 and, by equality (3.37), Δ(φ(Δu(0))) =
λfn(1, u(1),Δu(1)) = 0. Hence Δu(1) = Δu(0) = 0 and so u(2) = u(0) ≤ 0. Applying the
above arguments repeatedly, we have Δu(j − 1) = Δu(0) = 0 and u(j) = u(0) ≤ 0 for j ∈
T[2,N + 1]. Therefore Q(u(1), . . . , u(N + 1)) ≤ Q(0, . . . , 0) = 0, which contradicts the fact that
Q(u(1), . . . , u(N + 1)) = C > 0 by (3.33). Consequently, u(0) = u(1) > 0. By (3.36) and (3.37),
fn(k, u(k),Δu(k)) ≥ 0 for k ∈ T[1,N], which gives Δ(φ(Δu(k − 1))) ≥ 0 for these k. Therefore
Δu(k) ≥ Δu(k − 1) for k ∈ T[1,N]. This and Δu(0) = 0 and u(1) > 0 yield

u(k) > 0 for k ∈ [0,N + 1]. (3.46)

ThenΔ(φ(Δu(k−1))) = λfn(k, u(k),Δu(k)) > 0 by (3.36), and consequently inequality (3.45) is
true, which means that the sequence {u(k)}N+1

k=1 is increasing and max{u(k) : k ∈ T[0,N +1]} =
u(N +1). It remains to prove that u(N +1) < S, where S is a positive constant independent of n
and λ. To this end, put r(x) = Q(0, . . . , 0, x) for x ∈ R. Then C = Q(u(1), . . . , u(N), u(N + 1)) ≥
Q(0, . . . , 0, u(N + 1)) = r(u(N + 1)). Since r ∈ C(R) is increasing on R and limx→∞r(x) = ∞, it
follows from the inequality C ≥ r(u(N + 1)) that u(N + 1) ≤ r−1(C). Hence u(N + 1) < S, where
S = r−1(C) + 1. Clearly, S is independent of n and λ.

Remark 3.11. Let λ = 0 in (3.43). Then problem (3.43)–(3.33) has a unique solution u, u(k) =
p−1(C), for k ∈ T[0,N + 1], where p−1 is the inverse function to p defined by p(x) = Q(x, . . . , x)
for x ∈ R. This fact follows from Remark 1.1 and the proof of Lemma 3.8 with μ = 0. Since
p(x) ≥ r(x) for x ∈ R+, we have p−1(C) ≤ r−1(C). Here r(x) = Q(0, . . . , 0, x) for x ∈ R. Hence
0 < u(k) < S for k ∈ T[0,N + 1], where S = r−1(C) + 1.

The next lemma gives an existence result for problem (3.47)–(3.33), where

Δ(φ(Δu(k − 1))) = fn(k, u(k),Δu(k)), k ∈ T[1,N]. (3.47)

Lemma 3.12. Let (H1) and (H3) hold. Then for each n ∈ N there exists a solution of problem (3.47)–
(3.33) and any of its solutions un satisfies the estimate

0 < un(k) < S for k ∈ T[0,N + 1], (3.48)

where S is a positive constant independent of n and

Δun(k − 1) < Δun(k) for k ∈ T[1,N]. (3.49)

Proof. Let us choose n ∈ N. Put h(k, x, y) = fn(k, x, y) for k ∈ T[1,N], (x, y) ∈ R
2, and let

α, β ∈ A be given in (3.39). By Remark 3.9, the boundary conditions (3.33) are compatible,
and it follows from Lemma 3.10 and Remark 3.11 that there exists a positive constant S inde-
pendent of n such that ‖u‖ < S for any solution u of problem (3.43)–(3.33), where λ ∈ [0, 1].
Besides, by Lemma 3.8, there exists a positive constant Λ such that estimate (3.40) holds for
all solutions (A,B) ∈ R

2 of problem (1.3) for each μ ∈ [0, 1]. Therefore the conditions of
Theorem 2.1 are fulfilled, and consequently problem (3.47)–(3.33) has a solution. In addition,
any of its solutions un satisfies inequalities (3.48) and (3.49) by Lemma 3.10.

We are now in a position to give our result for the solvability of problem (3.32)-(3.33).
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Theorem 3.13. Let (H1) and (H3) hold. Then problem (3.32)-(3.33) has a positive solution.

Proof. Due to Lemma 3.12, for each n ∈ N there exists a solution un of problem (3.47)–(3.33)
satisfying inequalities (3.48) and (3.49). Hence the sequence {un(k)} is bounded for each k ∈
T[0,N + 1], and consequently by the Bolzano-Weierstrass compactness theorem, there exists a
subsequence {	n} of {n} and u ∈ X such that limn→∞u	n = u. Letting n → ∞ in (3.48) and (3.49)
(with 	n instead of n) and in the boundary conditions Δu	n(0) = 0, Q(u	n(1), . . . , u	n(N + 1)) =
C, we have

0 ≤ u(k) ≤ S for k ∈ T[0,N + 1], (3.50)

Δu(k − 1) ≤ Δu(k) for k ∈ T[1,N], (3.51)

and u satisfies the boundary conditions (3.33). It follows from Δu(0) = 0 and inequalities
(3.50)-(3.51) that

0 ≤ u(0) = u(1) ≤ u(2) ≤ · · · ≤ u(N + 1) ≤ S. (3.52)

If u(N+1) = 0, then u(k) = 0 for k ∈ T[0,N+1]. ThereforeQ(u(1), . . . , u(N+1)) = Q(0, . . . , 0) =
0, contrary to (3.33). We have u(N + 1) > 0. Suppose now that u(N) = 0. Then Δu(N) =
u(N + 1) > 0 and

lim
n→∞

Δ
(
φ
(
Δu	n(N − 1)

))
= lim

n→∞
f	n
(
N,u	n(N),Δu	n(N)

)

= lim
n→∞

f

(
N,u	n(N),max

{
1
	n

,Δu	n(N)
})

= f(N, 0,Δu(N))

= 0.

(3.53)

Since limn→∞Δ(φ(Δu	n(N − 1))) = Δ(φ(Δu(N − 1))), we haveΔ(φ(Δu(N − 1))) = 0. This gives
Δu(N − 1) = Δu(N) > 0 and therefore u(N − 1) = −Δu(N − 1) < 0, which is impossible. Hence
u(N) > 0. Repeated application of the above arguments yields u(k) > 0 for k ∈ T[0,N − 1].
Hence

u(k) > 0 for k ∈ T[0,N + 1]. (3.54)

We proceed to show that

Δu(k) > 0 for k ∈ T[1,N]. (3.55)

Suppose that 0 = Δu(0) = Δu(1). Then

lim
n→∞

Δ
(
φ
(
Δu	n(0)

))
= Δ(φ(Δu(0))) = 0. (3.56)

Since limn→∞u	n(1) = u(1) > 0, we have

lim
n→∞

Δ
(
φ
(
Δu	n(0)

))
= lim

n→∞
f	n
(
1, u	n(1),Δu	n(1)

)

= lim
n→∞

f

(
1, u	n(1),max

{
1
	n

,Δu	n(1)
})

= ∞

(3.57)
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by (H3), contrary to (3.56). HenceΔu(1) > 0. From this and from (3.51), it follows that inequal-
ity (3.55) is true. Having in mind (3.55), we get

Δ(φ(Δu(k − 1))) = lim
n→∞

Δ
(
φ
(
Δu	n(k − 1)

))

= lim
n→∞

f

(
k, u	n(k),max

{
1
	n

,Δu	n(k)
})

= f(k, u(k),Δu(k))

(3.58)

for k ∈ T[1,N]. In particular, u is a solution of (3.32). Since u satisfies (3.33) and (3.41), it
follows that u is a positive solution of problem (3.32)-(3.33).

Example 3.14. Let a, b, aN+1 ∈ R+ and aj ∈ [0,∞) for j ∈ T[1,N]. Then f(k, x, y) = (ex −
1)(ln k + xa + 1/yb), k ∈ T[1,N], (x, y) ∈ [0,∞) ×R+, satisfies condition (H3), and the function
Q(x1, . . . , xN+1) =

∑N+1
j=1 ajx

2j−1
j belongs to the set C2. If φ fulfils (H1) then, by Theorem 3.13, the

singular problem

Δ(φ(Δu(k − 1))) =
(
eu(k) − 1

)
(
ln k + (u(k))a +

1

(Δu(k))b

)
, k ∈ T[1,N],

Δu(0) = 0,
N+1∑

j=1

aj(u(j))
2j−1 = C, C > 0,

(3.59)

has a positive solution.
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