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1. Introduction

This work is devoted to the study of the existence and asymptotic behavior of solutions to the
nonlinear dynamic equation

utt + f(tbu)=0, teT, (1.1)

where the function f : T x R — R is continuous and T is a time scale (i.e., a nonempty closed
subset of the real numbers; see [1, 2] and Section 2 below) that has a minimal element ty > 0
and is unbounded above, that is,

limt, = oo for some set {t, : n € N} c T. (1.2)

n—oo
In this paper, we offer conditions that ensure that for given a,b € R, there exists a solution u of
(1.1) satistying the asymptotic behavior

u(t) =at+b+o(l) ast— oo. (1.3)
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In [3], the general solution of the linear dynamic equation
urr +hu® =0, t>t, (1.4)

where u° = u o 0, is proved to have the asymptotic representation (1.3) whenever

roo(s)lh(s)lAs < 0. (1.5)
t

0

The study is extended in [4] to the investigation of oscillatory solutions for the more general
dynamic equation

utt +h(tu® + gt)(foul) =0, (1.6)

where the coefficients h and g satisfy some integral conditions. The existence of solutions con-
verging to zero is considered in [5] for a linear nonhomogeneous dynamic equation in a self-
adjoint form. In [6], the authors considered the nonlinear dynamic equation (1.1) for the time
scales T = R and T = kZ. They assumed the existence of some positive rd-continuous function
h and a positive nondecreasing function g with g(0) = 0 and g(u) > 0 for u > 0 such that

el <nng () (17)

with

f “h(HAt < oo, (1.8)

Then, they obtained the linear behavior of solutions (see [6, Theorem 4.1])

limﬂ =

t—oo t

a, a#0. (1.9)

We mention that the dynamic equation (1.1) contains as special cases both differential
(T = R) and difference (T = Z) equations of the form

'+ f(t,u)=0, teR, A*u+ f(t,bu)y=0, teZ. (1.10)

[7, Chapter 8] is entirely devoted to the asymptotic behavior of linear difference equations and
contains some classical and fundamental results. The mth order nonlinear difference equation

A"u+a,f(u)=0, neN, (1.11)

wherem e N,a: N — R,and f : R — R, is studied in [8]. Sufficient conditions which guarantee
existence of solutions converging to some limit or having certain types of asymptotic behavior
are given. In the particular case of second-order difference equations (m = 2), a solution u, is
shown to have the asymptotic representation (see [8, Theorem 2, page 4692])

u,=an+b+o(l), n>ng, (1.12)
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provided that

> nlay| < o (1.13)

n>1

and both boundedness and uniform continuity of f are assumed. For further related results in

the discrete case, we refer the reader to [7-15]. In the continuous case, that is, T = R, the study
of the linear differential equation

u' +h(t)u=0, (1.14)

where
f th(t)|dt < oo, (1.15)

goes back to at least the works of Bocher [16] and Dini [17] published at the beginning
of the twentieth century, and it was also adapted by Bellman [18] in 1947, where the limit
limy_,.,1/'(t) = a is obtained yielding by L'Hospital’s rule the limiting behavior lim;_,,,u(t)/t =
a. The nonlinear differential equation

u" +h(t)g(u) =0 (1.16)

has been initially studied by Bihari in 1957 under (1.15) with further growth assumptions upon

the nonlinearity g (see [19]). The problem of the existence and extendability of solutions for
nonlinear ordinary differential equations has been widely investigated during the last couple
of years (see, e.g., [20-22]). Regarding the general theory of asymptotic integration of ODEs,
more details and recent developments may be found in the works [23-30] and the references
therein. Note also that (1.3) is referred to as Property (L) for the continuous case in [29], and it
seems that this notion was introduced first in [31].

Inspired and motivated by the results obtained both for difference and differential equa-
tions, our aim in this paper is to extend some of these results to nonlinear dynamic equations
on time scales. In order to obtain existence of global solutions and their asymptotic behavior at
positive infinity, we consider an arbitrary time scale (unbounded above) and we will be inter-
ested in the asymptotic behavior (1.3) of a solution u of (1.1). Here a and b are real numbers.
Considered in the spirit of the linear asymptotic conditions (1.9) and (1.12), the asymptotic de-
velopment (1.3) will be used throughout this work. Indeed, (1.1) may be seen as a perturbation
of the homogeneous equation u*2 = 0, the solutions of which are the straight lines u(t) = at+b.
Taking into account the restrictions (1.5), (1.8), (1.9), (1.12), (1.13), and (1.15), our results will
also depend heavily on the growth of the nonlinear function f with respect to the unknown u.

The setup of this paper is as follows. Section 2 contains some preliminary definitions and
results from the theory of time scales. In Section 3, we only state the main theorems. These are
four distinct results, each of which guarantees the existence of asymptotically linear solutions
according to (1.3). For the first two results, Lipschitz-like hypotheses are assumed on the non-
linearity, the third one is concerned with the sublinear growth case, while the fourth and last
one generalizes a result from [6]. In the first three theorems, existence of solutions asymptotic
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to any prescribed line is proved while in the last one, we describe linear behavior of some
solution. Section 4 features some examples that illustrate the applicability of the main results.
The proofs of the main results are presented in Section 5. They are based on the fixed point
theorems of Banach, Boyd and Wong, the Leray-Schauder nonlinear alternative, and Schauder,
respectively. We end this paper with some concluding remarks in Section 6.

2. Preliminaries

In this section, we gather some standard definitions, properties, and notations from the time
scales calculus (see [1, 2]).

Definition 2.1. Define the forward and backward jump operators o : T — Tand p : T — T by
o(t) =inf{s>t: seT}, p(t):=sup{s<t:seT}, (2.1)

respectively. A function g : T — R s called rd-continuous if it is continuous at points t € T with
o(t) = t and if it has finite left-sided limits at points t € T with p(t) = ¢.

Definition 2.2. For t € T and a function g : T — R, define the delta derivative g*(t) to be the
number (if it exists) with the property that given € > 0, there is a neighborhood U of ¢ such that

[g(o(t) ~ g(s)] - g*(D[o(t) ~s]| <elo(t) ~s|, VseU. (22)
Define also the second delta derivative by g** = (g*)".

Definition 2.3. If G is an antiderivative of g : T — R, that is, G® = g, then the integral of g is
defined by

b
f g(t)At = G(b) - G(a) z 23)

a

Moreover, improper integrals are defined by

o0 T
f g()At = lim f 2(H)AL. (2.4)

a

Remark 2.4. A well-known existence theorem [1, Theorem 1.74] says that rd-continuous func-
tions possess antiderivatives.

Remark 2.5. Note that in the case T = R, we have

ot)=pt)=t,  fA) =f),

b b (2.5)
foR ) = f'(8), f f(t)At = f f(bydt,
and in the case T = Z, we have
o(t)=t+1, p(t)=t-1, fA(t):Af(t) =f({t+1)-f(¢),
(2.6)

b b-
AN = f(E+2) —2f(t+1) + f(B), f JIOINE Zlf(t) if a<b.
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Remark 2.6. In the theory of orthogonal polynomials and quantum calculus, an appropriate
time scaleis T = g% = {g* : k € Z} U {0}, where g > 1, and thus we have

o®)=qt, pH=@-Dt  fo= f(?; 1])ct(t),
log,t-1 (27)

f(g*t) —2f(qt) + f(B)

AA(p) —
foR) = PR

, jf(S)AS_(q 1)qu(q yift>1,

(see [32, Lemma 2(ii)]). In this case, (1.1) is called a g-difference equation.

We conclude this section with an auxiliary result that will be needed frequently for the
proofs of the main theorems in Section 5.

Lemma 2.7. Let g : T — [0, 00) be rd-continuous and assume
=| (o(s)—ty)g(s)As < oo. (2.8)
t

Then,
(i) [[(o(s) —t)g(s)As < G*, forall t > to,
(i) [ (o(s) —t)g(s)As — 0as t — oo,
(iii) f:;g(s)As < .
Proof. For fixed T € T and t € (t),T), [1, Theorem 1.117(ii)] can be used to show that

T T
G(t) := f (o(s) —t)g(s)Asimplies GA(t) = —f g(s)As <0 (2.9)
t t
so that G is nonincreasing and hence G(t) < G(tp) < G*. Now, let T — oo to obtain (i). Next,
0< j (o(s) —t)g(s)As < ’[ (o(s) —ty)g(s)As — 0 ast — oo (2.10)
t t

so that (ii) holds. Finally, for sufficiently large T € T, let t, € (to + 1, T] N T so that

T

T te
As = A A
(a0 f 4(s) s+f g(s)As

f (o(s) —to)g(s)As +I g(s)As (2.11)

<G+ g(s)As.

to

Letting T — oo, we derive (iii). O
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3. Main results

Throughout this paper, for a given nonnegative rd-continuous function i : T — R, we consider
(when they exist) the constants

H* = J‘w(o(s) —to)h(s)As, H™ := oo(0'(:;) —tog)sh(s)As. (3.1)
t

0 to

We are now in position to state the four main results of this paper.

Theorem 3.1. Assume

dL > Owithj (o(s) —to)|f(s,0)|[As < L, (3.2)

to
|f(t,u1) - f(t,u2)| <h()|ur —up|, Vt>ty, uy,u; ER, (3.3)
H* <1, H™ < co. (3.4)

Then, for all a,b € R, (1.1) has a solution u on [ty, oo) satisfying (1.3).

Theorem 3.2. Assume H* < oo, (3.2), and

)~ )] <h )" s by ek (3.5)

H* + |u1 — Uy

Then, the conclusion of Theorem 3.1 holds true.

It is clear that (3.5) is stronger than (3.3) of Theorem 3.1. However, the assumption H* <
oo in Theorem 3.2 is weaker than the restriction H* < 1 in (3.4) and no further restriction is
made on the second integral H**.

Theorem 3.3. Assume (3.4) and
If(t,u)] <ht)|ul, V(¢ u)eTxR. (3.6)
Then, the conclusion of Theorem 3.1 holds true.

In the last existence result, we are rather concerned with existence of at least one solution
asymptotic to a specified line.

Theorem 3.4. Assume H* < oo and suppose there exists a nondecreasing function g : [0, 00) — [0, o0)
such that

|ua]

[f(t,u)] < h(t)g<T>, V(t,u) € Tx R. (3.7)

Suppose also that there exist a,b € R, K > 0, and t* > to such that

H*sup{g(s):0§s§§+%+|a|}§K. (3.8)

Then, (1.1) has a solution u on [t*, oo) satisfying (1.3).
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4. Examples

In this section, we illustrate each of the four theorems given in Section 3 by means of an exam-
ple.

Example 4.1 (application of Theorem 3.1). Let y : R — R satisfy
y(0) =1, ly(u1) —y(u2)| < |1 —uz|, Vur,u; €R, (4.1)
for example, y(u) = arctan(u) + 1. By Theorem 3.1, for any a, b € R, the difference equation

y(u)

A2y + L
RTELY

=0, teT=N, (4.2)

has at least one solution u on N satisfying (1.3). Indeed, let

1
ht) = g

According to (4.1), clearly (3.3) is satisfied as well as (3.2):

[ oo -vironas=332(5) <53(5) =5+ (44

ft,u) =h(t)y(w), L= (4.3)

1
1

n=1
Moreover,
O<H*"<H"= (Gs)—l)sh )As = inzl ! n—1<1 (4.5)
B m2\2) 4 ’

so that (3.4) also holds.

Example 4.2 (application of Theorem 3.2). Let T be any time scale which is unbounded above
such that its graininess is bounded above. Suppose also 1 € T. Let p > 1. By [2, Example 5.72],

M=| = <co. (4.6)

Let y : R — R be such that

|1 uzl

, Yu,uy €R, 4.7
M+|u1 1,42 ( )

y(0) =0,  |y(wm)-y(w)| <

for example, y(u) = |u|/ (M + |ul):

M| - |ua]|
(M + [ ]) (M + [uz])

[y (u1) = y(u2)| =

< M|u1—u2|
- M2+M(|u1|+|u2|) (48)
11—

_M+|u1—u2|

=y (11— u2).
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By Theorem 3.2, for any a,b € R, the dynamic equation

AA y (1)

———-=0, t>1,teT 49
tPO'(t) 4 - 4 4 ( )

has at least one solution u on T satisfying (1.3). To prove this, let

1

WO = o, fGw=hOyw,  L=1 (410)
Now note that
1= [T -vhe)as< [oeneas - [ 52~ M <o (411)

Thus, together with (4.7), we clearly have (3.5) and (3.2).
Example 4.3 (application of Theorem 3.3). For any a,b € R, the dynamic equation
utt v h(H)In(1+|ul) =0, t>ty, teT, (4.12)

has a solution satisfying the asymptotic representation (1.3) provided (3.4) is fulfilled, for ex-
ample, h(t) = 1/ (4t?2"). This follows directly from Theorem 3.3.

Example 4.4 (application of Theorem 3.4). Let g > 1. By Theorem 3.4, the g-difference equation

e|u|/t
utbs ——— =0, teq, (4.13)
(tlogqt)

has at least one solution u on g"' which behaves as u(t) = t when t — co. In fact, setting

1 |u|>
h(t) = ——, s) =eée°, t,u) =h(t (— , 414
0= g 5 fw =hing( (414)
we can first see (refer to Remark 2.6) that the integral
H* = Iw(o(s) - q)h(s)As < qJ‘wiAs =q(q- 1)il (4.15)
q g S(loqu)z an

converges. Moreover, (3.7) is clearly satisfied. Let b = 0 and K = H*e?*l%l. Since T is unbounded
above, there exists a > 1 such that t* = aK € T. Then,

H*sup{g(s):05551—5+M+|a|}:H*sup{es:0§s§1+|a|+%}

t*

(4.16)
— H*el+|u\+l/a < H*82+\a| - K

so that (3.8) holds true as well.
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5. Proofs

For any a,b € R, consider the transformation v(t) = u(t) — at — b. Then, u is a solution of (1.1)
if and only if v is a solution of

28t + f(t,o(t) +at +b) =0, t>t. (5.1)
Consider the space

Co:= Co([to, OO)T) = {’U € C([to, OO)T,R) : }ng’v(t) = O}, (52)

where [ty, o0)7 = [ty, 00) N T. Endowed with the supnorm ||v|| = sup{|o(t)| : t > to}, Co is a
Banach space. Define the mapping A for v € Cy (if the improper integral exists) by

Av(t) = Jw (t—0(s))f(s,v(s) +as+Db)As. (5.3)

It is clear that fixed points of the operator A are solutions of (5.1). Observe also that Av is
continuous if v is continuous, since then (note that f is assumed to be continuous and that
0 is rd-continuous) an rd-continuous function is integrated (note that this is possible due to
Remark 2.4) which yields a delta differentiable and hence a continuous function; see [1, Theo-
rem 1.16(i)]. Now, we are ready to prove the four results giving not only asymptotic behavior
but also existence of global solutions.

5.1. Result based on the Banach fixed point theorem

The proof of Theorem 3.1 relies on the Banach fixed point theorem, which we recall here for
completeness.

Theorem 5.1 (the Banach fixed point theorem). Let X be a Banach space and let A : X — X bea
contraction. Then, A has a unique fixed point in X.

Proof of Theorem 3.1. Let v € Cy. First, we use (3.3) to find

|f(s,v(s) + as +b) — f(s,0)| < h(s)|v(s) + as +b| < h(s)(||v| + |als + |b]) (5.4)

so that

|Av(t)| SJ; (o(s) —t)|f(s,v(s) + as + b) —f(s,0)|As+£ (o(s) —t)|f(s,0)|As

< (lloll + |b|)J; (o(s) —t)h(s)As + |a|J; (o(s) —t)sh(s)As + J; (o(s) —1)|f(s,0)|As,

(5.5)
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which tends to 0 as t — oo when applying (3.2) and (3.4) together with Lemma 2.7(ii) three
times. Hence, Av € Cy and therefore A : Cy — Cy. Moreover, passing to the supremum above
and using Lemma 2.7(i) three times, we also find that A is indeed well defined and that
|Ao| < (|lo|| + b)) H* + |a|H™ + L. (5.6)
Next, let v1, v, € Cp. With (3.3), we get
|f(s,v1(s) + as +b) — f(s,v2(s) + as + b) | < h(s)||v1 - vs| (5.7)

so that

|Avy (t) — Ava(t)] < ||o1 - Uz||jw(0(5) —t)h(s)As < H*||vy - vy, (5.8)

where we used the first part of (3.4) together with Lemma 2.7(i). Passing to the supremum, we
get

”A'Ul - AUZ” < H*||'U1 - Uz”, (59)
and due to the first part of (3.4), A is a contraction. According to Theorem 5.1, A has a fixed
point in Co. O
5.2. Result based on the Boyd and Wong fixed point theorem

To prove Theorem 3.2, we employ the Boyd and Wong fixed point theorem from [33], which
extends Theorem 5.1 and is recalled here (together with a pertinent definition) for complete-
ness.

Definition 5.2. Let X be a Banach space and let A : X — X be a mapping. A is said to be a
nonlinear contraction if there exists a continuous nondecreasing function ¢ : [0,00) — [0, 00)
such that ¢/(0) = 0 and ¢(x) < x for all x > 0 with the property

|[Au — Av|| < g(|lu-o|), Yu,veX. (5.10)
4

Theorem 5.3 (the Boyd and Wong fixed point theorem). Let X be a Banach space and let A : X —
X be a nonlinear contraction. Then, A has a unique fixed point in X.

Proof of Theorem 3.2. Let v € Cy. From (3.5), we infer the estimates

|v(s) + as + b| < h(s) (511)

|f (s,0(s) + as +b) = f(s,0)| < h(s) 5~ lo(s) + as +b| =

so that

{oe]

|Av(h)] < j

t

(o(s) =t)|f(s,v(s) +as+Db) - f(s,0)|As + Iw(o(s) —-1)|f(s,0)|As
! (5.12)

< J;oo(o(s) —t)h(s)As +J; (o(s) —t)|f(s,0)|As,
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which tends to 0 as t — co when applying (3.2) and H* < oo together with Lemma 2.7(ii) twice.
Hence, Av € Cj and therefore A : Co — Cy. Furthermore, using Lemma 2.7(i) twice, we find
that A is well defined and that

|Av|| < H* + L. (5.13)

We introduce a continuous nondecreasing function ¢ : [0, 00) — [0, o) satisfying ¢(0) = 0 and
g (x) < x, for all x > 0 by

H*x
p(x) = T ey Vx > 0. (5.14)
Let v1,v; € Cp. Assumption (3.5) yields that
h(s)
|f(s,v1(s) + as +b) — f(s,va(s) + as + b)| < T ¢ (llor —o2) (5.15)
so that
* h(s)
4011 - Av ()] < g (lor - ) | (@(5) - D2 As S g(lon-all),  (516)
t

where we used 0 < H* < oo together with Lemma 2.7(i). Passing to the supremum, we get
|Avy = Ava|| < g ([lon - val]), (5.17)

and by Definition 5.2, A is a nonlinear contraction. According to Theorem 5.3, A has a fixed

point in Co. O
5.3. Result based on the Leray-Schauder nonlinear alternative

The celebrated Leray-Schauder nonlinear alternative (see, e.g., [34]) is fundamental in the
proof of Theorem 3.3. Recall that an operator is said to be completely continuous if it is con-
tinuous and maps bounded sets into relatively compact sets.

Theorem 5.4 (the Leray-Schauder nonlinear alternative). Let X bea Banach space, Q C X bounded
and open, 0 € Q, and A : Q — X a completely continuous operator. Then, either there exist u € 0€2
and A > 1 such that Au = \u or A has a fixed point in Q.

We need the time scales version of the compactness criterion for subsets of Cy which is
due to Avramescu for the case T = R (see [20, 35]).

Proposition 5.5. Assume that the subset B C Cy has the following properties:

(i) B is uniformly bounded, that is, there exists a constant N > 0 with

lu(t)| <N, Vt>to, ueB, (5.18)
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(ii) B is equicontinuous, that is, for every € > 0 there exists 6(¢) > 0 with

|u(t1) - u(t2)| <g, Vi, tp>ty, |t1 - t2| < 6(8), u€B, (519)

(iii) B is equiconvergent, that is, for every € > 0 there exists t,(€) > to with

lu(t)| <e, Vt>t.(e), u€B. (5.20)

Then, B is relatively compact.

Proof. Following [36, proof of Proposition 2.2], consider an interval [a, ] = [a,f] NT, a < B,
and C = C([a, B]1,R). The spaces Cy and C are isomorphic by the mapping @ defined by

x(p(t), iftea,p)r,

x(0), ift=p, 6-21)

(Dx)(t) = {

where ¢ : [a, f)r — T is a continuous, strictly nondecreasing function with lim;_-¢(t) = co.
From (ii) and (iii), B is equicontinuous in Cy. Then, ®(B) is equicontinuous and uniformly
bounded in C. By the Arzela-Ascoli theorem for time scales [37, Lemma 2.6], we conclude that
®(B) is relatively compact in C, which completes the proof. O

Proof of Theorem 3.3. Define

1-H%™, ifp#0,
B o= |alH" + plH", mi= {PUTHD) 0P (5.22)
1, ifp=0.
We also introduce
Q:={veCy: ||v|| <m} (5.23)

and note that Q ¢ Cy is open and by (3.4) satisfies 0 € Q since m > 0. Let v € Q. From (3.6), we
get

|f(s,v(s) + as + b)| < h(s)|v(s) + as +b| < h(s)(m +|b| +|als) (5.24)
so that

|Av(t)]| < (m+ |b|)J;0°(0(s) —t)h(s)As + |a|J;OO (o(s) —t)sh(s)As, (5.25)

which tends to 0 as t — co when applying (3.4) together with Lemma 2.7(ii) twice. This means
that A(€2) is equiconvergent (observe Proposition 5.5(iii)) and that Av € Cp and therefore
A : Q — Cy. By Lemma 2.7(i), A is well defined, and passing to the supremum in (5.25), we
get

|Av|| < (m + |b])H* + |a|H* = mH" + . (5.26)
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We conclude that A(Q) is uniformly bounded (observe Proposition 5.5(i)). Now use (5.24)
again to deduce

|(Av)2(1)| = |[°f(s,v(s) + as +b)As| < (m+ |b|)jf§h(s)As + |a|J’Z?sh(s)As. (5.27)

Using (3.4) and Lemma 2.7(iii) twice, we find that the right-hand side above is equal to a finite
constant, say R. Thus,

|Av(t) - Av(t)| <Rl —t| — 0 ast, — h (5.28)

and so A(Q) is equicontinuous (observe Proposition 5.5(ii)). Altogether, by Proposition 5.5,
A(Q) is relatively compact.

It remains to prove that A is continuous. Let v € Q and let (v,) C Q be a sequence
converging strongly to the limit v, that is, ||v, — v|| — 0 as n — oo. By (5.24), we have the
estimate

|f(s,0u(s) + as +b)| < (m + |b| + |als)h(s). (5.29)

Since H* < oo and H™ < oo and because of Lemma 2.7(i), we infer from the Lebesgue domi-
nated convergence theorem (see [38] and [37, Theorem 10.1]) that

lim jw(o(s) —t)f(s,vn(s) +as+b)As = fw(o(s) —t)f(s,v(s) +as +Db)As. (5.30)
n—oo t t

Then, Av, — Av pointwise as n — co. In addition, A(ﬁ) is relatively compact. Then, there

exists a subsequence (Avy, ) of (Av,) converging strongly to a certain w € Cy. As the strong
convergence implies the pointwise convergence keeping the limit function, we find that w =
Av. Now, Av, converges strongly to Av as n — oo and thus the mapping A is continuous.

Altogether, A : Q — Cy is completely continuous. Let v € dQ and A > 1 be such that
Av = Av. Then, using (5.26),

Am = o]l = ||Ao|| < H'm + (5.31)
so that
lene<p s P o JHY ip=01 (5.32)
SHLT L ifpro [ ST :

a contradiction. Hence, by Theorem 5.4, A has a fixed point in Q. O
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5.4. Result based on the Schauder fixed point theorem

To prove Theorem 3.4, we appeal to the Schauder fixed point theorem (see, e.g., [34]).

Theorem 5.6 (the Schauder fixed point theorem). Let X be a Banach space and let B C X be
nonempty, bounded, closed, and convex. Let A : B — B be a completely continuous operator. Then, A
has a fixed point in B.

Proof of Theorem 3.4. Consider the closed ball B := {v € Cy : ||v|| < K} and define

9:=sup{g(u):0§u§§+%+|a|}. (5.33)

Let v € B. By (3.7), we find
|f(5,0(s) + as +b)]| < h(s)g<w> <Oh(s), s>t (5.34)

since for s > t* we have

K +|b|

0 +a| <
t*

+al. (5.35)

b
(o) vastbl ol el Ko

By (5.34), for t > t*,

|Av(t)| < Jm (o(s) = t)| f(s,v(s) +as+b)|As < GJOO (o(s) —t)h(s)As, (5.36)
t t

which tends to 0 as t — oo when applying H* < oo together with Lemma 2.7(ii). This means
that A(B) is equiconvergent (observe Proposition 5.5(iii)) and that Av € Cy and therefore
A : B — C. Thanks to Lemma 2.7(i), we also get that A is well defined and, passing to the
supremum above, we have

|Av|| <OH" <K, (5.37)

where we used (3.8). We conclude that A : B — B and that A(B) is uniformly bounded
(observe Proposition 5.5(i)). Next, let t;, t, € T be such that t, > t; > t*. Then,

Av(t) — Av(t)

= Jw (tr—0(s))f(s,v(s) +as +b)As - Jm (th —0(s)) f(s,v(s) + as + b)As
b h

= jw{ (th—0(s)) = (i —0(s))} f(s,v(s) + as + b) As — Jtz(tl -0(s))f(s,v(s) +as+b)As
ty t

=(tr—t) oc)f(s,zv(s) +as+b)As+ : (o(s) —t) f(s,v(s) + as +b)As.
i t

(5.38)
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Using again (5.34), we find

|Av(ty) — Av(t)| < (t2— tl)Gfooh(s)As + thzo(s)h(s)As, (5.39)
to ty

which tends to zero as t, — t; due to H* < oo and Lemma 2.7(iii) (for the second integral, use
that oh is rd-continuous and hence has an antiderivative Q by Remark 2.4, and thus this inte-
gral equals to Q(f;) — Q(t1) and Q is continuous). Therefore, A(B) is equicontinuous (observe
Proposition 5.5(ii)). Altogether, by Proposition 5.5, A(B) is relatively compact. As in the proof
of Theorem 3.3, we may check that A is continuous. Thus, A : B — B is completely continuous.
According to Theorem 5.6, A has a fixed point in B. O

6. Concluding remarks

In this work, specific results regarding the asymptotic behavior of the nonlinear dynamic
equation (1.1) have been obtained, extending some known results in the theories of differ-
ence and differential equations, for example to g-difference equations (see Remark 2.6) and to
other cases of arbitrary time scales. Not only did our work extend the continuous and the dis-
crete, but it also unified those two important cases and illuminated the common grounds of
the corresponding differential and difference equations. As a fundamental contribution to the
now well-established theory of time scales, it is hoped that our results will advance the area
and stimulate future research on this and related topics. For example, the more general case of
delta-derivative depending nonlinearity f = f(t,u, u®) may be treated in an analogous manner
yielding the asymptotic behavior (1.3). For this purpose, additional restrictions on the growth
of f with respect to the derivative u* need to be assumed. The space Cj introduced in Section 5
is then extended to a space involving also the limit at infinity of the delta derivative; accord-
ingly, a new compactness criterion is required. Also notice that the most informative condition
is (3.7) which shows how the nonlinearity grows in terms of the ratio u/t.

Apart from Theorem 3.4, Theorems 3.1, 3.2, and 3.3 are concerned with what is usually
called the inverse problem of seeking a solution asymptotic to a given line (see [28, 29]). We
point out that further to the asymptotic behavior, these theorems also provide existence of
solutions to initial value problems for the dynamic equation (1.1). Moreover, the existence of
solutions with behavior described by (1.3) does not mean that all solutions behave in the same
manner as shown in the nonlinear ordinary differential equation u” = (3/t°)u?, t > 1 (see also
[28, Section 5]). Indeed, this equation admits by Theorem 3.1 a solution having Property (L)
while the solution u(t) = 2t> has not.

Finally, we mention that similar Bihari-type existence results of solutions which can be
expanded asymptotically as u(t) = P(t) + o(t) near positive infinity may also be obtained for
the nonhomogeneous dynamic equation

ub® 4 ft,u)=p(t), teT, (6.1)

where P22 = p and p is a polynomial. For the case T = R, we refer to [24, Section 8, Theorem
18] (see also [30]).
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