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Let T be an integer with T ≥ 3, and let T := {1, . . . , T}. We study the existence and uniqueness of
solutions for the following two-point boundary value problems of second-order difference systems:
Δ2u(t − 1) + f(t, u(t)) = e(t), t ∈ T, u(0) = u(T + 1) = 0, where e : T → R

n and f : T × R
n → R

n is
a potential function satisfying f(t, ·) ∈ C1(Rn) and some nonresonance conditions. The proof of the
main result is based upon a mini-max theorem.
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1. Introduction

The existence and uniqueness of solutions of nonresonance problems of differential equations
have been studied extensively (see [1–5], and the references therein). However, very few re-
sults have been established for nonresonance problems of differential equations. Although
we have seen some results of the existence of solutions of discrete equations subjected to
diverse boundary conditions, such as in [6–13], none of them addresses the nonresonance
problems.

In this paper, we consider nonlinear boundary value problems of second-order differ-
ence systems of the form

Δ2u(t − 1) + f
(
t, u(t)

)
= e(t), t ∈ T,

u(0) = u(T + 1) = 0,
(1.1)

where e : T → R
n and f : T × R

n → R
n is a potential vector-valued function for t ∈ T.

Why do we pay attention to the discrete problem (1.1)? Note that the continuous eigen-
value problem
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y′′(t) + ηu(t) = 0, t ∈ (0, 1),

u(0) = u(1) = 0
(1.2)

has a sequence of eigenvalues

η1 < η2 < · · · < ηn < · · · −→ ∞, (1.3)

while the discrete eigenvalue problem

Δ2y(t − 1) + μy(t) = 0, t ∈ T,

y(0) = y(T + 1) = 0
(1.4)

has exactly T real eigenvalues

μ1 < μ2 < · · · < μT , (1.5)

where T is an integer with T ≥ 3, T := {1, . . . , T}, and T̂ := {0, 1, . . . , T + 1}. Thus, the study of
nonresonance problems near the largest eigenvalue μT is new and interesting.

Furthermore, the eigenspace corresponding to any eigenvalue in (1.5) is one-dimension-
al; see [14] for more extensive discussion of these topics. For every e1 : T → R

1, the correspond-
ing nonhomogeneous problem

Δ2y(t − 1) + μy(t) = e1(t), t ∈ T,

y(0) = y(T + 1) = 0
(1.6)

has a unique solution if μ /∈ {μ1, . . . , μT}. The purpose of this paper is to provide some nonres-
onance conditions which guarantee the existence and uniqueness of solutions of (1.1). Espe-
cially, we allow that the nonlinearity may be superlinear at ∞. The main tool in this paper is a
mini-max theorem due to Lazer [1].

2. Statement of the main result

In this section, we state our main result. First, we need to introduce some notations and pre-
liminary results.

Let 〈·, ·〉n be the usual scalar product in R
n. Let LS (Rn) be the set of all symmetric n × n

real matrices. For A,B ∈ LS (Rn), we say that A � B if

〈
(B −A)ξ, ξ

〉
n ≥ 0 ∀ ξ ∈ R

n. (2.1)

Lemma 2.1. Let A,B ∈ LS (Rn) be two commutative matrices with A � B. Let λA1 < λA2 < · · · <
λAn be the eigenvalues of A, and let wk be the eigenvector corresponding to λA

k
. Then, there exists γk
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such that

Bwk = γkwk, k = 1, . . . , n. (2.2)

Proof. Since A and B are commutative, we have that

A
(
Bwk

)
= B

(
Awk

)
= B

(
λAk wk

)
= λAk

(
Bwk

)
. (2.3)

Then, there exists γk such that Bwk = γkwk.

Remark 2.2. It is worth remarking that the conditions of Lemma 2.1 cannot guarantee that

γ1 ≤ γ2 ≤ · · · ≤ γn. (2.4)

Therefore, [4, Assumption (H2.2)] is not suitable.

Lemma 2.3. Let A,B ∈ LS (Rn) be two commutative matrices with A � B. Let λA1 < λA2 < · · · < λAn
and γ1, γ2, . . . , γn be the eigenvalues of A and B, respectively. Let wk be the eigenvector corresponding
to both λA

k
and γk. Then,

λAk ≤ γk, k = 1, . . . , n. (2.5)

Proof. From the fact that

Awk = λAk wk, Bwk = γkwk, (2.6)

we have

(B −A)wk =
(
γk − λAk

)
wk. (2.7)

Subsequently,

0 ≤ 〈
(B −A)wk,wk

〉
n =

〈(
γk − λAk

)
wk,wk

〉
n
=
(
γk − λAk

)〈
wk,wk

〉
n. (2.8)

This implies that γk ≥ λAk for k = 1, . . . , n.

Definition 2.4. One says that f : T × R
n → R

n, f(t, ξ) = (f1(t, ξ1, . . . , ξn), . . . , fn(t, ξ1, . . . , ξn)), is a
potential vector-valued function for t ∈ T if there exists a function G : T × R

n → R
1 such that

fi
(
t, ξ1, . . . , ξn

)
=

∂

∂ξi
G
(
t, ξ1, . . . , ξn

)
, i = 1, . . . , n, (2.9)

for all (t, ξ1, . . . , ξn) ∈ T × R
n.

Let one suppose that

(H1) f(t, ·) ∈ C1(Rn) for t ∈ T;

(H2) f(t, ξ) is a potential function for t ∈ T.
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Denote

Hf(t,ξ) =

⎛

⎜⎜⎜
⎝

f11(t, ξ1, . . . , ξn) · · · f1n(t, ξ1, . . . , ξn)
...

...
...

fn1(t, ξ1, . . . , ξn) · · · fnn(t, ξ1, . . . , ξn)

⎞

⎟⎟⎟
⎠
, (2.10)

where ξ = (ξ1, . . . , ξn), fij(t, ξ1, . . . , ξn) = (∂/∂ξj)fi(t, ξ1, . . . , ξn).
The following theorem is our main result.

Theorem 2.5. Let (H1) and (H2) hold. Assume that

(H3) there exist two diagonal matrices A and B:

A =

⎛

⎜⎜⎜⎜⎜⎜
⎝

λA1 0 · · · 0

0 λA2 · · · 0
...

...
...

0 0 · · · λAn

⎞

⎟⎟⎟
⎟
⎟
⎟
⎠

, B =

⎛

⎜⎜⎜⎜
⎜
⎜
⎝

γ1 0 · · · 0

0 γ2 · · · 0
...

...
...

0 0 · · · γn

⎞

⎟⎟⎟
⎟
⎟
⎟
⎠

, (2.11)

where λA1 < λA2 < · · · < λAn such that one of the following conditions holds:

(a) A � Hf(t,ξ) � B, [λA1 ,max{γk | k = 1, . . . , n}] ⊂ (μ1, μT), and ∪n
k=1[λ

A
k
, γk] ∩

{μ1, . . . , μT} = ∅;
(b) Hf(t,ξ) � A and λAn < μ1;
(c) B � Hf(t,ξ) andmin{γk | k = 1, . . . , n} > μT .
Then, the boundary value problem (1.1) has exact one solution for every e : T → R

n.

Remark 2.6. In (a) in (H3), we use the revised interval [λA
k
, γk] to replace the interval [λ1

k
, λ2

k
]

which was used in [4, Assumption (H2.2)].

Remark 2.7. (c) in (H3) allows that the nonlinearity f may be superlinear at +∞ and −∞.

3. The main tools

Lemma 3.1 (see [1]). Let X and Y be two closed subspaces of a real Hilbert space H such that X is
finite-dimensional and H = X ⊕ Y . Let f : H → R be a functional and let ∇f and D2f denote the
gradient and Hessian of f , respectively. Suppose that there exist two positive constantsm1 andm2 such
that

(
D2f(u)h, h

) ≤ −m1‖h‖2,
(
D2f(u)k, k

) ≥ m2‖k‖2
(3.1)

for all u ∈ H, h ∈ X, k ∈ Y . Then, f has a unique critical point. Moreover, this critical point of f is
characterized by the equality

f(v) = max
x∈X

min
y∈Y

f(x + y). (3.2)
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In order to introduce the other tool, we give firstly some notations. Let E denote real
Banach space with norm ‖ · ‖E. If E∗ is the topological dual of E, then the symbol 〈·, ·〉 will
denote the duality pair between E and E∗.

Let {un} be a sequence in E. We say that un converges weakly to u, written as un ⇀ u, if
〈ψ, un − u〉 → 0 as n→ ∞ for all ψ ∈ E∗.

Let g : E → R be a functional. We say that g is weakly continuous if for every {un} ⊂ E
with un ⇀ u, we have that

g(u) = lim
n→∞

g
(
un

)
. (3.3)

We say that g is weakly lower semicontinuous if {un} ⊂ E and un ⇀ u imply that

g(u) ≤ lim inf
n→∞

g
(
un

)
. (3.4)

We say that g is weakly upper semicontinuous if {un} ⊂ E and un ⇀ u imply that

g(u) ≥ lim sup
n→∞

g
(
un

)
. (3.5)

Lemma 3.2 (see [15, Theorem 1.7, page 417]). Let E be a real reflexive Banach space. Let f : E → R

be weakly upper semicontinuous (resp., weakly lower semicontinuous) and let it satisfy

lim
‖x‖→∞

f(x) = +∞
(
resp., lim

‖x‖→∞
f(x) = −∞

)
. (3.6)

Then, there exists x0 ∈ E such that

f
(
x0
)
= min

x∈E
f(x)

(
resp., f

(
x0
)
= max

x∈E
f(x)

)
. (3.7)

4. Preliminary lemmas

In this section, we give and prove some preliminary lemmas which are necessary for the proof
of the main result, Theorem 2.5.

Let

D̃ =
{
u | u : T̂ −→ R, u(0) = u(T + 1) = 0

}
,

D =
{
u | u : T −→ R

}
.

(4.1)

Let

H̃ =
{
y : T̂ −→ R

n | y =
(
y1, . . . , yn

)T
, yi ∈ D̃, i = 1, . . . , n

}
,

H =
{
z : T −→ R

n | z =
(
z1, . . . , zn

)T
, zi ∈ D, i = 1, . . . , n

}
.

(4.2)

For ũ, ṽ ∈ H̃ with

ũ(t) =

⎛

⎜⎜⎜
⎝

ũ1(t)
...

ũn(t)

⎞

⎟⎟⎟
⎠
, ṽ(t) =

⎛

⎜⎜⎜
⎝

ṽ1(t)
...

ṽn(t)

⎞

⎟⎟⎟
⎠
, t ∈ T̂, (4.3)
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let us define the inner product

〈〈
ũ, ṽ

〉〉
=

T+1∑

t=0

〈
ũ(t), ṽ(t)

〉
n =

T∑

t=1

n∑

j=1

ũj(t)ṽj(t). (4.4)

Similarly for u, v ∈ H with

u(t) =

⎛

⎜
⎜⎜
⎝

u1(t)
...

un(t)

⎞

⎟
⎟⎟
⎠
, v(t) =

⎛

⎜
⎜⎜
⎝

v1(t)
...

vn(t)

⎞

⎟
⎟⎟
⎠
, t ∈ T, (4.5)

we also define the inner product

〈〈
u, v

〉〉
=

T∑

t=1

〈
u(t), v(t)

〉
n =

T∑

t=1

n∑

j=1

ũj(t)ṽj(t). (4.6)

Then, both (H̃, 〈〈·〉〉) and (H, 〈〈·〉〉) are Hilbert spaces.

Lemma 4.1. Let u,w ∈ D̃. Then,

T∑

k=1

w(k)Δ2u(k − 1) = −
T∑

k=0

Δu(k)Δw(k). (4.7)

Proof. Using “summation by parts”(see [14, Theorem 2.8]), we have

T∑

k=1

w(k)Δ2u(k − 1) =
[
w(k)Δu(k − 1)

]T+1
1 −

T∑

k=1

Δw(k)Δu(k)

= −w(1)Δu(0) −
T∑

k=1

Δw(k)Δu(k)

= −Δw(0)Δu(0) −
T∑

k=1

Δw(k)Δu(k)

= −
T∑

k=0

Δu(k)Δw(k).

(4.8)

Define a functional J : H̃ → R by

J(u) =
1
2

T∑

t=0

〈
Δu(t),Δu(t)

〉
n −

T∑

t=1

G
(
t, u(t)

)
+

T∑

t=1

〈
u(t), e(t)

〉
n, (4.9)

where G satisfies

grad G(t, ξ) = f(t, ξ) =
(
f1
(
t, ξ1, . . . , ξn

)
, . . . , fn

(
t, ξ1, . . . , ξn

))T
. (4.10)
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Lemma 4.2. Let (H1) and (H2) hold. Then, J : H̃ → R
n is weakly semicontinuous and J ∈ C2.

Proof. The proof is standard; so we omit it.

Lemma 4.3. u ∈ H̃ is a critical point of J if and only if u is a solution of (1.1).

Proof. It is an immediate consequence of Lemma 4.1 and the definition of the Gâteaux-differ-
entiation.

From now on we assume that the eigenfunction ϕk corresponding to the eigenvalue μk
satisfies

T∑

t=1

ϕk(t)ϕk(t) = 1. (4.11)

The following result is a special case of [14, Theorem 7.2].

Lemma 4.4.
∑T

t=1ϕk(t)ϕj(t) = 0 for k, j ∈ T with k /= j.

5. Proof of the main result

Now, we give the proof of Theorem 2.5. We divide the proof into three cases.
Case 1 ([λA1 ,max{γk | k = 1, . . . , n}] ⊂ (μ1, μT) and ∪n

k=1[λ
A
k
, γk] ∩ {μ1, . . . , μT} = ∅). For k ∈

{1, . . . , n}, we define two sets Zk and Yk as

Zk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{0} as
[
λA
k
, γk

] ⊂ ( −∞, μ1
)
,

span
{
ϕ1, . . . , ϕmk

}
as

[
λA
k
, γk

] ⊂ (
μmk

, μmk+1
)
,

span
{
ϕ1, . . . , ϕT

}
as

[
λA
k
, γk

] ⊂ (
μT ,∞

)
,

Yk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

span {ϕ1, . . . , ϕT} as [λA
k
, γk] ⊂ (−∞, μ1),

span {ϕmk+1, . . . , ϕT} as [λA
k
, γk] ⊂ (μmk

, μmk+1),

{0} as [λA
k
, γk] ⊂ (μT ,∞).

(5.1)

For u ∈ H̃ with

u(t) =

⎛

⎜⎜⎜
⎝

c11ϕ1 + · · · + c1TϕT
...

cn1ϕ1 + · · · + cnTϕT

⎞

⎟⎟⎟
⎠
, (5.2)

we define the orthogonal projectors P : H̃ → Z1 × · · · × Zn and Q : H̃ → Y1 × · · · × Yn by

Pu =

⎛

⎜⎜⎜
⎝

c11ϕ1 + · · · + c1m1ϕm1

...

cn1ϕ1 + · · · + cnmn
ϕmn

⎞

⎟⎟⎟
⎠
, Qu =

⎛

⎜⎜⎜
⎝

c1m1+1ϕm1+1 + · · · + c1TϕT
...

cnmn+1ϕmn+1 + · · · + cnTϕT

⎞

⎟⎟⎟
⎠
. (5.3)
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Let

X =
{
x ∈ H̃ | x = Pu

}
, Y =

{
y ∈ H̃ | y = Qu

}
. (5.4)

By (a) in (H3),

H̃ = X ⊕ Y, X ⊥ Y. (5.5)

Let us consider the functional J : H̃ → R which is defined in (4.9):

J(u) =
1
2

T∑

t=0

〈
Δu(t),Δu(t)

〉
n −

T∑

t=1

G
(
t, u(t)

)
+

T∑

t=1

〈
u(t), e(t)

〉
n. (5.6)

It is easy to check that for h, k ∈ H̃,

〈〈∇J(u(t)), h(t)〉〉 =
T∑

t=1

〈 −Δ2u(t − 1), h(t)
〉
n −

T∑

t=1

〈
f(t, u), h(t)

〉
n +

T∑

t=1

〈
e(t), h(t)

〉
n,

〈〈
D2f(u(t))k(t), h(t)

〉〉
=

T∑

t=1

〈 −Δ2h(t − 1) −Hf(t,u(t))h(t), k(t)
〉
n
.

(5.7)

Now, from (a) in (H3) and Lemma 4.4, for u ∈ H̃ and x ∈ X with

u(t) =

⎛

⎜⎜⎜
⎝

c11ϕ1 + · · · + c1TϕT
...

cn1ϕ1 + · · · + cnTϕT

⎞

⎟⎟⎟
⎠
, x =

⎛

⎜⎜⎜
⎝

c11ϕ1 + · · · + c1m1ϕm1

...

cn1ϕ1 + · · · + cnmn
ϕmn

⎞

⎟⎟⎟
⎠
, (5.8)

we have that

Ax(t) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

λA1 0 · · · 0

0 λA2 · · · 0
...

...
...

0 0 · · · λAn

⎞

⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

m1∑

j=1

c1jϕj

...
mn∑

j=1

cnjϕj

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λA1

m1∑

j=1

c1jϕj

...

λAn

mn∑

j=1

cnjϕj

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

T∑

t=1

〈
Ax(t), x(t)

〉
n =

T∑

t=1

n∑

k=1

mk∑

j=1

c2kjλ
A
k .

(5.9)
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Thus,
〈〈
D2J

(
u(t)

)
x(t), x(t)

〉〉

=
T∑

t=1

〈 −Δ2x(t − 1) −Hf(t,u(t))x(t), x(t)
〉
n

=
T∑

t=1

〈 −Δ2x(t − 1), x(t)
〉
n −

T∑

t=1

〈Hf(t,u(t))x(t), x(t)
〉
n

≤
T∑

t=1

〈 −Δ2x(t − 1), x(t)
〉
n −

T∑

t=1

〈
Ax(t), x(t)

〉
n

≤
T∑

t=1

〈

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

m1∑

j=1

c1jμjϕj(t)

...
mn∑

j=1

cnjμjϕj(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

m1∑

j=1

c1jϕj(t)

...
mn∑

j=1

cnjϕj(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

〉

n

−
T∑

t=1

〈
Ax(t), x(t)

〉
n

=
T∑

t=1

n∑

k=1

mk∑

j=1

c2kjμj −
T∑

t=1

n∑

k=1

mk∑

j=1

c2kjλ
A
k

≤ −δ1
T∑

t=1

n∑

k=1

mk∑

j=1

c2kj

= −δ1
〈〈
x(t), x(t)

〉〉
,

(5.10)

where δ1 = min{λA
k
− μk | k = 1, . . . , T}. Similarly, for u ∈ H̃ and y ∈ Y , it follows from (a) in

(H3) and Lemma 4.4 that
〈〈
D2J(u)y, y

〉〉 ≥ δ2
〈〈y, y〉〉, (5.11)

where δ2 = min{μk+1 − γk | k = 1, . . . , T}. Now, applying Lemma 3.1, J has a unique critical
point v ∈ H̃ such that

J(v) = max
x∈X

min
y∈Y

J(x + y). (5.12)

Case 2 (Hf(t,ξ) � A and λAn < μ1). In this case, it is easy to verify that
〈〈
D2J(u)h, h

〉〉 ≥ (
μ1 − λAn

)〈〈h, h〉〉. (5.13)

Applying Lemma 3.2, we obtain that J has a unique critical point v ∈ H̃ such that

J(v) = min
h∈H

J(h). (5.14)

Case 3 (B � Hf(t,ξ) and min{γk | k = 1, . . . , n} > μT). In this case, we have that
〈〈
D2J(u)h, h

〉〉 ≤ −(min
{
γk | k = 1, . . . , n

} − μT
)〈〈h, h〉〉. (5.15)

Applying Lemma 3.2, J has a unique critical point v ∈ H̃ such that

J(v) = max
h∈H

J(h). (5.16)

This completes the proof of Theorem 2.5.
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6. An example

Example 6.1. Let us consider the following boundary value problem of second-order difference
system:

Δ2u(t − 1) + f
(
t, u(t)

)
= e(t), t ∈ {1, 2, 3},

u(0) = u(4) = 0,
(6.1)

where u = (u1, u2)
T , f(t, u) = (u1, (17/12)u2). Clearly, the conditions (H1) and (H2) hold, and

Hf(t,ξ) =

⎛

⎝
1 0

0
17
12

⎞

⎠ . (6.2)

Since the linear eigenvalue problem of difference equation

Δ2y(t − 1) + μy(t) = 0, t ∈ {1, 2, 3},
y(0) = y(4) = 0

(6.3)

has exactly 3 eigenvalues

2 −
√
2, 2, 2 +

√
2, (6.4)

now choose

A =

⎛

⎝
1 0

0
4
3

⎞

⎠ , B =

⎛

⎜
⎝

5
3

0

0
3
2

⎞

⎟
⎠ . (6.5)

Then, it is easy to show that the condition (a) in (H3) holds. According to Theorem 2.5, the
boundary value problem (6.1) has a unique solution for every e : {1, 2, 3} → R

2.

Remark 6.2. Note that γ1 > γ2 in B; this case cannot be handled in [4].
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