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Correspondence should be addressed to Pavel Řehák, rehak@math.cas.cz
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Necessary and sufficient conditions for regular or slow variation of all positive solutions of a
second-order linear difference equation with arbitrary sign coefficient are established. Relations
with the so-called M-classification are also analyzed and a generalization of the results to the half-
linear case completes the paper.

1. Introduction

We consider the second-order linear difference equation

Δ2yk + pkyk+1 = 0 (1.1)

on N, where p is an arbitrary sequence.
The principal aim of this paper is to study asymptotic behavior of positive solutions

to (1.1) in the framework of discrete regular variation. Our results extend the existing ones
for (1.1), see [1], where the additional condition pk < 0 was assumed. We point out that
the relaxation of this condition requires a different approach. At the same time, our results
can be seen as a discrete counterpart to the ones for linear differential equations, see, for
example, [2]. As a byproduct, we obtain new nonoscillation criterion of Hille-Nehari type.We
also examine relations with the so-called M-classification (i.e., the classification of monotone
solutions with respect to their limit behavior and the limit behavior of their difference). We
point out that such relations could be established also in the continuous case, but, as far as
we know, they have not been derived yet. In addition, we discuss relations with the sets of
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recessive and dominant solutions. A possible extension to the case of half-linear difference
equations is also indicated.

The paper is organized as follows. In the next section we recall the concept of regularly
varying sequences and mention some useful properties of (1.1)which are needed later. In the
main section, that is, Section 3, we establish sufficient and necessary conditions guaranteeing
that (1.1) has regularly varying solutions. Relations with the M-classification is analyzed in
Section 4. The paper is concluded by the section devoted to the generalization to the half-
linear case.

2. Preliminaries

In this section we recall basic properties of regularly and slowly varying sequences and
present some useful information concerning (1.1).

The theory of regularly varying sequences (sometimes called Karamata sequences),
initiated by Karamata [3] in the thirties, received a fundamental contribution in the seventies
with the papers by Seneta et al. (see [4, 5]) starting from which quite many papers about
regularly varying sequences have appeared, see [6] and the references therein. Here we
make use of the following definition, which is a modification of the one given in [5], and
is equivalent to the classical one, but it is more suitable for some applications to difference
equations, see [6].

Definition 2.1. A positive sequence y = {yk}, k ∈ N, is said to be regularly varying of index �,
� ∈ R, if there exists C > 0 and a positive sequence {αk} such that

lim
k

yk
αk

= C, lim
k
k
Δαk
αk

= �. (2.1)

If � = 0, then {yk} is said to be slowly varying. Let us denote by RV(�) the totality of
regularly varying sequences of index � and by SV the totality of slowly varying sequences.
A positive sequence {yk} is said to be normalized regularly varying of index � if it satisfies
limkkΔyk/yk = �. If � = 0, then y is called a normalized slowly varying sequence. In the sequel,
NRV(�) and NSV will denote, respectively, the set of all normalized regularly varying
sequences of index �, and the set of all normalized slowly varying sequences. For instance,
the sequence {yk} = {log k} ∈ NSV, and the sequence {yk} = {k� log k} ∈ NRV(�), for every
� ∈ R; on the other hand, the sequence {yk} = {1 + (−1)k/k} ∈ SV \NSV.

The main properties of regularly varying sequences, useful to the development of the
theory in the subsequent sections, are listed in the following proposition. The proofs of the
statements can be found in [1], see also [4, 5].

Proposition 2.2. Regularly varying sequences have the following properties.

(i) A sequence y ∈ RV(�) if and only if yk = k�ϕk exp{
∑k−1

j=1 ψj/j}, where {ϕk} tends to
a positive constant and {ψk} tends to 0 as k → ∞. Moreover, y ∈ RV(�) if and only if
yk = k�Lk, where L ∈ SV.

(ii) A sequence y ∈ RV(�) if and only if yk = ϕk
∏k−1

j=1 (1 + δj/j), where {ϕk} tends to a
positive constant and {δk} tends to � as k → ∞.

(iii) If a sequence y ∈ NRV(�), then in the representation formulae given in (i) and (ii), it holds
ϕk ≡ const > 0, and the representation is unique. Moreover, y ∈ NRV(�) if and only if
yk = k�Sk, where S ∈ NSV.
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(iv) Let y ∈ RV(�). If one of the following conditions holds (a) Δyk ≤ 0 and Δ2yk ≥ 0, or (b)
Δyk ≥ 0 and Δ2yk ≤ 0, or (c) Δyk ≥ 0 and Δ2yk ≥ 0, then y ∈ NRV(�).

(v) Let y ∈ RV(�). Then limk yk/k
�−ε = ∞ and limkyk/k

�+ε = 0 for every ε > 0.

(vi) Let u ∈ RV(�1) and v ∈ RV(�2). Then uv ∈ RV(�1 + �2) and 1/u ∈ RV(−�1). The same
holds if RV is replaced byNRV.

(vii) If y ∈ RV(�), � ∈ R, is strictly convex, that is, Δ2yk > 0 for every k ∈ N, then y is
decreasing provided � ≤ 0, and it is increasing provided � > 0. If y ∈ RV(�), � ∈ R, is
strictly concave for every k ∈ N, then y is increasing and � ≥ 0.

(viii) If y ∈ RV(�), then limkyk+1/yk = 1.

Concerning (1.1), a nontrivial solution y of (1.1) is called nonoscillatory if it is eventually
of one sign, otherwise it is said to be oscillatory. As a consequence of the Sturm separation
theorem, one solution of (1.1) is oscillatory if and only if every solution of (1.1) is oscillatory.
Hence we can speak about oscillation or nonoscillation of equation (1.1). A classification of
nonoscillatory solutions in case p is eventually of one sign, will be recalled in Section 4.
Nonoscillation of (1.1) can be characterized in terms of solvability of a Riccati difference
equation; the methods based on this relation are referred to as the Riccati technique: equation
(1.1) is nonoscillatory if and only if there is a ∈ N and a sequence w satisfying

Δwk + pk +
w2
k

1 +wk
= 0 (2.2)

with 1 + wk > 0 for k ≥ a. Note that, dealing with nonoscillatory solutions of (1.1), we may
restrict our considerations just to eventually positive solutions without loss of generality.

We end this section recalling the definition of recessive solution of (1.1). Assume that
(1.1) is nonoscillatory. A solution y of (1.1) is said to be a recessive solution if for any other
solution x of (1.1), with x /=λy, λ ∈ R, it holds limkyk/xk = 0. Recessive solutions are
uniquely determined up to a constant factor, and any other linearly independent solution
is called a dominant solution. Let y be a solution of (1.1), positive for k ≥ a ≥ 0. The following
characterization holds: y is recessive if and only if

∑∞
k=a 1/(ykyk+1) = ∞; y is dominant if and

only if
∑∞

k=a 1/(ykyk+1) <∞.

3. Regularly Varying Solutions of Linear Difference Equations

In this section we prove conditions guaranteeing that (1.1) has regularly varying solutions.
Hereinafter, xk ∼ yk means limk xk/yk = 1, where x and y are arbitrary positive sequences.

Let A ∈ (−∞, 1/4) and denote by �1 < �2, the (real) roots of the quadratic equation
�2 − � +A = 0. Note that 1 − 2�1 =

√
1 − 4A > 0, 1 − �1 = �2, sgnA = sgn �1, and �2 > 0.

Theorem 3.1. Equation (1.1) is nonoscillatory and has a fundamental system of solutions {y, x}
such that yk = k�1Lk ∈ NRV(�1) and xk = k�2 L̃k ∈ NRV(�2) if and only if

lim
k
k

∞∑

j=k

pj = A ∈
(

−∞,
1
4

)

, (3.1)



4 Advances in Difference Equations

where L, L̃ ∈ NSV with L̃k ∼ 1/((1 − 2�1)Lk) as k → ∞. Moreover, y is a recessive solution, x is a
dominant solution, and every eventually positive solution z of (1.1) is normalized regularly varying,
with z ∈ NRV(�1) ∪NRV(�2).

Proof . First we show the last part of the statement. Let {x, y} be a fundamental set of solutions
of (1.1), with y ∈ NRV(�1), x ∈ NRV(�2), and let z be an arbitrary solution of (1.1), with
zk > 0 for k sufficiently large. Since y ∈ NRV(�1), it can be written as yk = k�1Lk, where
L ∈ NSV, by Proposition 2.2. Then ykyk+1 = k�1(k + 1)�1LkLk+1 ∼ k2�1L2

k as k → ∞. By
Proposition 2.2, L2 ∈ NSV, and L2

kk
2�1−1 → 0 as k → ∞, being 2�1 − 1 < 0. Hence, there is

N > 0 such that L2
k
k2�1−1 ≤N for k ≥ a, and

k∑

j=a

1
yjyj+1

∼
k∑

j=a

1
j2�1L2

j

≥ 1
N

k∑

j=a

1
j
−→ ∞ (3.2)

as k → ∞. This shows that y is a recessive solution of (1.1). Clearly, x ∈ NRV(�2) is a
dominant solution, and limk yk/xk = 0. Now, let c1, c2 ∈ R be such that z = c1y + c2x. Since
z is eventually positive, if c2 = 0, then necessarily c1 > 0 and z ∈ NRV(�1). If c2 /= 0, then
we get c2 > 0 because of the positivity of zk for k large and the strict inequality between the
indices of regular variation �1 < �2. Moreover, z ∈ NRV(�2). Indeed, taking into account that
yk/xk → 0, kΔyk/yk → �1, and kΔxk/xk → �2, it results

kΔzk
zk

=
c1kΔyk + c2kΔxk

c1yk + c2xk
=
c1
(
kΔyk/yk

)(
yk/xk

)
+ c2kΔxk/xk

c1yk/xk + c2
∼ kΔxk

xk
. (3.3)

Now we prove the main statement.

Necessity

Let y ∈ NRV(�1) be a solution of (1.1) positive for k ≥ a. Set wk = Δyk/yk. Then limk kwk =
�1, limkwk = 0, and for anyM > 0, |wk| ≤ M/k provided k is sufficiently large. Moreover, w
satisfies the Riccati difference equation (2.2) and 1 +wk > 0 for k sufficiently large. Now we
show that

∑∞
j=a w

2
j /(1 +wj) converges. For any ε ∈ (0, 1) we have 1 +wk ≥ 1 − ε for large k,

say k ≥ a. Hence,

∞∑

j=a

w2
j

1 +wj
≤ 1

1 − ε

∞∑

j=a

w2
j ≤

M2

1 − ε

∞∑

j=a

1
j2
<∞. (3.4)

Summing now (2.2) from k to∞we get

wk =
∞∑

j=k

pj +
∞∑

j=k

w2
j

1 +wj
; (3.5)
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in particular we see that
∑∞ pj converges. The discrete L’Hospital rule yields

lim
k

∑∞
j=k w

2
j /

(
1 +wj

)

1/k
= lim

k

k(k + 1)w2
k

1 +wk
= �21. (3.6)

Hence, multiplying (3.5) by k we get

k
∞∑

j=k

pj = kwk − k
∞∑

j=k

w2
j

1 +wj
−→ �1 − �21 = A (3.7)

as k → ∞, that is, (3.1) holds. The same approach shows that x ∈ NRV(�2) implies (3.1).

Sufficiency

First we prove the existence of a solution y ∈ NRV(�1) of (1.1). Set ψk = k
∑∞

j=k pj − A. We
look for a solution of (1.1) in the form

yk =
k−1∏

j=a

(

1 +
�1 + ψj +wj

j

)

, (3.8)

k ≥ a, with some a ∈ N. In order that y is a (nonoscillatory) solution of (1.1), we need to
determine w in (3.8) in such a way that

uk =
�1 + ψk +wk

k
(3.9)

is a solution of the Riccati difference equation

Δuk + pk +
u2k

1 + uk
= 0 (3.10)

satisfying 1 + uk > 0 for large k. If, moreover, limkwk = 0, then y ∈ NRV(�1) by
Proposition 2.2. Expressing (3.10) in terms of w, in view of (3.9), we get

Δwk −
�1 +wk −A

k
+
(k + 1)

(
�1 + ψk +wk

)2

k2 + k
(
�1 + ψk +wk

) = 0, (3.11)

that is,

Δwk +wk
2�1 − 1 + 2ψk

k
+
w2
k + ψ

2
k + 2�1ψk
k

+ (Gw)k = 0, (3.12)
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where G is defined by

(Gw)k =
(k + 1)

(
�1 + ψk +wk

)2

k2 + k
(
�1 + ψk +wk

) −
(
�1 + ψk +wk

)2

k
. (3.13)

Introduce the auxiliary sequence

hk =
k−1∏

j=a

(

1 +
2�1 − 1 + 2ψj

j

)

, (3.14)

where a sufficiently large will be determined later. Note that h ∈ NRV(2�1 − 1)with 2�1 − 1 <
0, hence hk is positively decreasing toward zero, see Proposition 2.2. It will be convenient
to rewrite (3.12) in terms of h. Multiplying (3.12) by h and using the identities Δ(hkwk) =
hkΔwk + Δhkwk + ΔhkΔwk and Δhk = hk(2�1 − 1 + 2ψk)/k, we obtain

Δ(hkwk) +
hk
k

(
w2
k + ψ

2
k + 2�1ψk

)
+ hk(Gw)k −ΔhkΔwk = 0. (3.15)

If hkwk → 0 as k → ∞, summation of (3.15) from k to∞ yields

wk =
1
hk

∞∑

j=k

hj

j

(
w2
j + ψ

2
j + 2�1ψj

)
+

1
hk

∞∑

j=k

hj(Gw)j −
1
hk

∞∑

j=k

ΔhjΔwj. (3.16)

Solvability of this equation will be examined by means of the contraction mapping theorem
in the Banach space of sequences converging towards zero. The following properties of h
will play a crucial role in the proof. The first two are immediate consequences of the discrete
L’Hospital rule and of the property of regular variation of h:

lim
k

1
hk

∞∑

j=k

hj

j
=

1
1 − 2�1

> 0, (3.17)

lim
k

1
hk

∞∑

j=k

hj

j
αj = 0 provided lim

k
αk = 0. (3.18)

Further we claim that

lim
k

∑∞
j=k

∣
∣Δ2hj

∣
∣

hk
= 0. (3.19)

Indeed, first note that
∑∞

j=k |Δhj | ≤ (1 − 2�1 + 2supj≥k|ψj |)
∑∞

j=k hj/j <∞, and so
∑∞

j=k |Δ2hj | ≤
∑∞

j=k(|Δhj | + |Δhj+1|) <∞. By the discrete L’Hospital rule we now have that

lim
k

∑∞
j=k

∣
∣Δ2hj

∣
∣

hk
= lim

k

∣
∣
∣
∣
∣

Δ2hk
Δhk

∣
∣
∣
∣
∣
= lim

k

∣
∣
∣
∣
Δhk+1
Δhk

− 1
∣
∣
∣
∣ = 0 (3.20)
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since Δhk ∼ (2�1 − 1)hk/k ∼ (2�1 − 1)hk+1/(k + 1) ∼ Δhk+1, in view of h ∈ NRV(2�1 − 1).
Denote ψ̃k = supj≥k|ψj |. Taking into account that limkψ̃k = 0, and that (3.17) and (3.19) hold,
it is possible to choose δ > 0 and a ∈ N in such a way that

12δ
1 − 2�1

≤ 1, (3.21)

sup
k≥a

1
hk

∞∑

j=k

hj

j
≤ 2

1 − 2�1
, (3.22)

ψ̃2
a + 2

∣
∣�1

∣
∣ψ̃a ≤ δ2, (3.23)

(
1 +

∣
∣�1

∣
∣ + ψ̃a + δ

)3

a −
(∣
∣�1

∣
∣ + ψ̃a + δ

) ≤
δ
(
1 − 2�1

)

6
, (3.24)

sup
k≥a

1
hk

∞∑

j=k

∣
∣
∣Δ2hj

∣
∣
∣ ≤

1
6
, (3.25)

1 − 2�1 + 2ψ̃a
a

≤ 1
6
, (3.26)

γ :=
4δ

1 − 2�1
+
8
(
1 +

∣
∣�1

∣
∣ + ψ̃a + δ

)2

1 − 2�1
sup
k≥a

k +
∣
∣�1

∣
∣ + ψ̃a + δ

(
k −

∣
∣�1

∣
∣ − ψ̃a − δ

)2

+
1 − 2�1 + ψ̃a

a
+ sup

k≥a

1
hk

∞∑

j=k

∣
∣
∣Δ2hj

∣
∣
∣ < 1.

(3.27)

Let 
∞0 (a) be the Banach space of all the sequences defined on {a, a + 1, . . .} and converging
to zero, endowed with the sup norm. Let Ω denote the set

Ω =
{
w ∈ 
∞0 : |wk| ≤ δ, k ≥ a

}
(3.28)

and define the operator T by

(Tw)k =
1
hk

∞∑

j=k

hj

j

(
w2
j + ψ

2
j + 2�1ψj

)
+

1
hk

∞∑

j=k

hj(Gw)j −
1
hk

∞∑

j=k

ΔhjΔwj, (3.29)

k ≥ a. First we show that TΩ ⊆ Ω. Assume that w ∈ Ω. Then |(Tw)k| ≤ K
[1]
k

+ K[2]
k

+ K[3]
k
,

where K[1]
k

= |(1/hk)
∑∞

j=k(hj/j)(w
2
j + ψ

2
j + 2�1ψj)|, K[2]

k
= |(1/hk)

∑∞
j=k hj(Gw)j |, and K

[3]
k

=
|(1/hk)

∑∞
j=k ΔhjΔwj |. In view of (3.21), (3.22), and (3.23), we have

K
[1]
k

≤
(
δ2 + ψ̃2

a + 2
∣
∣�1

∣
∣ψ̃a

) 1
hk

∞∑

j=k

hj

j
≤

2
(
δ2 + ψ̃2

a + 2
∣
∣�1

∣
∣ψ̃a

)

1 − 2�1
≤ 4δ2

1 − 2�1
≤ δ

3
, (3.30)
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k ≥ a. Thanks to (3.22) and (3.24), we get

K
[2]
k ≤ 1

hk

∞∑

j=k

hj

j

∣
∣
∣j(Gw)j

∣
∣
∣ ≤

1
hk

∞∑

j=k

hj

j
·
(
1 +

∣
∣�1

∣
∣ + ψ̃a + δ

)3

j −
(∣
∣�1

∣
∣ + ψ̃a + δ

)

≤
(
1 +

∣
∣�1

∣
∣ + ψ̃a + δ

)3

a −
(∣
∣�1

∣
∣ + ψ̃a + δ

) · 2
1 − 2�1

≤ δ

3
,

(3.31)

k ≥ a. Finally, summation by parts, (3.25), and (3.26) yield

K
[3]
k

=

∣
∣
∣
∣
∣
∣

1
hk

lim
t→∞

[
wjΔhj

]t
j=k −

1
hk

∞∑

j=k

Δ2hjwj+1

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
2�1 − 1 + 2ψk

k
wk

∣
∣
∣
∣ + δ

1
hk

∞∑

j=k

∣
∣
∣Δ2hj

∣
∣
∣

≤
1 − 2�1 + 2ψ̃a

a
δ +

δ

6
≤ δ

3
,

(3.32)

k ≥ a. Hence, |(Tw)k| ≤ δ, k ≥ a. Next we prove that limk(Tw)k = 0. Since limk(w2
k + ψ

2
k +

2ψk) = 0, we have limkK
[1]
k

= 0 by (3.18). Since limk(1+ |�1|+ ψ̃a + δ)3/(k − (|�1|+ ψ̃a + δ)) = 0,
we have limkK

[2]
k

= 0 by (3.18). Finally, the discrete L’Hospital rule yields

lim
k

∑∞
j=k ΔhjΔwj

hk
= lim

k
(−Δwk) = 0, (3.33)

and limk K
[3]
k

= 0. Altogether we get limk|(Tw)k| = 0, and so limk(Tw)k = 0. Hence, Tw ∈ Ω,
which implies TΩ ⊆ Ω. Now we prove that T is a contraction mapping on Ω. Let w,v ∈ Ω.
Then, for k ≥ a, |(Tw)k−(Tv)k| ≤ H

[1]
k

+H[2]
k

+H[3]
k

, whereH[1]
k

= |(1/hk)
∑∞

j=k(hj/j)(w
2
j −v

2
j )|,

H
[2]
k = |(1/hk)

∑∞
j=k(hj/j)[(Gw)j − (Gv)j]|, and H

[3]
k = |(1/hk)

∑∞
j=k ΔhjΔ(wj − vj)|. In view

of (3.22), we have

H
[1]
k =

∣
∣
∣
∣
∣
∣

1
hk

∞∑

j=k

hj

j

(
wj − vj

)(
wj + vj

)
∣
∣
∣
∣
∣
∣

≤ ‖w − v‖ 1
hk

∞∑

j=k

hj

j
2δ ≤ ‖w − v‖ 4δ

1 − 2�1
.

(3.34)
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Before we estimate H[2], we need some auxiliary computations. The Lagrange mean value
theorem yields (Gw)k − (Gv)k = (wk − vk)((∂G/∂x)ξ)k, where min{vk,wk} ≤ ξk ≤
max{vk,wk} for k ≥ a. Since

∣
∣
∣
∣k

(
∂G

∂x
ξ

)

k

∣
∣
∣
∣ ≤ sup

k≥a

4
(
1 +

∣
∣�1

∣
∣ + ψ̃a + δ

)2(
k +

∣
∣�1

∣
∣ + ψ̃a + δ

)

(
k −

∣
∣�1

∣
∣ − ψ̃a − δ

)2 =: γ2, (3.35)

then, in view of (3.22),

H
[2]
k ≤ γ2‖w − v‖ 1

hk

∞∑

j=k

hj

j
≤ ‖w − v‖

2γ2
1 − 2�1

, (3.36)

k ≥ a. Finally, using summation by parts, we get

H
[3]
k

=

∣
∣
∣
∣
∣
∣

1
hk

lim
t→∞

[
Δhj

(
wj − vj

)]t
j=k −

1
hk

∞∑

j=k

(
wj+1 − vj+1

)
Δ2hj

∣
∣
∣
∣
∣
∣

≤ ‖w − v‖
∣
∣
∣
∣
Δhk
hk

∣
∣
∣
∣ + ‖w − v‖ 1

hk

∞∑

j=k

∣
∣
∣Δ2hj

∣
∣
∣ ≤ γ3‖w − v‖,

(3.37)

k ≥ a, where

γ3 :=
1 − 2�1 + ψ̃a

a
+ sup

k≥a

1
hk

∞∑

j=k

∣
∣
∣Δ2hj

∣
∣
∣. (3.38)

Noting that for γ defined in (3.27) it holds, γ = 4δ/(1 − 2�1) + 2γ2/(1 − 2�1) + γ3, we get
|(Tw)k − (Tv)k| ≤ γ‖w −v‖ for k ≥ a. This implies ‖Tw −Tv‖ ≤ γ‖w −v‖, where γ ∈ (0, 1) by
virtue of (3.27).

Now, thanks to the contraction mapping theorem, there exists a unique elementw ∈ Ω
such that w = Tw. Thus w is a solution of (3.16), and hence of (3.11), and is positively
decreasing towards zero. Clearly, u defined by (3.9) is such that limkuk = 0 and therefore
1 + uk > 0 for large k. This implies that y defined by (3.8) is a nonoscillatory (positive)
solution of (1.1). Since limk(�1 + ψk +wk) = �1, we get y ∈ NRV(�1), see Proposition 2.2. By
the same proposition, y can be written as yk = k�1Lk, where L ∈ NSV.

Next we show that for a linearly independent solution x of (1.1)we get x ∈ NRV(�2).
A second linearly independent solution is given by xk = yk

∑k−1
j=a 1/(yjyj+1). Put z = 1/y2.

Then z ∈ NRV(−2�1) and zk ∼ 1/(ykyk+1) by Proposition 2.2. Taking into account that y is
recessive and limkkzk = ∞ being 2�1 < 1 (see Proposition 2.2), the discrete L’Hospital rule
yields

lim
k

k/yk
xk

= lim
k

kzk
∑k−1

j=a 1/
(
yjyj+1

) = lim
k

zk + (k + 1)Δzk
1/

(
ykyk+1

)

= lim
k

(

1 +
(k + 1)Δzk

zk

)

= 1 − 2�1.

(3.39)
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Hence, (1 − 2�1)xk ∼ k/yk = k1−�1/Lk, that is, xk ∼ k1−�1 L̃k, where L̃k = 1/((1 − 2�1)Lk). Since
L̃ ∈ NSV by Proposition 2.2, we get x ∈ RV(1 − �1) = RV(�2) by Proposition 2.2. It remains
to show that x is normalized. We have

kΔxk
xk

=
kΔyk

∑k−1
j=a 1/

(
yjyj+1

)
+ kyk+1/

(
ykyk+1

)

xk

=
kΔyk
yk

+
k

xkyk
.

(3.40)

Thanks to this identity, since kΔyk/yk ∼ �1 and (k/xkyk) ∼ 1−2�1, we obtain limkkΔxk/xk =
1 − �1 = �2, which implies x ∈ NRV(�2).

Remark 3.2. (i) In the above proof, the contraction mapping theorem was used to construct
a recessive solution y ∈ NRV(�1). A dominant solution x ∈ NRV(�2) resulted from y by
means of the known formula for linearly independent solutions. A suitable modification of
the approach used for the recessive solution leads to the direct construction of a dominant
solution x ∈ NRV(�2). This can be useful, for instance, in the half-linear case, where we do
not have a formula for linearly independent solutions, see Section 5.

(ii) A closer examination of the proof of Theorem 3.1 shows that we have proved a
slightly stronger result. Indeed, it results

y ∈ NRV
(
�1
)
⇐⇒ lim

k
k

∞∑

j=k

pj = A <
1
4
⇐⇒ x ∈ NRV

(
�2
)
. (3.41)

Theorem 3.1 can be seen as an extension of [1, Theorems 1 and 2] in which p is assumed to be
a negative sequence, or as a discrete counterpart of [2, Theorems 1.10 and 1.11], see also [7,
Theorem 2.3].

As a direct consequence of Theorem 3.1 we have obtained the following new
nonoscillation criterion.

Corollary 3.3. If there exists the limit

lim
k
k

∞∑

j=k

pj ∈
(

−∞,
1
4

)

, (3.42)

then (1.1) is nonoscillatory.

Remark 3.4. In [8] it was proved that, if

−3
4
< lim inf

k
k

∞∑

j=k

pj ≤ lim sup
k

k
∞∑

j=k

pj <
1
4
, (3.43)

then (1.1) is nonoscillatory. Corollary 3.3 extends this result in case limk k
∑∞

j=k pj exists.
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4. Relations with M-Classification

Throughout this section we assume that p is eventually of one sign. In this case, all
nonoscillatory solutions of (1.1) are eventually monotone, together with their first difference,
and therefore can be a priori classified according to their monotonicity and to the values
of the limits at infinity of themselves and of their first difference. A classification of this
kind is sometimes called M-classification, see, for example, [9–12] for a complete treatment
including more general equations. The aim of this section is to analyze the relations between
the classification of the eventually positive solutions according to their regularly varying
behavior, and the M-classification. The relations with the set of recessive solutions and the set
of dominant solutions will be also discussed. We point out that all the results in this section
could be established also in the continuous case and, as far as we know, have never been
derived both in the discrete and in the continuous case.

Because of linearity, without loss of generality, we consider only eventually positive
solutions of (1.1). Since the situation differs depending on the sign of pk, we treat separately
the two cases. Note that (1.1), with p negative, has already been investigated in [1], and
therefore here we limit ourselves to state the main results, for the sake of completeness.

(I) pk > 0 for k ≥ a

Any nonoscillatory solution y of (1.1), in this case, satisfies ykΔyk > 0 for large k, that is, all
eventually positive solutions are increasing and concave. We denote this property by saying
that y is of class M

+, being M
+ = {y : y solution of (1.1), yk > 0,Δyk > 0 for large k}. This

class can be divided in the subclasses

M
+
∞,B =

{

y ∈ M
+ : lim

k
yk = ∞, lim

k
Δyk = 
y, 0 < 
y <∞

}

,

M
+
∞,0 =

{

y ∈ M
+ : lim

k
yk = ∞, lim

k
Δyk = 0

}

,

M
+
B,0 =

{

y ∈ M
+ : lim

k
yk = 
y, lim

k
Δyk = 0, 0 < 
y <∞

}

(4.1)

depending on the possible values of the limits of y and of Δy. Solutions in M
+
∞,B, M

+
∞,0,

M
+
B,0 are sometimes called, respectively, dominant solutions, intermediate solutions, and

subdominant solutions, since, for large k, it holds xk > yk > zk for every x ∈ M
+
∞,B, y ∈ M

+
∞,0,

and z ∈ M
+
B,0. The existence of solutions in each subclass, is completely characterized by the

convergence or the divergence of the series

I =
∞∑

k=a

kpk (4.2)

see [11, 12]. The following relations hold

I <∞ ⇐⇒ M
+ = M

+
B,0 ∪ M

+
∞,B, with M

+
B,0 /= ∅,M+

∞,B /= ∅,

I = ∞, and (1.1) is nonoscillatory ⇐⇒ M
+ = M

+
∞,0 /= ∅.

(4.3)
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Let

P = lim
k
k

∞∑

j=k

pj . (4.4)

Since k
∑∞

j=k pj <
∑∞

j=k jpj , then the following relations between I and P hold:

(i) if P > 0 then I = ∞;

(ii) if I <∞ then P = 0.

From Theorem 3.1, it follows that, if P = 0, then (1.1) has a fundamental set of solutions {x, y}
with x ∈ NSV, and y ∈ NRV(1); if 0 < P < 1/4, then (1.1) has a fundamental set of solutions
{u, v} with u ∈ NRV(�1), and v ∈ NRV(�2), 0 < �1 < �2 < 1. Further, all the positive
solutions of (1.1) belong to NSV ∪NRV(1) in the first case, and to NRV(�1) ∪NRV(�2) in
the second one. Set

M
+
SV = M

+ ∩NSV,

M
+
RV

(
�
)
= M

+ ∩NRV
(
�
)
, � > 0.

(4.5)

By means of the above notation, the results proved in Theorem 3.1 can be summarized as
follows

∅/=M
+ = M

+
SV ∪ M

+
RV(1) ⇐⇒ P = 0,

∅/=M
+ = M

+
RV

(
�1
)
∪ M

+
RV

(
�2
)
⇐⇒ P ∈

(

0,
1
4

)

.
(4.6)

By observing that every solution x ∈ RV(1) satisfies limkxk = ∞ and that M
+
∞,B ⊆ M

+
RV(1), we

get the following result.

Theorem 4.1. For (1.1), with pk > 0 for large k, the following hold.

(i) If P = 0 and I <∞, then M
+ = M

+
SV ∪ M

+
RV(1), with M

+
SV = M

+
B,0, M

+
RV(1) = M

+
∞,B.

(ii) If P = 0 and I = ∞, then M
+ = M

+
SV ∪ M

+
RV(1) = M

+
∞,0.

(iii) If P ∈ (0, 1/4) then M
+ = M

+
RV(�1) ∪ M

+
RV(�2) = M

+
∞,0.

The above theorem shows how the study of the regular variation of the solutions
and the M-classification supplement each other to give an asymptotic description of
nonoscillatory solutions. Indeed, for instance, in case (i) the M-classification gives the
additional information that all slowly varying solutions tend to a positive constant, while
all the regularly varying solutions of index 1 are asymptotic to a positive multiple of k.
On the other hand, in the remaining two cases, the study of the regular variation of the
solutions gives the additional information that the positive solutions, even if they are all
diverging with first difference tending to zero, have two possible asymptotic behaviors,
since they can be slowly varying or regularly varying with index 1 in case (ii), or regularly
varying with two different indices in case (iii). This distinction between eventually positive
solutions is particularly meaningful in the study of dominant and recessive solutions. Let
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R denote the set of all positive recessive solutions of (1.1) and D denote the set of all
positive dominant solutions of (1.1). From Theorem 4.1, taking into account Theorem 3.1,
the following characterization of recessive and dominant solution holds.

(i) If P = 0 and I <∞, then R = M
+
SV = M

+
B,0 and D = M

+
RV(1) = M

+
∞,B.

(ii) If P = 0 and I = ∞, then R = M
+
SV ⊂ M

+
∞,0 and D = M

+
RV(1) ⊂ M

+
∞,0.

(iii) If P ∈ (0, 1/4) and I = ∞, then R = M
+
RV(�1) ⊂ M

+
∞,0 and D = M

+
RV(�2) ⊂ M

+
∞,0.

(II) pk < 0 for k ≥ a

In this case, completely analyzed in [1], any positive solution y is either decreasing or
eventually increasing. We say that y is of class M

+ in the first case, of class M
− in the second

one. It is easy to verify that every y ∈ M
+ satisfies limkyk = ∞, and every y ∈ M

− satisfies
limkΔyk = 0. Therefore the sets M

+ and M
− can be divided into the following subclasses

M
+
∞,B =

{

y ∈ M
+ : lim

k
yk = ∞, lim

k
Δyk = 
y, 0 < 
y <∞

}

,

M
+
∞,∞ =

{

y ∈ M
+ : lim

k
yk = ∞, lim

k
Δyk = ∞

}

,

M
−
B,0 =

{

y ∈ M
− : lim

k
yk = 
y, lim

k
Δyk = 0, 0 < 
y <∞

}

,

M
−
0,0 =

{

y ∈ M
− : lim

k
yk = 0, lim

k
Δyk = 0

}

.

(4.7)

Also in this case, the existence of solutions of (1.1) in each subclass is completely described
by the convergence or divergence of the series I given by (4.2)

M
+ = M

+
∞,∞ ⇐⇒ I = −∞ ⇐⇒ M

− = M
−
0,0,

M
+ = M

+
∞,B ⇐⇒ I > −∞ ⇐⇒ M

− = M
−
B,0.

(4.8)

Let

M
−
SV = M

− ∩NSV, M
−
RV

(
�1
)
= M

− ∩NRV
(
�1
)
, �1 < 0,

M
+
RV

(
�2
)
= M

+ ∩NRV
(
�2
)
, �2 > 0.

(4.9)

Notice that, being pk negative for large k, it results �1 ≤ 0, �2 ≥ 1. The following holds.

Theorem 4.2 (see [1]). For (1.1), with pk < 0 for large k, it results in what follows.

(i) If P = 0 and I > −∞, then M
+
∞,B = M

+ = M
+
RV(1) and M

−
B,0 = M

− = M
−
SV.

(ii) If P = 0 and I = −∞, then M
+
∞,∞ = M

+ = M
+
RV(1) and M

−
0,0 = M

− = M
−
SV.

(iii) If P ∈ (−∞, 0), then M
+
∞,∞ = M

+ = M
+
RV(�2) and M

−
0,0 = M

− = M
−
RV(�1).
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Relations between recessive/dominant solutions and regularly varying solutions can
be easily derived from the previous theorem, see also [1]. We have the following.

(i) If P = 0 and I > −∞, then R = M
−
SV = M

−
B,0, and D = M

+
RV(1) = M

+
∞,B.

(ii) If P = 0 and I = −∞, then R = M
−
SV = M

−
0,0, and D = M

+
RV(1) = M

+
∞,∞.

(iii) If P ∈ (−∞, 0), then R = M
−
RV(�1) = M

−
0,0, and D = M

+
RV(�2) = M

+
∞,∞.

We end this section by remarking that in this case positive solutions are convex and
therefore they can exhibit also a rapidly varying behavior, unlike the previous case in which
positive solutions are concave. We address the reader interested in this subject to the paper
[1], in which the properties of rapidly varying sequences are described and the existence of
rapidly varying solutions of (1.1) is completely analyzed for the case pk < 0.

5. Regularly Varying Solutions of Half-Linear Difference Equations

In this short section we show how the results of Section 3 can be extended to half-linear
difference equations of the form

Δ
(
Φ
(
Δyk

))
+ pkΦ

(
yk+1

)
= 0, (5.1)

where p : N → R and Φ(u) = |u|α−1 sgnu, α > 1, for every u ∈ R. For basic information on
qualitative theory of (5.1) see, for example, [13].

Let A ∈ (−∞, (1/α)((α − 1)/α)α−1) and denote by �1 < �2, the (real) roots of the
equation |�|α/(α−1) − � +A = 0. Note that sgnA = sgn �1 and Φ−1(�1) < (α − 1)/α < Φ−1(�2).

Theorem 5.1. Equation (5.1) is nonoscillatory and has two solutions y, x such that y ∈
NRV(Φ−1(�1)) and x ∈ NRV(Φ−1(�2)) if and only if

lim
k
kα−1

∞∑

j=k

pj = A ∈
(

−∞,
1
α

(
α − 1
α

)α−1
)

. (5.2)

Proof. The main idea of the proof is the analogous of the linear case, apart from some
additional technical problems. We omit all the details, pointing out only the main differences.

Necessity

Set wk = Φ(Δyk/yk), then w satisfies the generalized Riccati equation

Δwk + pk +wk

(

1 − 1
Φ
(
1 + Φ−1(wk)

)

)

= 0, (5.3)

and limk k
α−1wk = �1. The proof can then proceed analogously to the linear case.

Sufficiency

The existence of both solutions y ∈ NRV(Φ−1(�1)) and x ∈ NRV(Φ−1(�2)) needs to be
proved by a fixed-point approach, since in the half-linear case there is no reduction of order
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formula for computing a linearly independent solution. For instance, a solution y can be
searched in the form

yk =
k−1∏

j=a

(

1 + Φ−1
(
�1 + ψj + vj

jα−1

))

, (5.4)

(compare with (3.8)), where ψk = kα−1
∑∞

j=k pj −A and v is such that uk = (�1 + ψk + vk)/kα−1

is a solution of (5.3). All the other details are left to the reader.

Remark 5.2. (i) Theorem 5.1 can be seen as an extension of [6, Theorem 1] in which p is
assumed to be a negative sequence, and as a discrete counterpart of [14, Theorem 3.1].

(ii) A closer examination of the proof of Theorem 5.1 shows that we have proved a
slightly stronger result which reads as follows:

y ∈ NRV
(
Φ−1(�1

))
⇐⇒ lim

k
kα−1

∞∑

j=k

pj = A <
1
α

(
α − 1
α

)α−1

⇐⇒ x ∈ NRV
(
Φ−1(�2

))
.

(5.5)

Similarly as in the linear case, as a direct consequence of Theorem 5.1 we obtain the
following new nonoscillation criterion. Recall that a Sturm type separation theorem holds
for equation (5.1), see [13], hence one solution of (5.1) is nonoscillatory if and only if every
solution of (5.1) is nonoscillatory.

Corollary 5.3. If there exists the limit

lim
k
kα−1

∞∑

j=k

pj ∈
(

−∞,
1
α

(
α − 1
α

)α−1
)

, (5.6)

then (5.1) is nonoscillatory.
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